首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Areas of low strain rate are typically characterized by low to moderate seismicity. The earthquake catalogs for these regions do not usually include large earthquakes because of their long recurrence periods. In cases where the recurrence period of large earthquakes is much longer than the catalog time span, probabilistic seismic hazard is underestimated. The information provided by geological and paleo-seismological studies can potentially improve seismic hazard estimation through renewal models, which assume characteristic earthquakes. In this work, we compare the differences produced when active faults in the northwestern margin of the València trough are introduced in hazard analysis. The differences between the models demonstrate that the introduction of faults in zones characterized by low seismic activity can give rise to significant changes in the hazard values and location. The earthquake and fault seismic parameters (recurrence interval, segmentation or fault length that controls the maximum magnitude earthquake and time elapsed since the last event or Te) were studied to ascertain their effect on the final hazard results. The most critical parameter is the recurrence interval, where shorter recurrences produce higher hazard values. The next most important parameter is the fault segmentation. Higher hazard values are obtained when the fault has segments capable of producing big earthquakes. Finally, the least critical parameter is the time elapsed since the last event (Te), when longer Te produces higher hazard values.  相似文献   

2.
Spatial variation of seismicity parameters across India and adjoining areas   总被引:2,自引:2,他引:0  
An attempt has been made to quantify the variability in the seismic activity rate across the whole of India and adjoining areas (0–45°N and 60–105°E) using earthquake database compiled from various sources. Both historical and instrumental data were compiled and the complete catalog of Indian earthquakes till 2010 has been prepared. Region-specific earthquake magnitude scaling relations correlating different magnitude scales were achieved to develop a homogenous earthquake catalog for the region in unified moment magnitude scale. The dependent events (75.3%) in the raw catalog have been removed and the effect of aftershocks on the variation of b value has been quantified. The study area was divided into 2,025 grid points (1°×1°) and the spatial variation of the seismicity across the region have been analyzed considering all the events within 300 km radius from each grid point. A significant decrease in seismic b value was seen when declustered catalog was used which illustrates that a larger proportion of dependent events in the earthquake catalog are related to lower magnitude events. A list of 203,448 earthquakes (including aftershocks and foreshocks) occurred in the region covering the period from 250 B.C. to 2010 A.D. with all available details is uploaded in the website .  相似文献   

3.
In view of the major advancement made in understanding the seismicity and seismotectonics of the Indian region in recent times, an updated probabilistic seismic hazard map of India covering 6–38°N and 68–98°E is prepared. This paper presents the results of probabilistic seismic hazard analysis of India done using regional seismic source zones and four well recognized attenuation relations considering varied tectonic provinces in the region. The study area was divided into small grids of size 0.1° × 0.1°. Peak Horizontal Acceleration (PHA) and spectral accelerations for periods 0.1 s and 1 s have been estimated and contour maps showing the spatial variation of the same are presented in the paper. The present study shows that the seismic hazard is moderate in peninsular shield, but the hazard in most parts of North and Northeast India is high.  相似文献   

4.
The frequency–magnitude distributions of earthquakes are used in this study to estimate the earthquake hazard parameters for individual earthquake source zones within the Mainland Southeast Asia. For this purpose, 13 earthquake source zones are newly defined based on the most recent geological, tectonic, and seismicity data. A homogeneous and complete seismicity database covering the period from 1964 to 2010 is prepared for this region and then used for the estimation of the constants, a and b, of the frequency–magnitude distributions. These constants are then applied to evaluate the most probable largest magnitude, the mean return period, and the probability of earthquake of different magnitudes in different time spans. The results clearly show that zones A, B, and E have the high probability for the earthquake occurrence comparing with the other seismic zones. All seismic source zones have 100 % probability that the earthquake with magnitude ≤6.0 generates in the next 25 years. For the Sagaing Fault Zone (zones C), the next Mw 7.2–7.5 earthquake may generate in this zone within the next two decades and should be aware of the prospective Mw 8.0 earthquake. Meanwhile, in Sumatra-Andaman Interplate (zone A), an earthquake with a magnitude of Mw 9.0 can possibly occur in every 50 years. Since an earthquake of magnitude Mw 9.0 was recorded in this region in 2004, there is a possibility of another Mw 9.0 earthquake within the next 50 years.  相似文献   

5.
Quantification of seismic activity is one of the most challenging problems faced by earthquake engineers in probabilistic seismic hazard analysis. Currently, this problem has been attempted using empirical approaches which are based on the regional earthquake recurrence relations from the available earthquake catalogue. However, at a specified site of engineering interest, these empirical models are associated with large number of uncertainties due to lack of sufficient data. Due to these uncertainties, engineers need to develop mechanistic models to quantify seismic activity. A wide range of techniques for modeling continental plates provides useful insights on the mechanics of plates and their seismic activity. Among the different continental plates, the Indian plate experiences diffused seismicity. In India, although Himalaya is regarded as a plate boundary and active region, the seismicity database indicates that there are other regions in the Indian shield reporting sporadic seismic activity. It is expected that mechanistic models of Indian plate, based on finite element method, simulate stress fields that quantify the seismic potential of active regions in India. This article explores the development of a finite element model for Indian plate by observing the simulated stress field for various boundary conditions, geological and rheological conditions. The study observes that the magnitude and direction of stresses in the plate is sensitive to these conditions. The numerical analysis of the models shows that the simulated stress field represents the active seismic zones in India.  相似文献   

6.
In estimating the likelihood of an earthquake hazard for a seismically active region, information on the geometry of the potential source is important in quantifying the seismic hazard. The damage from an earthquake varies spatially and is governed by the fault geometry and lithology. As earthquake damage is amplified by guided seismic waves along fault zones, it is important to delineate the disposition of the fault zones by precisely determined hypocentral parameters. We used the double difference (DD) algorithm to relocate earthquakes in the Koyna-Warna seismic zone (KWSZ) region, with the P- and S-wave catalog data from relative arrival time pairs constituting the input. A significant improvement in the hypocentral estimates was achieved, with the epicentral errors <30 m and focal depth errors <75 m i.e. errors have been significantly reduced by an order of magnitude from the parameters determined by HYPO71. The earthquake activity defines three different fault segments. The seismogenic volume is shallower in the south by 3 km, with seismicity in the north extending to a depth of 11 km while in the south the deepest seismicity observed is at a depth of 8 km. By resolving the structure of seismicity in greater detail, we address the salient issues related to the seismotectonics of this region.  相似文献   

7.
Seismic hazard in mega city Kolkata, India   总被引:2,自引:1,他引:1  
The damages caused by recent earthquakes in India have been a wake up call for people to take proper mitigation measures, especially the major cities that lie in the high seismic hazard zones. Kolkata City, with thick sediment deposit (∼12 km), one of the earliest cities of India, is an area of great concern as it lies over the Bengal Basin and lies at the boundary of the seismic zones III and IV of the zonation map of India. Kolkata has been affected by the 1897 Shillong earthquake, the 1906 Calcutta earthquake, and the 1964 Calcutta earthquake. An analysis on the maximum magnitude and b-value for Kolkata City region is carried out after the preparation of earthquake catalog from various sources. Based on the tectonic set-up and seismicity of the region, five seismic zones are delineated, which can pose a threat to Kolkata in the event of an earthquake. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ), and Zone 5: Shield Zone (SZ). The maximum magnitude (m max) for Zones 1, 2, 3, 4, and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. A probability of 10% exceedance value in 50 years is used for each zone. The probabilities of occurrences of earthquakes of different magnitudes for return periods of 50 and 100 years are computed for the five seismic zones. The Peak Ground Acceleration (PGA) obtained for Kolkata City varies from 0.34 to 0.10 g.  相似文献   

8.
The Bayesian extreme-value distribution of earthquake occurrences has been used to estimate the seismic hazard in 12 seismogenic zones of the North-East Indian peninsula. The Bayesian approach has been used very efficiently to combine the prior information on seismicity obtained from geological data with historical observations in many seismogenic zones of the world. The basic parameters to obtain the prior estimate of seismicity are the seismic moment, slip rate, earthquake recurrence rate and magnitude. These estimates are then updated in terms of Bayes’ theorem and historical evaluations of seismicity associated with each zone. From the Bayesian analysis of extreme earthquake occurrences for North-East Indian peninsula, it is found that for T = 5 years, the probability of occurrences of magnitude (M w = 5.0–5.5) is greater than 0.9 for all zones. For M w = 6.0, four zones namely Z1 (Central Himalayas), Z5 (Indo-Burma border), Z7 (Burmese arc) and Z8 (Burma region) exhibit high probabilities. Lower probability is shown by some zones namely␣Z4, Z12, and rest of the zones Z2, Z3, Z6, Z9, Z10 and Z11 show moderate probabilities.  相似文献   

9.
This investigation covers the area bounded by latitudes 20° to 33° N and longitudes 9.5° to 25°E.The seismicity of area for the period 1900–2005 is evaluated. Libyan earthquake catalog is complete for the 4.4 M and greater over a 70-year span. The overall seismicity of Libya is found to be low to intermediate. The seismic activity is concentrated in three zones of the northern Libya. Outside of these zones, epicenters are scattered and sparsely distributed. The b value for Libya is –0.71. This low b value is a characteristic feature for intraplate environment. A seismotectonics map is constructed for Libya. It shows that the epicenters agree well with the distribution of the major tectonic features. Majority of seismic activity in Libya is concentrated near Hun Graben and Cyrenaica, and the locations of earthquakes are near the transition zones between the stress domains in northern Libya. These transition zones are locations of stress concentration. This investigation suggests that the stress concentration theory is generally considered as causative mechanism for seismicity of Libya.  相似文献   

10.
Mumbai city, the economical capital of India, is located on the west coast of stable intra-plate continental region of Peninsular India which has an experience of significant historical earthquakes in the past. The city stood as the fourth most populous city in the world. Recent seismo-tectonic studies of this city highlighted the presence of active West coast fault and Chiplun fault beneath the Deccan basalt. In the present study, spatial variability of probabilistic seismic hazard for Mumbai region (latitudes of 18.85–19.35°N and longitudes of 72.80–73.15°E at a grid spacing of 0.05°) which includes Mumbai city, Suburban, part of Thane district and Navi Mumbai, in terms of ground motion parameters; peak horizontal acceleration and spectral acceleration at 1.0-s period for 2 and 10 % probability of exceedance in 50 years are generated. The epistemic uncertainty in hazard estimation is accounted by employing seven different ground motion prediction equations developed for worldwide shallow crustal intra-plate environments. Further, the seismic hazard results are deaggregated for Mumbai (latitude 18.94°N, longitude 72.84°E) to understand the relative contributions of earthquake sources in terms of magnitude and distance. The generated hazard maps are compared with the zoning specified by Indian seismic code (IS1893: Part 1 in Indian standard criteria for earthquake-resistant design of structures, Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi, India, 2002) for rocky site. Present results show an underestimation of potential seismic hazard in the entire study region by non-probabilistic zoning prescribed by IS1893: Part 1 with significantly higher seismic hazard values in the southern part of Navi Mumbai.  相似文献   

11.
The maximum likelihood estimation of earthquake hazard parameters (maximum regional magnitudem max, activity rate λ, and theb parameter in the Gutenberg-Richter distribution) is extended to the cases of incomplete and uncertain data. The method accepts mixed data containing only large (extreme) events and a variable quality of complete data with different threshold magnitude values. Uncertainty of earthquake magnitude is specified by two values, the lower and upper magnitude limits. It is assumed that such an interval contains the real unknown magnitude. The proposed approach allows the combination of different quality catalog parts, e.g. those where the assignment of magnitude is questionable and those with magnitudes precisely determined. As an illustration of the method, the seismic hazard analysis for western Norway and adjacent sea area (4–8°E, 58–64°N) is presented on the basis of the strongest earthquakes felt during the period 1831–1889 and three complete catalog parts, covering the period 1890–1987.  相似文献   

12.
Seismicity of Gujarat   总被引:2,自引:2,他引:0  
Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M????6 in a region having three devastating earthquakes that occurred during 1819 (M w7.8), 1956 (M w6.0) and 2001 (M w7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M????6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6.  相似文献   

13.
An instrumental earthquake catalog covering the time span between 1903 and 2007 and for the area bounded by 32°N–38°N and 35°E–43°E has been compiled in this research. The catalog has a magnitude of completeness (M c ) with 3.5. Least squares and statistical probability Gumbel’s techniques with different approaches have been applied on the instrumental events in order to assess the average recurrence time periods for different earthquake magnitudes. The constants a and b of Gutenberg-Richter and the average recurrence times have been computed firstly for the study area and secondly for the central and northern parts of Dead Sea fault system. The different statistical computations using Knopoff and Kagan formalism are generally in agreement and suggest an average recurrence time of 203 years for an earthquake of magnitude 7 for the region. The occurrence of large well-documented historical earthquakes in Lebanon and western Syria, the existence of active fault segments, the absence of large earthquakes during the study period, the increasing number of the low-magnitude earthquakes, and the continued accumulation of the strain since 1900 indicate therefore the probability of an earthquake occurrence of a large magnitude. This should be permanently taken into consideration in seismic hazard assessment on the local and regional scales.  相似文献   

14.
15.
The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively.  相似文献   

16.
Using 4.0 and greater magnitude earthquakes which occurred between 1 January 1900 and 31 Dec 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on the probabilistic and statistical methods. According to the earthquake zonation map, Sinop is divided into first, second, third and fourth-degree earthquake regions. Our study area covered the coordinates between 40.66°– 42.82°N and 32.20°– 36.55°E. The different magnitudes of the earthquakes during the last 108 years recorded on varied scales were converted to a common scale (Mw). The earthquake catalog was then recompiled to evaluate the potential seismic sources in the aforesaid province. Using the attenuation relationships given by Boore et al. (1997) and Kalkan and Gülkan (2004), the largest ground accelerations corresponding to a recurrence period of 475 years are found to be 0.14 g for bedrock at the central district. Comparing the seismic hazard curves, we show the spatial variations of seismic hazard potential in this province, enumerating the recurrence period in the order of 475 years.  相似文献   

17.
Seismic hazard analysis of the northwest Himalayan belt was carried out by using extreme value theory (EVT). The rate of seismicity (a value) and recurrence intervals with the given earthquake magnitude (b value) was calculated from the observed data using Gutenberg–Richter Law. The statistical evaluation of 12,125 events from 1902 to 2017 shows the increasing trend in their inter-arrival times. The frequency–magnitude relation exhibits a linear downslope trend with negative slope of 0.8277 and positive intercept of 4.6977. The empirical results showed that the annual risk probability of high magnitude earthquake M?≥?7.7 in 50 years is 88% with recurrence period of 47 years, probability of M?≤?7.5 in 50 years is 97% with recurrence period of 27 years, and probability of M?≤?6.5 in 50 years is 100% with recurrence period of 4 years. Kashmir valley, located in the NW Himalaya, encompasses a peculiar tectonic and structural setup. The patterns of the present and historical seismicity records of the valley suggest a long-term strain accumulation along NNW and SSE extensions with the decline in the seismic gap, posing a potential threat of earthquakes in the future. The Kashmir valley is characterized by the typical lithological, tectono-geomorphic, geotechnical, hydrogeological and socioeconomic settings that augment the earthquake vulnerability associated with the seismicity of the region. The cumulative impact of the various influencing parameters therefore exacerbates the seismic hazard risk of the valley to future earthquake events.  相似文献   

18.
Time independent seismic hazard analysis in Alborz and surrounding area   总被引:1,自引:0,他引:1  
The Bayesian probability estimation seems to have efficiencies that make it suitable for calculating different parameters of seismicity. Generally this method is able to combine prior information on seismicity while at the same time including statistical uncertainty associated with the estimation of the parameters used to quantify seismicity, in addition to the probabilistic uncertainties associated with the inherent randomness of earthquake occurrence. In this article a time-independent Bayesian approach, which yields the probability that a certain cut-off magnitude will be exceeded at certain time intervals is examined for the region of Alborz, Iran, in order to consider the following consequences for the city of Tehran. This area is located within the Alpine-Himalayan active mountain belt. Many active faults affect the Alborz, most of which are parallel to the range and accommodate the present day oblique convergence across it. Tehran, the capital of Iran, with millions of inhabitants is located near the foothills of the southern Central Alborz. This region has been affected several times by historical and recent earthquakes that confirm the importance of seismic hazard assessment through it. As the first step in this study an updated earthquake catalog is compiled for the Alborz. Then, by assuming a Poisson distribution for the number of earthquakes which occur at a certain time interval, the probabilistic earthquake occurrence is computed by the Bayesian approach. The highest probabilities are found for zone AA and the lowest probabilities for zones KD and CA, meanwhile the overall probability is high.  相似文献   

19.
Hamdache  M.  Pel&#;ez  J. A.  Kijko  A.  Smit  A. 《Natural Hazards》2016,86(2):273-293

We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.

  相似文献   

20.
The historical seismicity of the last ten centuries and the instrumental data that occurred in the Gulf of Aqaba region during the period 1982–2008 are evaluated. It is found that 12 historical earthquakes have occurred with average recurrence periods 70–90 and 333–500 years for M?≥?6.0 and 7.0, respectively. Those with M?≤?6.5 appear to be incomplete and require further investigation. More than 98 % of the instrumental data has occurred in the form of swarms and sequences. The first have released about 32 % of the total energy and are most likely related to subsurface volcanic activities. Their epicentral distribution indicates that all regional faults of the gulf area are active in the present, but with clear concentration within the area bound by latitudes 28.2°–29.8° and longitudes 34.4°–35.2°. Regional strike-slip faults of the northern two basins appear to be as twice active as the normal, or more. An appreciable level of seismic hazard is envisaged as the “a” value is 6.0–6.2 while the “b” value shows a temporal variation, mostly in the range 0.8–1.05. More than 95 % of the seismic energy was released from earthquakes shallower than 22 km. This indicates a brittle upper crust and a ductile lower crust and upper mantle. Tectonic movements at depths?>?22 km appear to be aseismic. The epicentral distribution of the five swarms indicates that the lengths of the causative faults varied in the range 45–70 km. The maximum expected magnitude is Mw?=?6.8–7.2. This implies a seismic slip rate of about 0.54–0.8 Cm/year and some 20–30 % of aseismic tectonic movements. This and the sequence nature of the seismicity of this region result in a noticeable hazard reduction. Combining the seismicity data of the Gulf of Aqaba region with other geophysical, geological, tectonic, and environmental data, clearly indicate that the seismicity of this region is as old as the initiation of the gulf itself. No apparent southward or northward migration of activity is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号