首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
4000 m DISC深冰芯钻机概述   总被引:1,自引:0,他引:1  
深冰芯钻探(Deep Ice Sheet Coring,DISC)钻机是美国冰芯钻探服务中心(ICDS)开发研制的一款机电钻机,设计取芯直径122mm,钻取深度4 000 m.该系统由两部分组成,包括机械钻进系统和地面支撑系统.其中,机械钻进系统由钻机、电缆、钻塔和绞车四部分组成,钻机是该系统的钻探部分,由6个不同部件(刀盘、芯管、筛管、电机/水泵、钻机控制板和顶端)组成;地面支撑系统包括电源、控制系统、冰芯处理系统、钻井液处理系统、筛管清洗系统、辅助设备以及安全设备设施.2006年夏季ICDS在格陵兰Summit营地对该套钻机系统进行了成功试验,2011年12月31日在西南极冰原(WAIS Divide)成功获取3 405m深度的冰芯.实践证明,该套钻机能够满足目前钻探项目的科学需求.但是,在西南极冰原主冰孔不同深度钻取同深度副冰孔冰芯的过程中,钻刀无法在主冰孔壁上侧向钻取新的冰芯孔,未能如期获取复制的冰芯样品.  相似文献   

2.
纳木那尼冰川是喜马拉雅山西部地区规模较大的冰川之一,也是开展冰芯气候意义研究有重要潜在价值的冰川.但由于纳木那尼冰川位于西风环流和印度季风影响范围的交界带,不同的环流系统所输送的水汽带来不同的降水稳定同位素信号.因此确定纳木那尼冰芯同位素记录的气候意义是开展该地区冰芯气候记录研究的前提条件.2008年在该冰川积累区所钻取的8.78m浅冰芯为这一研究工作提供了可能.本文对该冰芯的稳定同位素记录以及普兰气象站的气象数据进行了分析与讨论.研究结果表明,同位素的年际变化与当地普兰县气象站气温的年际变化具有较好的对应关系.这可能与当地降水受到夏季季风的影响较小有关.测量结果表明早期的深冰芯钻取点位于冰川的消融区,而冰川的积累区仍位于冰川更高的区域,而且积累区冰川厚度更大,更有可能保存更长时间尺度的冰芯记录.这也为以后开展新的纳木那尼深孔冰芯及气候意义研究提供了借鉴.  相似文献   

3.
基于微粒变化对崇测冰帽浅层冰芯的定年结果   总被引:6,自引:1,他引:5  
冰芯年代学的建立, 对于稳定同位素定年方法失效的钻点尤为困难. 依据粒径在0.66~1.33μm之间的不可溶尘埃微粒的浓度垂向分布, 并结合阳离子Ca2 的浓度剖面变化, 实现了对崇测冰帽冰芯浅层的断代. 该冰芯钻自海拔6 532 m的冰穹顶部, 解析的18.7 m冰芯长度占到钻点冰层深度约2/5, 辅助的定年参数包括钻点表层5 a的实测净积累率和大气核试验的地层标志. 综合各种技巧定年, 崇测冰帽该冰芯覆盖的记录年代为1902-1992年, 最底部累积误差在±2 a(约为2%).  相似文献   

4.
通过冰芯研究可重建过去的气候环境变化,为深刻理解现在和预测未来气候环境变化提供重要的科学依据.冰芯机械钻机作为获取冰芯样品的必备工具之一,在我国高山冰川冰芯获取中发挥了重要作用.主要介绍我国自行研制的以山地冰川为主的冰芯机械钻机的发展过程和应用,存在的问题和对未来的展望.我国自行研制的BZXJ钻机性能优异,是世界上同类钻机中的佼佼者,截至2012年底已经钻取的冰芯总支数和总长度分别为125支和8 095m,为我国开展冰芯研究做出了重要贡献.  相似文献   

5.
厉愿  杜志恒  效存德 《冰川冻土》2017,39(2):273-280
在德国Alfred-Wegener极地与海洋研究所用自动组构分析仪G50测试了东天山庙儿沟冰芯(43°03'19″N,94°19'21″E,4 512 m a.s.l.;2005年钻取,长58.7 m)冰微构造和组构,分析其特征并解释其所蕴含的意义。冰微构造和组构随深度的演变总体相似于其他中国山地冰川冰的观测结果,同时展示了其季节性特征。部分样品的测试结果有所波动,可能是样品在运输和存储过程中的热力学性质发生改变所致。组构型反应的力场较为简单,主要为中下部的单轴压应力作用。正常晶粒生长、多边形化作用和应变导致的边界迁移再结晶不能解释其在某一深段占据主导,而可能是三者共同作用于所有冰芯深部。  相似文献   

6.
祁连山老虎沟12号冰川浅冰芯记录的气候环境信息   总被引:7,自引:3,他引:4  
2006年6月在祁连山西段大雪山的老虎沟12号冰川钻取了一支20.12m的浅冰芯,对冰芯中化学组成成分的浓度变化特征和来源分析进行了研究.结果表明,冰芯中δ18 O和可溶性离子含量变化均显示了明显的周期性变化,δ18 O与祁连山西段温度有很好的正相关关系.通过相关分析和HYS-PLIT后向轨迹分析表明,老虎沟12号冰川...  相似文献   

7.
蓝冰钻(BID,Blue Ice Drill)是一款大直径、便携式钻机系统,由美国麦迪逊-威斯康辛大学冰钻设计与操作团队研发,可以从近地面的钻点快速获取直径241 mm、无污染的冰芯样品.蓝冰钻的主要组成部分如下:1)下井电机/齿轮减速器:带动冰芯钻刀和外管内的芯管旋转,以便高效运送切割下来的固态冰;2)变频驱动器及配套的控制箱,管理钻机的输入电源;3)安装在反扭杆两侧的把手,在地面以上时起到反扭作用;4)冰芯回收工具:回收冰芯不是通过钻头上的卡刀,而是由独立的冰芯回收工具完成;5)其他附属设备:所有的下井设备通过在绞车上运行的绳索,悬挂在一个可折叠的三脚架上.蓝冰钻系统最少可由两个人操作,并已成功在南极Taylor冰川蓝冰区完成两个工作季.本款钻机系统的升级版本——深蓝冰钻(BID-Deep),目前已经完成设计,获取冰芯深度可至200 m.  相似文献   

8.
北极生长的多年海冰晶体结构分析   总被引:2,自引:4,他引:2  
李志军  康建成 《冰川冻土》2001,23(4):383-388
对中国首次北极科学考察钻取的一根从表面到底面长2.2m的海冰冰芯样,依据冰芯样采取时造成的长度,不等间距地自上而下垂直切片,剖析了冰芯样的晶体结构,获得以纯热力学生长为主的多年海冰正交偏光镜下晶体结构剖面,由晶体结构剖面确定出该海冰为三年冰,此外,还发现北极海冰越夏过程中生成一种动力碎屑凝聚冰,除给出偏光镜下晶体结构和冰芯层理分析外,还描述了动力碎屑凝聚冰的结构特点。  相似文献   

9.
我国于2012年1月在南极Dome A区域正式开展实施了南极昆仑站深冰芯科学钻探工程,截至2021年,钻孔深度已达803.54 m。该工程是我国第一个深冰芯钻探工程,也是国际上第一个在Dome A地区开展的深冰芯钻探项目。本文介绍了昆仑站深冰芯科学钻探工程实施的整体情况,对过去近10年的钻探活动以及取得的成果和经验进行了总结,以期为后续的深冰芯钻探工作提供理论和经验指导。  相似文献   

10.
天山冰芯细菌多样性研究   总被引:2,自引:0,他引:2  
以在天山乌鲁木齐河源1号冰川钻取的5.18 m长的浅冰芯为研究对象,对冰芯不同层面的微生物总数、可培养细菌数量和种类进行分析.发现天山1号冰芯微生物总数为103~105细胞·mL-1,可培养细菌数为0~300 cfu·mL-1,冰层中的微生物数量明显多于粒雪层,可能是淋溶作用使细菌移动并保存在冰层中;分离到的细菌分属于14个属,大部分与来自海洋和其它陆地冰川的细菌具有很高的同源性,不同的气泡冰层的细菌在数量和种类组成上都有较大的差异.其中Frigoribacterium、 Flavobacterium、 Arthrobacter为天山1号冰芯中的主要优势菌,Brevundimona、 Pseudomonas和Pedobacter为次要优势菌,并且Frigoribacterium和Flavobacterium在冰芯不同深度均有分布,其数量与冰层中可培养细菌数量变化相一致;Cohnella和unclassified_Paenibacillaceae所代表的属的细菌未在其它低温环境下发现,可能为天山冰川的地方种类.  相似文献   

11.
Several till-covered organic deposits, principally lake gyttja, in Finnish Lapland have been correlated with the last (i.e. Eemian) interglacial on the basis of their lithostratigraphic position and pollen stratigraphy. Most of the sequences are short, but together with three longer sequences from Finnish Lapland and one from Swedish Lapland (Leveäniemi) they provide a complete picture of Eemian vegetational and climatic development. The Tepsankumpu site was revisited, and the till-covered thick freshwater gyttja deposit was studied in detail for pollen in order to search for signals of rapid climatic fluctuations postulated for the earlier part of the Eemian on the basis of Greenland ice core studies. The Eemian pollen stratigraphy in Finnish Lapland closely resembles the Holocene pollen stratigraphy of the area. The abundance of spruce and alder pollen suggests, however, more northerly limits for forest vegetation zones during the Eemian than during the Holocene. Oak also grew closer to Lapland, indicating a wanner climate than during the Holocene climatic optimum. The Tepsankumpu pollen stratigraphy indicates climatic stability over the entire time-span it covers, i.e. the major part of the interglacial. This finding is in conflict with results from Greenland GRIP ice core studies and interpretations of some Continental European Eemian pollen diagrams.  相似文献   

12.
《Quaternary Science Reviews》2005,24(1-2):173-194
The climate history and dynamics of the Greenland Ice Sheet are studied using a coupled model of the depositional provenance and transport of glacier ice, allowing simultaneous prediction of the detailed isotopic stratigraphy of ice cores at all the major Greenland sites. Adopting a novel method for reconstructing the age–depth relationship, we greatly improve the accuracy of semi-Lagrangian tracer tracking schemes and can readily incorporate an age-dependent ice rheology. The larger aim of our study is to impose new constraints on the glacial history of the Greenland Ice Sheet. Leading sources of uncertainty in the climate and dynamic history are encapsulated in a small number of parameters: the temperature and elevation isotopic sensitivities, the glacial–interglacial precipitation contrast and the effective viscosity of ice in the flow law. Comparing predicted and observed ice layering at ice core sites, we establish plausible ranges for the key model parameters, identify climate and dynamic histories that are mutually consistent and recover the past depositional elevation of ice cores to ease interpretation of their climatic records. With the coupled three-dimensional model of ice dynamics and provenance transport we propose a method to place all the ice core records on a common time scale and use discrepancies to adjust the reconstructed climate history. Analysis of simulated GRIP ice layering and borehole temperature profiles confirms that the GRIP record is sensitive to the dynamic as well as to the climatic history, but not enough to strongly limit speculation on the state of the Greenland Ice Sheet during the Eemian. In contrast, our study indicates that the Dye 3 and Camp Century ice cores are extremely sensitive to ice dynamics and greatly constrain Eemian ice sheet reconstructions. We suggest that the maximum Eemian sea-level contribution of the ice sheet was in the range of 3.5–4.5 m.  相似文献   

13.
The Greenland and East and West Antarctic ice sheets are assessed as being the source of ice that produced an Eemian sea level 6 m higher than present sea level. The most probable source is total collapse of the West Antarctic Ice Sheet accompanied by partial collapse of the adjacent sector of the East Antarctic Ice Sheet in direct contact with the West Antarctic Ice Sheet. This conclusion is reached by applying a simple formula relating the “floating fraction” of ice along flowlines to ice height above the bed. Increasing the floating fraction lowered ice elevations enough to contribute up to 4.7 m to global sea level. Adding 3.3 m resulting from total collapse of the West Antarctic Ice Sheet accounts for the higher Eemian sea level. Partial gravitational collapse that produced the present ice drainage system of Amery Ice Shelf contributes 2.3 m to global sea level. These results cast doubt on the presumed stability of the East Antarctic Ice Sheet, but destabilizing mechanisms remain largely unknown. Possibilities include glacial surges and marine instabilities at the respective head and foot of ice streams.  相似文献   

14.
Several Eemian (Mikulino) marine deposits are known from the northwestern part of Russia and from Estonia. The best-known deposits are situated at Mga, Russia and at Prangli, Estonia. Two new sites with clayey and silty deposits covered by till were studied for pollen and diatoms at Peski, Russia and Põhja-Uhtju, Estonia. At Peski, the deposit representing the Eemian Interglacial is 3.8 m thick at the depth of 13.4–9.6 m above present sea-level. At Põhja-Uhtju, the deposit representing the Eemian is 3.5 m thick at the depth of 47.9–51.4 m below present sea-level. Although Peski is situated at a higher altitude than Põhja-Uhtju at present, the diatom stratigraphy at these sites indicates deeper and more saline conditions in the Peski area than at Põhja-Uhtju during the Eemian. This result is similar to some previous studies, which indicate, that although the Russian deposits (e.g. Peski, Mga) are now at a higher altitude than those in Estonia (Põhja-Uhtju and Prangli), the diatoms in the Russian deposits are indicative of a considerable depth of water during the time of deposition. These deposits suggest that the Eemian shore levels ascend from Estonia eastwards, while the Late Weichselian and Holocene shorelines tilt downwards in the same general direction. The present material from Estonia and northwestern part of Russia shows marked differences between the Eemian and Late Weichselian/Holocene crustal deformations, which probably resulted from different ice loads during the final glaciation phases and probably also from different deglaciation patterns during the Saalian and Late Weichselian.  相似文献   

15.
Foraminifera, pollen, lithology and radiocarbon dates from a core in the southern Kattegat provide a rare opportunity to obtain data relating to environmental conditions during the Middle Weichselian in the offshore Kattegat. This core is also correlated with an adjacent second core. Redeposited Eemian foraminifera and pollen occur in the Middle Weichselian sediments. This is interpreted as a result of reworking by an active Middle Weichselian ice present in, or advancing from, a northeasterly to easterly direction. During a second phase the Middle Weichselian sediments were compacted, probably a result of overriding by an ice from the northeast during the Middle Weichselian and/or the Late Weichselian Maximum. The Middle Weichselian sequence is overlain by a Holocene sequence which, in turn, is overlain by an admixture of Middle Weichselian and Holocene sediments. This mixing may be a result of tectonic activity some time between 7300 and 1000 BP. The core ends in Holocene fine sediments representing the last c. 1000 years.  相似文献   

16.
The development and termination of the Eemian interglacial is important because it may serve as a model showing how the present warm period might end in the event of no anthropogenic impact. The most important methods for studying the Eemian are outlined and critically evaluated. In spite of interpretation and dating problems, the various proxy data seem consistent enough to allow the conclusion that some 120,000 years ago the warm Eemian climate deteriorated rapidly and drastically. The forest vegetation in West Europe was replaced by a tundra type vegetation, and within 5000 or 10,OOO years the volume of continental ice grew to at least double the present volume, corresponding to a sea level 65 m, perhaps 90 m, below that of today. There is considerable disagreement between sea level estimates deduced from geological evidence and from benthic foraminifera oxygen isotope records.  相似文献   

17.
RECENT 200 YEARS CLIMATIC AND ENVIRONMENTAL RECORDS FROM THE FAR EAST RONGBUK ICE CORE, MT. QOMOLANGMA (EVEREST)  相似文献   

18.
A pre-Holocene marine level is found at 109 m a.s.1. on Hopen. Fragments of Mya truncata and Hiatella arctica occurring on a raised coastal spit at that altitude have been radiocarbon dated to >45,000 BP. The amino acid epimerization of these shells, a clearly mixed sample, correlates with samples from Kongsøya that are of Eemian or Early Weichselian age (alloisoleucine/isoleucine ratios, hydrolysed fraction, between 0.084 and 0.213). No direct evidence, such as striations or roche moutonées, of overriding glacier ice has been found, and no erratics were found above the pre-Holocene marine limit. The existing Holocene shoreline displacement curve, with its upper limit at 60 m a.s.1., is supported by four new radiocarbon dates.  相似文献   

19.
The coast-parallel Flakkerhuk ridge on southern Jameson Land revealed a succession of four marine formations separated by tills and glaciotectonic deformation zones representing glacier advances. Paleontological evidence. supported by 32 luminescence datings, indicates that deposition took place during the Eemian and Early Weichselian. A pronounced rise in sea-level due to glacio-isostatic depression is evidenced within the Late Eemian part of the sequence, indicating buildup of ice commencing while interglacial conditions still prevailed. A diamicton interpreted as a till deposited by a glacier moving from the interior of Jameson Land and overlying the interglacial deposits would seem to suggest the presence of a local ice cap on Jameson Land at the last interglacial/glacial transition. Three ice advances from the fjord onto the coast were identified following the last interglacial. The glaciers at no time advanced beyond 2–3 km inland from the coast in the investigated area. This demonstrates that the glaciers advancing through the Scoresby Sund fjord during the Weichselian were relatively thin, with a low longitudinal gradient. Glacier advances onto the coast were apparently strongly influenced by local topography and relative sea-level. The Flakkerhuk ridge is mainly an erosional landform originating from continued fluvial downcutting of former drainage channels from along the Early Weichselian ice margin. Only the very top of the ridge is considered to he a constructional ice marginal ridge, related to the Flakkerhuk glaciation.  相似文献   

20.
Analyses of crystal size, bubble content, oxygen isotope ratio, specific electrolytic conductivity, and the distribution of firn and dirt layers in a core, 121.2 m long, from surface to bedrock near the highest point of the Meighen Ice Cap, leads to the following outline of the ice cap's history. The ice cap, which has always been stagnant, originated in the cold period that followed the postglacial Climatic Optimum. After initial growth came a period of negative mass balance in which the area and thickness of the ice cap diminished and the surface slope at the core site steepened. The end of this period, at least 600 y.a., is marked by a discontinuity at 54 m depth in the core; above this level, the values of most parameters differ significantly from their values below. There followed a period of growth by the end of which, some 80 y.a., the ice cap had attained its maximum thickness; this period included the coldest interval in the ice cap's history. Ablation has predominated since then and up to 13 m of ice have been lost at the core site. This history resembles that of the Ward Hunt Ice Shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号