首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 862 毫秒
1.
何耀基 《广东地质》1997,12(3):41-48,T001
玉水矿床赋存在石炭纪早期中晚时碎屑岩(忠信组)顶部与石炭纪晚期早时碳酸盐岩(壶天组)底部的接触面上下。主矿体呈似层状,由碳酸盐岩中微裂隙充填矿体和其下的层状矿体以及碎屑岩内热液蚀变脉状矿体组成,主体是层状的富铜块状硫化物。矿石主要的结构构造是晶粒结构,块状-准块状构造、层纹状构造。矿物组成比较多样,主要矿物是:黄铜矿、斑铜矿、方铅矿、闪锌矿、黄铁矿。矿石铅属单阶段演化的正常铅,铅同位素等时线年龄为  相似文献   

2.
巴尔哲超大型稀土铌铍锆矿床地球化学和成因   总被引:43,自引:2,他引:43  
巴尔哲超大型稀土铌铍锆矿床位于内蒙古自治区扎特鲁旗。矿体赋存在钠闪石花岗岩中,成矿元素主要赋存在兴安石、铌铁矿、烧绍石和锆石中。钠闪石花岗岩侵入在大兴安岭侏罗世火山岩盆地中,矿区位于大兴安岭主脊-林西断裂带与嫩江-八里罕断裂带之间的霍林河东西向断裂带和大兴安岭-太行山-武陵山重力梯度带上。钠闪石花岗岩的Rb-Sr等时线年龄为125Ma。矿体遭受强烈交代作用,主要为钠闪石化和硅化。巴尔哲钠闪石花岗岩  相似文献   

3.
70年代以来国外大型特大型矿床发现背景统计分析   总被引:10,自引:1,他引:9  
为了解影响大型特大型矿床发现的因素,我们系统收集了1970~1997年间,国外100个大型特大型金、银、铜、铅、锌矿床的发现过程。通过对这些矿床的发现背景进行详细剖析,试图阐明矿产勘查战略及其找矿工程学的发展。本次研究所收集的100个贵金属、贱金属  相似文献   

4.
通过对珠万喀腊岩体的地质,地球物理,地球化学特征的研究,提出了在该地区寻找隐伏深源熔离-贯入式铜镍硫化物矿床的可能性。  相似文献   

5.
6.
巨型,大型和世界级矿床地质—找矿的总趋势   总被引:2,自引:0,他引:2  
巨、大型矿床提供了矿物原料的主要基地,世界级矿床可获得稳定和较高的经济效益,为满足经济发展对矿产品的需求,勘查巨、大型矿床,优先开发世界级矿床成为世界各国当务之急。 一、我国的矿产资源形势 从40年代至80年代初,世界上发现和勘查了许多大型、巨型和世界级矿床(表1),有的已开采,生产矿产品,形成了较高的生产能力,收到了较好的经济效益。  相似文献   

7.
8.
云南铂,铜镍,铬矿床的成矿模式   总被引:5,自引:3,他引:5  
罗君烈 《云南地质》1995,14(4):311-318
云南铂、铜镍、铬矿床的成矿模式罗君烈(云南省地质矿产厅)1区域成矿模式云南已评价的铂族矿床9个,铜镍矿床2个,铬均属矿点。虽然超镁铁—镁铁岩类分布较广,包括潞西、保山、孟连、德钦、哀牢山、元谋、富宁等主要岩带(区),但前震旦纪浅成—超浅成辉长—辉绿岩...  相似文献   

9.
滇东南锡,钨,铅锌,银矿床的成矿模式   总被引:18,自引:0,他引:18  
罗君烈 《云南地质》1995,14(4):319-332
滇东南锡、钨、铅锌、银矿床的成矿模式罗君烈(云南省地质矿产厅)1区域成矿模式个旧—都龙地区位于华南加里东褶皱系的最西段,属于我国著名的南岭有色金属成矿带的一部分。成矿类型繁杂,矿种多样,储量丰富。本文只建立与燕山早期—燕山晚期花岗岩有关的有色、贵金属...  相似文献   

10.
积极探索突破新类型金刚石原生矿床   总被引:3,自引:0,他引:3  
本文从世界范围内论述金刚石的分布和来源,有据有理地积极探索和研究金刚石的成因及其形成条件和保存条件,指出找矿方向,开拓了找矿思路,扩大了找矿领域,对于在新区发现和突破金伯利岩型、橄榄金云火山岩型以及新类型的金刚石原生矿床,具有重要的现实的指导意义。  相似文献   

11.
The Southern Great Xing'an Range(SGXR) hosts a number of Early Cretaceous Sn and associated metal deposits, which can be divided into three principal types according to their geological characteristics: skarn type deposits, porphyry type deposits and hydrothermal vein type deposits. Fluid inclusion assemblages of different types of deposits are quite different, which represent the complexities of metallogenic process and formation mechanism. CH_4 and CO_2 have been detected in fluid inclusions from some of deposits, indicating that the ore-forming fluids are affected by materials of Permian strata. Hydrogen and oxygen isotope data from ore minerals and associated gangue minerals indicate that the initial ore fluids were dominated by magmatic waters, some of which had clearly exchanged oxygen with wall rocks during their passage through the strata. The narrow range for the δ~(34)S values presumably reflects the corresponding uniformity of the ore forming fluids, and these δ~(34)S values have been interpreted to reflect magmatic sources for the sulfur. The comparation between lead isotope ratios of ore minerals and different geological units' also reveals that deeply seated magma has been a significant source of lead in the ores.  相似文献   

12.
Abstract: Sulfur isotope data (δ34S) of sulfides of more than 6700 samples from 157 ore deposits associated with Early and Late Yanshanian granitic and volcanic activities in South China are reviewed and summarized. Averaged δ34S values of individual deposits vary from ‐9. 3 to +20. 6%, and show a normal distribution pattern with the average of +2%. About 88 % of the ore deposits have values within the range, ?2.5 ? +13.6‰, of associated Yanshanian granitoids. There is a temporal‐spatial variation of δ34S values of the ore deposits. However, no clear zonal distribution parallel to geotectonic NNE lineaments was observed. Spatial distribution of ore sulfide δ34S values in most of the NE part of the whole studied area coincides with that of Yanshanian granitoids and volcanic rocks. A downward tendency of the average values in time is: +3. 0% (n=7, J1) → +1. 6% (n=29, J2) → +1. 7% (n=68, J3) → +1. 8% (n=37, K1) → ?1. 5% (n=16, K2). There is an “island” of high and variable δ34S values (0? +16.5‰) occurring within a generally low trough zone (?8 ? 0%) of N‐S about 800 km and E‐W 100 to 300 km, bounded by 110°E ? 116°E longitudes and 22°N ? 31°N latitudes. The island occurs at the junction of three tectonic units and a NE‐trending crustal matching line implying a variety of magmatism occurred at the junction. The low trough zone coincides with a low ferric/ferrous ratio zone of Early Yanshanian granitoids, indicating their genetic relationship. Different genetic types of ore deposits show different histogram patterns suggesting different relationships to magmatic rocks and host strata. Granite/greisen/pegmatite type deposits are most closely associated with granitoids, with average ore sul‐fide δ34S values for individual ore deposits ranging between ‐2. 0 and +4. 1%, and an average of +0. 5% (n = 15) close to type meteoric value of 0%. Porphyry‐type deposits have also narrow range of ?2.2 ? + 4.9‰, with an average value of +1. 1% (n = 18). Skarn‐type dominated ore deposits have a nearly normal distribution pattern with an average of +1. 6% (n = 62), ranging from ‐5. 3 to +11. 5%. Volcano‐subvolcanic ore deposits range between ‐3. 1 and +5. 9% with an average of +2. 3% (n = 19). Other types of hydrothermal ore deposits have averaged δ34S values of individual ones from ‐9. 3 to +20. 6%, with average value of +1. 3% (n=43). Vertical and horizontal zonations of δ34S values of ore deposits around their associated granitoid plutons are observed in several localities. Such zonations may be caused by interaction between magma and/or magmatic fluids and host sedimentary rocks, as well as the evolution of physico‐chemical conditions of ore‐forming fluids. Spatial distribution of ore sulfur isotope compositions is also clearly controlled by tectonics and deep faults. Ore sulfur isotope composition is sometimes strongly affected by host sedimentary rocks, especially by evaporite sulfur with much higher δ34S value and partly by biogenic sulfur with low δ34S value. The δ34S values of Yanshanian granitoids are from ‐2. 5 to +13. 6% for both rock samples and pyrite/pyrrhotite separates from granitic rocks, with similar spatial distribution pattern to those of associated ore deposits. The ore deposits associated with ilmenite‐series granitoids have δ34S values ranging between ‐7. 5 and +10. 4% with an average of +1. 0%, while the ore deposits associated with magnetite‐series granitoids ranging between ?8.0 ? +11.5‰ with an average of +1. 1%. δ34S values of ore deposits tend to converge to +3% as the Fe2O3/FeO ratio of associated granitoids increases from 0. 45 to 8. 7.  相似文献   

13.
Assessment of geological, geochemical and isotopic data indicates that a significant subgroup of volcanic-hosted massive sulphide (VHMS) deposits has a major or dominant magmatic?Chydrothermal source of ore fluids and metals. This group, which is typically characterised by high Cu and Au grades, includes deposits such as those in the Neoarchean Doyon-Bousquet-LaRonde and Cambrian Mount Lyell districts. These deposits are distinguished by aluminous advanced argillic alteration assemblages or metamorphosed equivalents intimately associated with ore zones. In many of these deposits, ??34Ssulphide is low, with a major population below ?3??; ??34Ssulphate differs from coexisting seawater and ??34Ssulphate?Csulphide????20?C30??. These characteristics are interpreted as the consequence of disproportionation of magmatic SO2 as magmatic?Chydrothermal fluids ascended and cooled and as a definitive evidence for a significant magmatic?Chydrothermal contribution. Other characteristics that we consider diagnostic of significant magmatic?Chydrothermal input into VHMS ore fluids include uniformly high (>3 times modern seawater values) salinities or very 18O-enriched (??18O?>?5??) ore fluids. We do not consider other criteria [e.g. variable salinity, moderately high ??18Ofluid (2?C5??), ??34Ssulphide near 0??, metal assemblages or a spatial association with porphyry Cu or other clearly magmatic-hydrothermal deposits] that have been used previously to advocate significant magmatic?Chydrothermal contributions to be diagnostic as they can be produced by non-magmatic processes known to occur in VHMS mineral systems. However, in general, a small magmatic?Chydrothermal contribution cannot be excluded in most VHMS systems considered. Conclusive data that imply minimal magmatic?Chydrothermal contributions are only available in the Paleoarchean Panorama district where coeval seawater-dominated and magmatic?Chydrothermal systems appear to have been physically separated. This district, which is characterised by chloritic and sericitic alteration assemblages and lacks aluminous advanced argillic alteration assemblages, is typical of many VHMS deposits around the world, suggesting that for ??garden variety?? VHMS deposits, a significant magmatic?Chydrothermal contribution is not required. Other than deposits associated with advanced argillic alteration assemblages, the only deposit for which we ascribe a major magmatic?Chydrothermal contribution is the Devonian Neves Corvo deposit. This deposit differs from other deposits in the Iberian Pyrite Belt and around the world in being extremely Sn-rich, with the Sn closely associated with Cu and in having formed from high 18O-rich fluids (??18Ofluid ??8.5??). We consider these characteristics, particularly the last, as diagnostic of a significant magmatic hydrothermal contribution. Our analysis indicates that two subgroups of VHMS deposits have a major magmatic?Chydrothermal contribution: Cu/Au-rich deposits with aluminous alteration assemblages and reduced, very Sn-rich deposits in which Sn was introduced in a high-temperature ore assemblage. Comparison with ??normal?? VHMS deposits suggests that these subgroups of VHMS deposits may form in specialised tectonic environments. The Cu/Au-rich deposits appear to form adjacent to magmatic arcs, an environment conducive to the generation of hydrous, oxidised melts by melting metasomatised mantle in the wedge above the subducting slab. This contrasts with the back-arc setting of ??normal?? VHMS deposits in which relatively dry granites (In this contribution, we use the term granite sensu latto) formed by decompression melting drive seawater-dominated hydrothermal circulation. The tectonic setting of highly Sn-rich VHMS deposits such as Neves Corvo is less clear; however, thick continental crust below the ore-hosting basin may be critical, as it is in other Sn deposits.  相似文献   

14.
The Shaki porphyry copper(gold) deposits are a trpical example of porphyry copper deposits associ-ated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9±1.6Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ionlithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (I_(Sr)=0.7058); thus it is the productof differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similarto the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts ofCO_2, Ca~(2+), Na~+ and Cl~-. The homogenization temperatures of fluid inclusions for the main mineralization stage rangefrom 280 to 420℃, the δ~(18)O values of the ore fluids vary from 3.51 to 5.52‰, the δD values are in the range between-82.4 and -59.8‰, the δ~(34)S values of sulphides vary from -0.3 to 2.49‰, and the δ~(13)C values of CO_2 in inclusionsrange between -2.66 and -6.53‰. Isotope data indicate that the hydrothermal ore fluids and ore substances of theShaxi porphyry copper (gold) deposits were mainly derived from magmatic systems.  相似文献   

15.
The Shizishan ore field is the largest gold–copper ore field in the Tongling ore district of Anhui Province, China. Copper and gold deposits in the district are present as one-commodity deposits or as deposits with both commodities. Copper and gold mineralization are either cogenetic or are temporally and spatially distinct. We present the results of systematic geochemical analysis of fluid inclusions from typical Au–Cu deposits in the Shizishan ore field; these data are used to determine the solubility of Cu and Au in the ore-forming fluids and to ascertain the mechanisms and factors that controlled variations in the association and separation of copper and gold mineralization. Our results indicate that copper in the ore-forming fluids was transported as CuCl2 and CuCl0 complexes and that the solubility of copper was controlled by variations in Cl concentration. In addition, the precipitation of copper was controlled by changes in temperature, pH, fO2, and fO2. In comparison, gold in the ore-forming fluids was transported as Au(HS)2 and Au2S(HS)22− complexes, and the solubility of gold was controlled by variations in total sulfur concentration; the precipitation of gold was controlled by temperature, pH, fO2, and fO2. These differences between the two elements meant that copper and gold in the ore-forming fluids responded in different ways to changes in physicochemical conditions. Copper precipitated under relatively acidic conditions at high temperatures, while gold precipitated under weakly alkaline conditions at relatively low temperatures; this dissociation resulted in the temporal and spatial separation and zonation of copper and gold mineralization in the Shizishan ore field.  相似文献   

16.
The Datangpo‐type manganese ore deposits, which formed during the Nanhuan (Cryogenian) period and are located in northeastern Guizhou and adjacent areas, are one of the most important manganese resources in China, showing good prospecting potential. Many middle‐to‐large deposits, and even super‐large mineral deposits, have been discovered. However, the genesis of manganese ore deposits is still controversial and remains a long‐standing source of debate; there are several viewpoints including biogenesis, hydrothermal sedimentation, gravity flows, cold‐spring carbonates, etc. Geochemical data from several manganese ore deposits show that there are positive correlations between Al2O3 and TiO2, SiO2, K2O, and Na2O, and strong negative correlations between Al2O3 and CaO, MgO, and MnO in black shales and manganese ores. U, Mo, and V show distinct enrichment in black shales and inconspicuous enrichment in Mn ores. Ba and Rb show strong positive correlations with K2O in manganese ores. Cu, Ni, and Zn show clear correlations with total iron in both manganese ores and black shales. ∑REE of manganese ores has a large range with evident positive Ce anomalies and positive Eu anomalies. The Post Archean Australian Shale (PAAS) normalized rare earth element (REE) distribution patterns of manganese ores present pronounced middle rare earth element (MREE) enrichment, producing “hat‐shaped” REE plots. ∑REE of black shales is more variable compared with PAAS, and the PAAS‐normalized REE distribution patterns appear as “flat‐shaped” REE plots, lacking evident anomaly characteristics. δ13C values of carbonate in both manganese ores and the black shales show observable negative excursions. The comprehensive analysis suggests that the black shales formed in a reducing and quiet water column, while the manganese ores formed in oxic muddy seawater, which resulted from periodic transgressions. There was an oxidation–reduction cycle of manganese between the top water body and the bottom water body caused by the transgressions during the early Datangpo, which resulted in the dissolution of manganese. Through the exchange of the euphotic zone water and the bottom water, and episodic inflow of oxygenated water, the manganese in the bottom water was oxidized to Mn‐oxyhydroxides and rapidly buried along with algae. In the early diagenetic stage, Mn‐oxyhydroxides were reduced and dissolved in the anoxic pore water and then transformed into Mn‐carbonates by reacting with HCO3? from the degradation of organic matter or from seawater. In the intervals between transgressions, continuous supplies of terrigenous clastics and the high productive rates of organic matter in the euphotic zone resulted in the deposition of the black shales enriched in organic matter.  相似文献   

17.
Fluid inclusion studies were made on the basis of the geological data on the strata-bound ore de-posits of China including those of Pb,Zn,Au,Ag,Sb,U,Hg,W,quartz-crystal and sparry-calcite.An attempt was made to approach the model of formation for each type of ore depos-its by considering the material sources,the migration of fluids and the conditions of mineralization.It is found that ore-forming fluids (especially H2O)originate as heated underground water reacts with the wallrocks and dissolves Na^ ,Ca^2 ,K^ ,Cl^ ,HCl^- and Mg^2 .The ore fluids are mainly of NaCl-Ca-HCO3-H2O system with salinities ranging from 4to 14wt.%.NaCl equivalent and densities ranging from 0.9 to 1.0g/cm^3.It may be concluded that the deposits were formed at temperatures ranging from 150 to 250℃ under pressures from 300 to 1000 bars.Ore deposition may have been controlled by temperature and pressure or by the mixing among different fluids.  相似文献   

18.
应用氢氧同位素研究矿床成因的一些问题探讨   总被引:10,自引:1,他引:10       下载免费PDF全文
翟建平  胡凯 《地质科学》1996,31(3):229-237
成矿热液的氢、氧同位素组成与其水的类型、水/岩交换的岩石成分和同位素组成、水/岩交换时的温度及水/岩交换程度(W/R比值大小)等诸多因素有关,微生物和有机质也对其有一定的影响。因此,仅通过简单投影的方法将成矿热液的氢、氧同位素值与一些所谓的标准值进行类比,由此就推断出热液中水的来源,这种方法是不可取的;尤其当成矿热液的氢、氧同位素值介于大气降水和岩浆水的值之间时,切忌滥用两种水混合成矿模式,因为实际情况往往并不是这样。本文以胶东乳山金矿床为例,展开了这方面的讨论。  相似文献   

19.
《International Geology Review》2012,54(13):1478-1507
The Central and Eastern Taurides contain numerous carbonate-hosted Pb–Zn deposits, mainly in Devonian and Permian dolomitized reefal–stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them.

Fluid inclusion studies reveal that the ore fluids were highly saline (13–26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Da?, Delikkaya, and Ayrakl? deposits, respectively. Furthermore, the δ34S values of carbonate-hosted Pb–Zn deposits in the Central and Eastern Taurides vary between –5.4‰ and?+13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average δ34S –0.15‰) for the Çad?rkaya deposit, which is related to a late Eocene–Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Suçat? district, all deposits in the Eastern (Delikkaya, Ayrakl?, Denizovas?, Çad?rkaya) and Central (Katranba??, Küçüksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts.

Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Çad?rkaya deposit) and the Central Taurides are similar to MVT Pb–Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous–Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur?+?lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate–carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the ‘wall-rock replacement’ and the ‘residual and karst fill’ of non-sulphide zinc deposits and are predominantly composed of smithsonite.  相似文献   

20.
国外浅变质碎屑岩型金矿床的含矿岩系以含碳和黄铁矿,夹火山物质和热水沉积物,金含量高为特征.在含矿岩系的沉积、成岩过程中,局部可以形成贫金的含矿层,少数情况下以至于形成金矿体.含矿岩系的变质作用可能形成金矿化,或为后来的成矿作用造成有利的物理和化学环境.岩浆作用为成矿作用提供了部分成矿物质,或为改造成矿作用提供热源和动力.金矿床受构造控制,位于地热正异常区,金矿床的形成与热水沉积成矿作用、变质成矿作用、岩浆期后热液成矿作用和大气降水改造成矿作用等有关.超大型浅变质碎屑岩金矿床的形成过程持续时间长,具有多期多阶段的特点.改造成矿作用在超大型浅变质细碎屑岩型金矿床形成中起重要作用,中生代形成的超大型金矿床中,构造岩浆活化作用叠加十分重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号