首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In pelitic schists of the Sanbagawa metamorphic belt, sphene, rutile, and ilmenite occur as discrete grains, in composite aggregates, and as inclusions in garnets. Textural relationships, disposition of inclusions in garnet, and the compositions of ilmenites suggest that the titanium-bearing accessories stable at the peak metamorphic conditions were as follows: sphene in the chlorite zone, sphene plus rutile in the garnet zone, and ilmenite in the highest grade of the belt, the biotite zone. Rutile appears in the garnet zone as a consequence of Ca incorporation into garnet and a progressive increase in .Retrograde reactions were responsible for the composite aggregates of rutile, sphene and ilmenite and these must be carefully evaluated before prograde relationships between titanium-bearing accessories can be properly understood.  相似文献   

2.
Hydrothermal reversal experiments have been performed on the upper pressure stability of paragonite in the temperature range 550–740 ° C. The reaction $$\begin{gathered} {\text{NaAl}}_{\text{3}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{1 0}}} ({\text{OH)}}_{\text{2}} \hfill \\ {\text{ paragonite}} \hfill \\ {\text{ = NaAlSi}}_{\text{2}} {\text{O}}_{\text{6}} + {\text{Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}} \hfill \\ {\text{ jadeite kyanite vapour}} \hfill \\ \end{gathered}$$ has been bracketed at 550 ° C, 600 ° C, 650 ° C, and 700 ° C, at pressures 24–26 kb, 24–25.5 kb, 24–25 kb, and 23–24.5 kb respectively. The reaction has a shallow negative slope (? 10 bar °C?1) and is of geobarometric significance to the stability of the eclogite assemblage, omphacite+kyanite. The experimental brackets are thermodynamically consistent with the lower pressure reversals of Chatterjee (1970, 1972), and a set of thermodynamic data is presented which satisfies all the reversal brackets for six reactions in the system Na2O-Al2O3-SiO2-H2O. The Modified Redlich Kwong equation for H2O (Holloway, 1977) predicts fugacities which are too high to satisfy the reversals of this study. The P-T stabilities of important eclogite and blueschist assemblages involving omphacite, kyanite, lawsonite, Jadeite, albite, chloritoid, and almandine with paragonite have been calculated using thermodynamic data derived from this study.  相似文献   

3.
The compositions of coexisting pyroxmangites, rhodonites, rhodochrosites and manganese calcites in regional metamorphosed manganese cale-silicate marbles from Val Scerscen and Alagna were analysed by microprobe and permit definition of critical tie lines at metamorphic grades appropriate to temperatures between 400 and 450 °C.Variations in composition of coexisting mineral pairs in one and the same locality are attributed to variations in and not to metamorphic temperatures. From the analysed assemblages isothermal plots (with SiO2 as excess component) were constructed for the system CaO-MnO-SiO2-CO2.  相似文献   

4.
Two metamorphic isograds cut across graphitic schist near Pecos Baldy, New Mexico. The southern isograd marks the first coexistence of staurolite with biotite, whereas the northern isograd marks the first coexistence of andalusite with biotite. The isograds do not record changes in temperature or pressure. Instead, they record a regional gradient in the composition of the metamorphic fluid phase. Ortega Quartzite, which contains primary hematite, lies immediately north of the graphitic schist. Mineral compositions within the schist change gradually toward the quartzite, reflecting gradients in and . The chemical potential gradients, locally as high as 72 cal/m in and 9 cal/m in , controlled the positions of the two mapped isograds. The staurolite-biotite isograd records where fell below 0.80, at near 10–23 bars; the andalusite-biotite isograd records where fell below 0.25, at near 10–22 bars. Dehydration and oxidation were coupled by graphite-fluid equilibrium.The chemical potential gradients apparently formed during metamorphism, as graphite in schist reacted with hematite in quartzite. Local oxidation of graphite formed CO2 which triggered dehydration reactions along the schistquartzite contact. This process created a C-O-H fluid which infiltrated into overlying rocks. Upward infiltration, local fluid-rock equilibration and additional infiltration proceeded until the composition of the infiltrating fluid evolved to that in equilibrium with the infiltrated rock. This point occurs very close to the staurolite-biotite isograd. Pelitic rocks structurally above this isograd show no petrographic evidence of infiltration, even though calculations indicate that volumetric fluid/rock ratios may have exceeded 15 and thin, rare calc-silicate beds show extensive K-metasomatism and quartz veining.  相似文献   

5.
Eclogites are found as lenses or layers in the Precambrian gneiss terrain of the Bitlis Massif in eastern Turkey. Kyanite-eclogites from the region of Gablor Hill in the Bitlis Massif exhibit relatively minor alteration, and consist of garnet, omphacite, kyanite, zoisite, calcic amphibole, phengite, rutile and quartz. In terms of geological setting and mineral compositions, Gablor eclogites are very similar to eclogites from high-grade gneiss terrains. Metamorphic conditions during the eclogite crystallisation are determined as 625±35° C and 16±3 kbars. The coexistence of white mixa, omphacite and kyanite constrains between 0.4 and 1. Primary calcic amphiboles from the Gablor eclogites exhibit conflicting textures, indicating stable coexistence with, as well as growth from omphacite and garnet. This is explained by a buffering reaction between amphibole, garnet, omphacite, zoisite and kyanite during the eclogite crystallisation, whereby is controlled and buffered by the mineral assemblage.  相似文献   

6.
Aenigmatite, sodic pyroxene and arfvedsonite occur as interstitial minerals in metaluminous to weakly peralkaline syenite patches in alkali dolerite, Morotu, Sakhalin. Aenigmatite is zoned from Ca, Al, Fe3+-rich cores to Ti, Na, Mn, Si-rich rims reflecting the main substitutions Fe2+Ti4+Fe3+, NaSiCaAl and Mn2+Fe2+. Aenigmatite replaces aegirine and ilmenite supporting the existence of a no-oxide field in — T space. In one case aenigmatite has apparently formed by reaction between ilmenite and arfvedsonite. Titanian aegirine (up to 3.0 wt% TiO2) and Fe-chlorite may replace aenigmatite. Sodic pyroxene occurs as zoned crystals with cores of aegirine-augite rimmed by aegirine and in turn by pale green aegirine containing 93 mol% NaFe3+Si2O6. Additional substitution of the type NaAlCaFe2+ is indicated by significant amounts (up to 6 mol%) of NaAlSi2O6. Arfvedsonite is zoned with rims enriched in Na, Fe and depleted in Ca which parallels the variation of these elements in the sodic pyroxenes.The high peralkalinity of the residual liquid from which the mafic phases formed resulted from the early crystallization of microperthite (which makes up the bulk of the syenites) leading to an increase in the Na2O/(Na2O+K2O) and (Na2O+K2O)/Al2O3 ratios of the remaining interstitial liquid which is also enriched in Ti, Fe, and Mn. Bulk composition of the melt, , temperature and volatile content were all important variables in determining the composition and stability of the peralkaline silicates. in the residual liquid appears to have been buffered by arfvedsonite-aegirine and later by the arfvedsonite-aenigmatite and aenigmatite-aegirine equilibria under conditions of a no-oxide field. An increase in , above that of the alkali buffer reactions, is inferred by an increase of Ti and Mn in aenigmatite rims. The latest postmagmatic vapour crystallization stage of the syenites is marked by extremely low which may have been facilitated by exsolution of a gas phase. Low is supported by the replacement of aenigmatite by titanian aegirine, and the formation of rare Ti-rich garnet with a very low (Ti4++Fe3+)/(Ti+Fe) ratio of 0.51, associated with leucoxene alteration of ilmenite.  相似文献   

7.
We investigated rutile needles with a clear shape preferred orientation in garnet from (ultra) high-pressure metapelites from the Kimi Complex of the Greek Rhodope by electron microprobe, electron backscatter diffraction and TEM techniques. A definite though complex crystallographic orientation relationship between the garnet host and rutile was identified in that Rt[001] is either parallel to Grt<111> or describes cones with opening angle 27.6° around Grt<111>. Each Rt[001] small circle representing a cone on the pole figure displays six maxima in the density plots. This evidence together with microchemical observations in TEM, when compared to various possible mechanisms of formation, corroborates a precipitate origin. A review of exchange vectors for Ti substitution in garnet indicates that rutile formation from garnet cannot occur in a closed system. It requires that components are exchanged between the garnet interior and the rock matrix by solid-state diffusion, a process we refer to as “open-system precipitation” (OSP). The kinetically most feasible reaction of this type will dominate the overall process. The perhaps most efficient reaction involves internal oxidation of Fe2+ to Fe3+ and transfer from the dodecahedral to the octahedral site just vacated by $ {\text{Ti}}^{ 4+ }: 6\,{\text{M}}^{ 2+ }_{ 3} {\text{TiAl}}\left[ {{\text{AlSi}}_{ 2} } \right]{\text{O}}_{ 1 2} + 6\,{\text{M}}^{ 2+ }_{ 2, 5} {\text{TiAlSi}}_{ 3} {\text{O}}_{ 1 2} = 10\,{\text{M}}^{ 2+ }_{ 3.0} {\text{Al}}_{ 1. 8} {\text{Fe}}_{0. 2} {\text{Si}}_{ 3} {\text{O}}_{ 1 2} + {\text{M}}^{2+} + 2 {\text{e}}^{-} + 1 2\,{\text{TiO}}_{ 2} . $ OSP is likely to occur at conditions where the transition of natural systems to open-system behaviour becomes apparent, as in the granulite and high-temperature eclogite facies.  相似文献   

8.
The stability relations between cordierite and almandite in rocks, having a composition of CaO poor argillaceous rocks, were experimentally investigated. The starting material consisted of a mixture of chlorite, muscovite, and quartz. Systems with widely varying Fe2+/Fe2++Mg ratios were investigated by using two different chlorites, thuringite or ripidolite, in the starting mixture. Cordierite is formed according to the following reaction: $${\text{Chlorite + muscovite + quartz}} \rightleftharpoons {\text{cordierite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}}$$ . At low pressures this reaction characterizes the facies boundary between the albite-epidotehornfels facies and the hornblende-hornfels facies, at medium pressures the beginning of the cordierite-amphibolite facies. Experiments were carried out reversibly and gave the following equilibrium data: 505±10°C at 500 bars H2O pressure, 513±10°C at 1000 bars H2O pressure, 527±10°C at 2000 bars H2O pressure, and 557±10°C at 4000 bars H2O pressure. These equilibrium data are valid for the Fe-rich starting material, using thuringite as the chlorite, as well as for the Mg-rich starting mixture with ripidolite. At 6000 bars the equilibrium temperature for the Mg-rich mixture is 587±10°C. In the Fe-rich mixture almandite was formed instead of cordierite at 6000 bars. The following reaction was observed: $${\text{Thuringite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Experiments with the Fe-rich mixture, containing Fe2+/Fe2++Mg in the ratio 8∶10, yielded three stability fields in a P,T-diagram (Fig.1):
  1. Above 600°C/5.25 kb and 700°C/6.5 kb almandite+biotite+Al2SiO5 coexist stably, cordierite being unstable.
  2. The field, in which almandite, biotite and Al2SiO5 are stable together with cordierite, is restricted by two curves, passing through the following points:
    1. 625°C/5.5 kb and 700°C/6.5 kb,
    2. 625°C/5.5 kb and 700°C/4.0 kb.
  3. At conditions below curves 1 and 2b, cordierite, biotite, and Al2SiO5 are formed, but no garnet.
An appreciable MnO-content in the system lowers the pressures needed for the formation of almandite garnet, but the quantitative influence of the spessartite-component on the formation of almandite could not yet be determined. the Mg-rich system with Fe2+/Fe2++Mg=0.4 garnet did not form at pressures up to 7 kb in the temperature range investigated. Experiments at unspecified higher pressures (in a simple squeezer-type apparatus) yielded the reaction: $${\text{Ripidolite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Further experiments are needed to determine the equilibrium data. The occurence of garnet in metamorphic rocks is discussed in the light of the experimental results.  相似文献   

9.
In the Rogers Pass area of British Columbia the almandine garnet isograd results from a reaction of the form: 5.31 ferroan-dolomite+8.75 paragonite+4.80 pyrrhotite+3.57 albite+16.83 quartz+1.97 O2=1.00 garnet+16.44 andesine+1.53 chlorite+2.40 S2+1.90 H2O+10.62 CO2. The coefficients of this reaction are quite sensitive to the Mn content of ferroan-dolomite.Experimental data applied to mineral compositions present at the isograd, permits calculation of two intersecting P, T equilibrium curves. P=29088–39.583 T is obtained for the sub-system paragonite-margarite (solid-solution), plagioclase, quartz, ferroan-dolomite, and P=28.247 T–14126 is obtained for the sub-system epidote, quartz, garnet, plagioclase. These equations yield P=3898 bars and T=638° K (365° C). These values are consistent with the FeS content of sphalerite in the assemblage pyrite, pyrrhotite, sphalerite and with other estimates for the area.At these values of P and T the composition of the fluid phase in equilibrium with graphite in the system C-O-H-S during the formation of garnet is estimated as: bars, bars, bars, bars, bars, bars, bars, bars, , bars, bars.  相似文献   

10.
To investigate the point defect chemistry and the kinetic properties of manganese olivine Mn2SiO4, electrical conductivity () of single crystals was measured along either the [100] or the [010] direction. The experiments were carried out at temperatures T=850–1200 °C and oxygen fugacities atm under both Mn oxide (MO) buffered and MnSiO3 (MS) buffered conditions. Under the same thermodynamic conditions, charge transport along [100] is 2.5–3.0 times faster than along [010]. At high oxygen fugacities, the electrical conductivity of samples buffered against MS is 1.6 times larger than that of samples buffered against MO; while at low oxygen fugacities, the electrical conductivity is nearly identical for the two buffer cases. The dependencies of electrical conductivity on oxygen fugacity and temperature are essentially the same for conduction along the [100] and [010] directions, as well as for samples coexisting with a solid-state buffer of either MO or MS. Hence, it is proposed that the same conduction mechanisms operate for samples of either orientation in contact with either solid-state buffer.The electrical conductivity data lie on concave upward curves on a log-log plot of vs , giving rise to two regimes with different oxygen fugacity exponents. In the low- regime , the exponent, m, is 0, the MnSiO3-activity exponent, q, is 0, and the activation energy, Q, is 45 kJ/mol. In the high regime 10^{ - 7} {\text{atm}}} \right)$$ " align="middle" border="0"> , m=1/6, q=1/4–1/3, and Q=45 and 200 kJ/mol for T<1100 °c=" and=">T>1100 °C, respectively.  相似文献   

11.
Near-liquidus phase relationships of a spinel lherzolite-bearing olivine melilitite from Tasmania were investigated over a P, T range with varying , , and . At 30 kb under MH-buffered conditions, systematic changes of liquidus phases occur with increasing ( = CO2/CO2 +H2O+olivine melilitite). Olivine is the liquidus phase in the presence of H2O alone and is joined by clinopyroxene at low . Increasing eliminates olivine and clinopyroxene becomes the only liquidus phase. Further addition of CO2 brings garnet+orthopyroxene onto the liquidus together with clinopyroxene, which disappears with even higher CO2. The same systematic changes appear to hold at higher and lower pressures also, only that the phase boundaries are shifted to different . The field with olivine- +clinopyroxene becomes stable to higher with lower pressure and approaches most closely the field with garnet+orthopyroxene+clinopyroxene at about 27 kb, 1160 °C, 0.08 and 0.2 (i.e., 6–7% CO2+ 7–8% H2O). Olivine does not coexist with garnet+orthopyroxene+clinopyroxene under these MH-buffered conditions. Lower oxygen fugacities do not increase the stability of olivine to higher and do not change the phase relationships and liquidus temperatures drastically. Thus, it is inferred that olivine melilitite 2927 originates as a 5% melt (inferred from K2 O and P2O5 content) from a pyrolite source at about 27kb, 1160 dg with about 6–7% CO2 and 7–8% H2O dissolved in the melt. The highly undersaturated character of the melt and the inability to find olivine together with garnet and orthopyroxene on the liquidus (in spite of the close approach of the respective liquidus fields) can be explained by reaction relationships of olivine and clinopyroxene with orthopyroxene, garnet and melt in the presence of CO2.  相似文献   

12.
The proportions of species in a C-O-H-S fluid in equilibrium with graphite, pyrite and pyrrhotite were calculated for a range of pressure, temperature and conditions, using the equilibrium constants and mass balance method, for ideal and non-ideal mixing in the fluid. Under typical metamorphic conditions, H2O, CO2, CH4 and H2S are the principal fluid species with H2S favored by higher temperatures, lower pressures and lower conditions. The dominance of H2S in the fluid at high temperatures leads to values of becoming significantly less than 1, and causes hydrous minerals to dehydrate at lower temperatures than the case when . The production of H2S-bearing fluids provides a mechanism for the selective transfer of sulfur from a graphite-pyrite-pyrrhotite bearing pelite into a pluton via a fluid phase, without requiring wholesale melting and assimilation of rocks. Such a process is feasible if a magma is intruded by stoping, which allows a significant volume of pelite country rock to be raised rapidly to temperatures approaching that of the magma. H2S-bearing fluids produced from graphite-pyrite-pyrrhotite pelites (due either to magmatic intrusion or regional metamorphism) may also mobilize ore-forming metals as sulfide complexes.  相似文献   

13.
Abstract A detailed study of garnet–chloritoid micaschists fom the Sesia zone (Western Alps) is used to constrain phase relations in high pressure (HP) metapelitic rocks. In addition to quartz, phengite, paragonite and rutile, the micaschists display two distinct parageneses, namely garnet + chloritoid + chlorite and garnet + chloritoid + kyanite. Talc has never been observed. Garnet and chloritoid are more magnesian when chlorite is present instead of kyanite. The distinction of the two equilibria results from different bulk rock chemistries, not from P–T conditions or redox state. Estimated P–T conditions for the eclogitic metamorphism are 550–600°C, 15–18 kbar.
The presence of primary chlorite in association with garnet and chloritoid leads us to construct two possible AFM topologies for the Sesia metapelites. The paper describes a KFMASH multisystem for HP pelitic rocks, which extends the grid of Harte & Hudson (1979) towards higher pressures and adds the phase talc. Observed parageneses in HP metapelites are consistent with predicted phase relations. Critical associations are Gt–Ctd–Chl and Gt–Ctd–Ky at relatively low temperatures and Gl–Chl–Ky and Gt–Tc–Ky at relatively high temperatures.  相似文献   

14.
The models recognize that ZrSiO4, ZrTiO4, and TiSiO4, but not ZrO2 or TiO2, are independently variable phase components in zircon. Accordingly, the equilibrium controlling the Zr content of rutile coexisting with zircon is ZrSiO4 = ZrO2 (in rutile) + SiO2. The equilibrium controlling the Ti content of zircon is either ZrSiO4 + TiO2 = ZrTiO4 + SiO2 or TiO2 + SiO2 = TiSiO4, depending whether Ti substitutes for Si or Zr. The Zr content of rutile thus depends on the activity of SiO2 as well as T, and the Ti content of zircon depends on and as well as T. New and published experimental data confirm the predicted increase in the Zr content of rutile with decreasing and unequivocally demonstrate that the Ti content of zircon increases with decreasing . The substitution of Ti in zircon therefore is primarily for Si. Assuming a constant effect of P, unit and that and are proportional to ppm Zr in rutile and ppm Ti in zircon, [log(ppm Zr-in-rutile) + log] = A1 + B1/T(K) and [log(ppm Ti-in-zircon) + log − log] = A2 + B2/T, where the A and B are constants. The constants were derived from published and new data from experiments with buffered by either quartz or zircon + zirconia, from experiments with defined by the Zr content of rutile, and from well-characterized natural samples. Results are A1 = 7.420 ± 0.105; B1 = −4,530 ± 111; A2 = 5.711 ± 0.072; B2 = −4,800 ± 86 with activity referenced to α-quartz and rutile at P and T of interest. The zircon thermometer may now be applied to rocks without quartz and/or rutile, and the rutile thermometer applied to rocks without quartz, provided that and are estimated. Maximum uncertainties introduced to zircon and rutile thermometry by unconstrained and can be quantitatively assessed and are ≈60 to 70°C at 750°C. A preliminary assessment of the dependence of the two thermometers on P predicts that an uncertainty of ±1 GPa introduces an additional uncertainty at 750°C of ≈50°C for the Ti-in-zircon thermometer and of ≈70 to 80°C for the Zr-in-rutile thermometer.  相似文献   

15.
Microphenocrystic pyrrhotites were observed in the glassy groundmass of two dacite rocks from Satsuma-Iwojima, southwest Kyushu, Japan. It suggests that the dacite magma was saturated with respect to pyrrhotite at the time of eruption, and thus the sulfur contents in the groundmass can be taken as the solubility of sulfur in the dacite magma. The solubility of sulfur in the dacite rocks thus calculated is 65 to 72 ppm sulfur at the estimated conditions of T=900±50°C, and atm.  相似文献   

16.
Thermodynamic properties of almandine-grossular garnet solid solutions   总被引:1,自引:0,他引:1  
The mixing properties of Fe3Al2Si3O12-Ca3Al2Si3O12 garnet solid solutions have been studied in the temperature range 850–1100° C. The experimental method involves measuring the composition of garnet in equilibrium with an assemblage in which the activity of the Ca3Al2Si3O12 component is fixed. Experiments on the assemblage garnet solid solution, anorthite, Al2SiO5 polymorph and quartz at known pressure and temperature fix the activity of the Ca3Al2Si3O12 component through the equilibrium: 1 $$\begin{gathered} {\text{3CaAl}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{8}} \rightleftarrows {\text{Ca}}_{\text{3}} {\text{Al}}_{\text{2}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} \hfill \\ {\text{Anorthite garnet}} \hfill \\ {\text{ + 2Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + SiO}}_{\text{2}} \hfill \\ {\text{ sillimanite/kyanite quartz}}{\text{.}} \hfill \\ \end{gathered}$$ This equilibrium, with either sillimanite or kyanite as the aluminosilicate mineral, was used to control \({\text{a}}_{{\text{Ca}}_{\text{3}} {\text{Al}}_{\text{2}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} }^{{\text{gt}}} \) . The compositions of the garnet solutions produced were determined by measurement of their unit cell edges. At 1 bar Fe3Al2Si3O12-Ca3Al2Si3O12 garnets exhibit negative deviations from ideality at the Fe-rich end of the series and positive deviations at the calcium end. With increasing pressure the activity coefficients for the Ca3Al2Si3O12 component increase because the partial molar volume of this component is greater than the molar volume of pure grossular. Previous studies indicate that the activity coefficients for the Ca3Al2Si3O12 component also increase with increasing (Mg/Mg+Fe) ratio of the garnet. The region of negative deviation from ideality implies a tendency towards formation of a stable Fe-Ca garnet component. Evidence in support of this conclusion has been found in a natural Fe-rich garnet which was found to contain two different garnet phases of distinctly different compositions.  相似文献   

17.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   

18.
Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: $$\begin{gathered} {\text{Anorthite}} {\text{Orthopyroxene}} {\text{Quartz}} \hfill \\ {\text{2CaAl}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{8}} + (6 - \alpha )({\text{Fe,Mg}}){\text{SiO}}_{\text{3}} + \alpha {\text{Fe - Oxide + (}}\alpha {\text{ - 2)SiO}}_{\text{2}} \hfill \\ {\text{Garnet}} {\text{Clinopyroxene}} \hfill \\ = {\text{Ca(Fe,Mg)}}_{\text{5}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{6}} {\text{O}}_{{\text{24}}} + {\text{Ca(Fe,Mg)Si}}_{\text{2}} {\text{O}}_{\text{6}} \hfill \\ \end{gathered} $$ , where α is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ± orthopyroxene ± quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies.  相似文献   

19.
Titanite and rutile are a common mineral pair in eclogites, and many equilibria involving these phases are potentially useful in estimating pressures of metamorphism. We have reversed one such reaction,
  相似文献   

20.
Laboratory experiments have been conducted with natural minerals to determine the relation of to epidote stability, and to determine stability curves for clinozoisite and epidote. Under oxidizing conditions Fe-epidote decomposes to grandite, anorthite, hematite, and quartz. Under more reducing conditions corundum becomes a stable product instead of quartz, and magnetite, and finally hercynite replace hematite. As conditions change from oxidizing to reducing the temperature of epidote breakdown decreases, epidote becomes more aluminous and the grandite produced increases in grossularite component and, to a lesser extent, in almandine.At 3000 bars under oxidizing conditions epidote is stable up to 694° C, epidote-corundum is stable to 692° C, clinozoisite is stable to 658° C, and clinozoisite-quartz is stable to 628° C. Approximate curves for the fractional decomposition of Al-Fe epidote have been determined as a function of Fe content under oxidizing conditions. Extrapolation of clinozoisite results to an Fe-free composition, and comparison with zoisite stability results suggest that at elevated pressures clinozoisite inverts with increasing temperature to zoisite along a nearly vertical phase boundary at 635±75° C.The stability relations provide an upper limit for epidote mineral stability mainly applicable to calcareous rocks. The epidote composition present in any given rock must be a function largely of bulk composition and . Zoisite replaces Al-clinozoisite in rocks of medium grade and high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号