首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
A singular outcrop of a lamproite dyke is located ~1.5 km south-west of Chintalapalle village at the NW margin of the Cuddapah basin, eastern Dharwar craton, southern India.. The dyke trends E-W and is emplaced within the granitic rocks belonging to the peninsular gneissic complex. The lamproite dyke has a porphyritic to weakly porphyritic texture comprising microphenocrysts of sanidine, and potassic richterite set in a groundmass rich in carbonate, and chlorite with rutile and titanate as accessory phases. This new occurrence of lamproite is located mid-way between the well-known Narayanpet kimberlite field towards the west and the Ramadugu and Vattikod lamproite fields in east. The Chintalapalle lamproite dyke, together with those from Vattikod, Ramadugu, Krishna and Cuddapah basin lamproite fields, constitute a wide spectrum of ultrapotassic magmatism emplaced in and around the Palaeo-Mesoproterozoic Cuddapah basin in southern India.  相似文献   

2.
A cluster of lamproite dykes are located 1 km west of Vattikod village at the NW margin of the Cuddapah basin, Eastern Dharwar craton, southern India, during the pursuit for locating primary diamond source rocks by adapting multifarious applications. These exotic rocks are emplaced along WNW-ESE to NW-SE trending fractures in the granitic rocks belonging to the Peninsular Gneissic Complex. Ten out of twelve lamproites occur near Vattikod village and one each is located in the vicinity of Marepalli and Gundrapalli villages respectively. These lamproites, though highly altered, contain microphenocrysts of altered olivine, clinopyroxene, phlogopite, leucite and sanidine and translucent to opaque, amoeboid shaped patches of glass set in a groundmass rich in carbonate, phlogopite, serpentine, and chlorite. This new cluster of lamproites constitutes a part of the recently discovered Ramadugu lamproite field. The Vattikod and Ramadugu lamproites, together with those from Krishna lamproite field and the Cuddapah basin, constitute, a wide spectrum of ultrapotassic magmatism emplaced in and around the Palaeo-Mesoproterozoic Cuddapah basin in southern India.  相似文献   

3.
在印度三个时代不同的地洼区中,出现重要的赋存于沉积岩中的铀矿化作用。这些地洼区是:a)印度南部的元古代库达帕洼地;b)印度东北部梅加拉亚的白垩纪Madadek盆地;c)印度北部的晚第三纪喜马拉雅前渊。库达帕洼地呈新月形,沿南印度克拉通东缘沉积,紧邻东加茨活动带,面积达44,500km~2。该洼地由数个上升、下落断块组成。在这些断块内,浅水砂质(库达帕亚组)和钙质(库尔努尔组)沉积物厚度超过12km,同时从2,000—600Ma,至少有四期粒玄岩墙侵入。铀矿化作用主要呈沥青铀矿(含硫化物)和次生铀矿物形式,沿库达帕洼地面南缘出现于磷质碳酸盐岩和共生物的帕帕格尼组砂质岩、砾岩中。如Tummalapalli、Ammasripall,在梅加拉亚,约200米厚的河流相、海相砂质、泥质沉积物分布于1.5km高的西隆高原南缘的Mahadek盆地。该盆地的铀矿化限于河流相、边缘海相早白垩世“石英粗砂碎屑岩/亚长石砂岩”型Mehadek砾岩中,如Comasahat,Pdensashakap、Domiasiat,并呈沥青铀矿、水硅铀矿、钛钠矿形式。这些矿物与还原剂(如碳、生物成因黄铁矿)紧密共生。在喜马拉雅前渊,铀矿化赋存于河流相锡瓦利克砂岩中,并主要产于锡瓦利克砂岩的下-中或中-上接触面上,如Thein、Morni、Hamirpur,Naugajiarao等地。矿化主要呈沥青铀矿、水硅铀矿(与硫化物共生)和大量次生铀矿物形式——这主要是由于持续至现在的反复的活化作用和沉淀作用。这三个地洼区铀成矿作用的共同特点是河流相沉积物围岩(主要为砂岩,并来源于丰富的酸性源区)、远成热液成矿作用和原始成矿作用时的强烈还原环境。这特征可作为在地洼区寻找赋存于沉积岩中的铀矿化的标志。  相似文献   

4.
Structural trends in the upper Proterozoic Cuddapah basin, at the basement level and at the Moho level have been discussed based on Deep Seismic Sounding (DSS) studies. Results of DSS studies along the Alampur-Koniki profile (profile 2 of Fig. 1) crossing the northern part of the Cuddapah basin have been discussed in detail. These results, combined with the results of the Kavali-Paranpalle section of the Kavali-Udipi DSS profile (profile 1 of Fig. 1, Kaila et al., 1979) crossing the basin on its southern flank, along with geological data and earthquake epicentral locations, are used to explain the structural trends of the area. It has been shown that the Cuddapah basin was first created in its western part by downfaulting of the crustal block between faults 7 and 14 towards the west and fault 6 in the east (Fig. 1). Subsequently, the eastern part was downfaulted against fault 6 before the commencement of upper Cuddapah sedimentation. Further downfaulting towards the north along fault 5 created the Srisailam block. Minor-scale downfaulting between faults 7 and 13 in the west and fault 6 in the east and fault 8 in the north gave rise to the Kurnool sub-basin at a later stage. Similar downfaulting east of fault 9 and north of fault 5 gave rise to the Palnad sub-basin. Both these sub-basins received Kurnool sediments.After the close of Kurnool sedimentation, the blocks between faults 4 and 6 along profile II and between 11 and 6 along profile I were uplifted at the basement level, thus giving rise to the Nallamalai hills and Iswarakuppam dome (Fig. 1). The low-angle thrust fault 3 on the eastern margin of the Cuddapah basin might be a post-Cuddapah phenomenon. The low-angle thrust fault 2 probably occurred in the post-Dharwar period. Faults 1, 17 and 10 near the east coast of India seem to be comparatively younger probably of Mesozoic time, along which the coastal block is downfaulted giving rise to the sedimentary basins.  相似文献   

5.
In this article we summarize the petrological, geochemical and tectonic processes involved in the evolution of the Proterozoic intracratonic Cuddapah basin. We use new and available ages of Cuddapah igneous rocks, together with field, stratigraphic, geophysical and other criteria, to arrive at a plausible model for the timing of these processes during basin evolution. We present petrological and geochronological evidence of dike emplacement along preferred lineament directions around the basin in response to stresses, which may have been responsible for the evolution of the basin itself. Basaltic dike intrusion started on the south Indian shield around 2400 Ma and continued throughout the Cuddapah basin evolution and sedimentation. A deep mantle perturbation, currently manifested by a lopolithic cupola-like intrusion under the southwestern part of the basin, may have occurred at the onset of basin evolution and played an important role in its development. Paleomagnetic, gravity and geochronological evidence indicates that it was a constant thermal source responsible for dike and sill emplacement between 1500 and 1200 Ma both inside and out-side the basin. Lineament reactivation in the NW-SE and NE-SW directions, in response to the mantle perturbation, intensified between 1400 and 1200 Ma, leading to the emplacement of several cross cutting dikes. Fe-Mg partition coefficients of olivine and augite and Ca-Na partition coefficient of plagioclase, calculated from the composition of these minerals and bulk composition of their host rocks, indicate that the dikes outside the Cuddapah basin are cumulates. The contemporary dikes may be related by fractional crystallization as indicated by a positive correlation between their plagioclase Ca# (atomic Ca/[Ca+Na]) and augite Mg# (atomic Mg/[Mg+Fe]). A few NW-SE and NE-SW cross cutting dikes of the period between 1400 and 1200 Ma, preserve petrographic evidence of episodic magmatic intrusive activity along preferred directions. Petrological reasoning indicates that a magmatic liquid reacted with a set of cross cutting dikes, intruding into one that was already solidified and altering the composition of the magma that produced the other dike. The Cuddapah basin tholeiites may be related by fractional crystallization at 5 kb and 1019-1154‡ C, which occurred in the lopolithic cupola near the southwestern margin of the basin. Xenolith bearing picrites, which occur near the periphery of the cupola, originated by the accumulation of xenoliths in the tholeiites. This is indicated by the composition of the olivine in the xenoliths (Fo78.7-81.9), which are closely similar to calculated olivine compositions (Fo77.8-78.3) in equilibrium with the tholeiites under the sameP-T conditions. It is inferred that fractionation in the cupola resulted in crystals settling on its walls. Hence, the xenolith-bearing sills occur at the periphery of the lopolithic body. The tholeiites both inside and outside the basin are enriched in incompatible elements compared to mid oceanic ridge basalts. The Ba, Rb and K contents of the Cuddapah and other Proterozoic Gondwana tholeiites indicate that a widespread metasomatic enrichment of the mantle source may have occurred between R∼2.9 and R∼2.7Ga. There may be local heterogeneity in the source of the Cuddapah tholeiites as indicated by different Ba/Rb, Ti/Zr, Ti/Y, Zr/Nb and Y/Nb in samples inside and outside the basin. Large-scale differences such as the low P2O5-TiO2 and high P2O5-TiO2 basaltic domains of the Jurassic Gondwana basalts, however, did not exist during the Proterozoic time period under consideration. Although we are beginning to understand the tectono-magmatic processes involved in the evolution of the Cuddapah basin, much work remains to be done to obtain a complete picture. Future research in the Cuddapah basin should focus on obtaining accurate ages of the igneous rocks associated with the evolution of the basin.  相似文献   

6.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

7.
Paleostress orientations from mechanically twinned calcite in carbonate rocks and veins in the neighborhood of large faults were investigated to comment on the nature of weak upper crustal stresses affecting sedimentary successions within the Proterozoic Cuddapah basin, India. Application of Turner's P–B–T method and Spang's Numerical dynamic analysis on Cuddapah samples provided paleostress orientations comparable to those derived from fault-slip inversion. Results from the neighborhood of E–W faults cutting through the Paleoproterozoic Papaghni and Chitravati groups and the Neoproterozoic Kurnool Group in the western Cuddapah basin, reveal existence of multiple deformation events − (1) NE–SW σ3 in strike-slip to extensional regime along with an additional event having NW–SE σ3, for lower Cuddapah samples; (2) compressional/transpressional event with ESE–WNW or NNE–SSW σ1 mainly from younger Kurnool samples.Integrating results from calcite twin data inversion, fault-slip analysis and regional geology we propose that late Mesoproterozoic crustal extension led to initial opening of the Kurnool sub-basin, subsequently influenced by weak compressional deformation. The dynamic analysis of calcite twins thus constrains the stress regimes influencing basin initiation in the southern Indian cratonic interior and subsequent basin inversion in relation to craton margin mobile belts and plausible global tectonic events in the Proterozoic.  相似文献   

8.
Deep Crustal Electrical Signatures of Eastern Dharwar Craton, India   总被引:1,自引:0,他引:1  
Wide band magnetotelluric (MT) investigations were carried out along a profile from Kavali in the east to Anantapur towards west across the Eastern Ghat Granulite Terrain (EGGT), Eastern Dhanvar Craton (EDC) and a Proterozoic Cuddapah Basin. This 300 km long profile was covered with 20 stations at an interval of 12–18 km. The MT data is subjected to robust processing, decomposition and static shift correction before deriving a 2-D model. The model shows a resistive crust (−10,000–30,000 ohm-m) to a depth of 8–10 km towards west of the Cuddapah basin. The mid crust is less resistive (about 500 ohm-m) and the lower crust with a slight increase in resistivity (about 1,500 ohm-m) in the depth range of 20–22 km. The resistivity picture to the east of the Cuddapah basin also showed a different deep crustal structure. The resistivity of upper crust is about 5,000 ohm-m and about 200 ohm-m for mid and lower crust. The sediment resistivity of Cuddapah basin is of the order of 15–20 ohm-m. MT model has shown good correlation with results from other geophysical studies like deep seismic sounding (DSS), gravity and magnetics. The results indicate that the lower crustal layers are of intermediate type showing hydrous composition in Eastern Dhanvar Craton.  相似文献   

9.
In southern India the older Precambrian is overlain unconformably in the Cuddapah Basin by the Cuddapah and Kurnool Systems. The former is tilted and unmetamorphosed in the west but eastwards becomes strongly folded and metamorphosed. It contains lavas and sills, particularly in the lower two groups, is intruded by dolerites and at Chelima by diatremes of kimberlitic affinities related to those intruding the older gneisses west of the Cuddapah Basin in the Wajrakarur area. The Kurnool System lacks any igneous rocks; its basal conglomerate is diamondi‐ferous.

Rb‐Sr dating of lava samples from the lowest group of the Cuddapah System shows that the age of the base of the system may be as great as 1,700 m.y. Together with data for a granite which intrudes probable Cuddapah rocks near the disturbed eastern margin of the basin the data imply that the base is unlikely to be younger than 1,555 m.y. Metamorphism affected some lavas at about 1,360 m.y. The diatremes have two ages of intrusion, about 1,225 m.y. and 1,140 m.y., the latter being the age of the Majhgawan pipe near Panna in northern India. Pre‐Kurnool dolerites have an age of 980 ±110 m.y.

The lavas and dolerites show a range of initial 87Sr/86Rb ratios from about 0.704 to 0.708 and possibly 0.712.

The age data suggest that no simple correlation can be made with other Precambrian sequences in northern peninsular India. Deposition of the Cuddapah System appears to have started well before the start of the deposition of the Vindhyan System, while the Kurnool System is coeval with only part of the Upper Vindhyan. The data also suggest that present interpretations of the structural development of the Cuddapah Basin may need some revision.  相似文献   

10.
The thermal and mechanical structures of the southern part of the Precambrian Indian Shield have been estimated using available heat flow data and shear stress profiles from olivine rheology. These and other geological, geochronological and geophysical data including deep seismic studies (DSS) profiles of Proterozoic Cuddapah basin on South Indian Shield, are utilized to examine thermal models for the evolution of Precambrian intracratonic, platform basins on the Archean lithosphere of Indian Shield. Evidence of mantle perturbations and cycles of thermal events are documented to be important in the Cuddapah basin's evolution. Haxby et al.'s (1976) thermal model has been shown to explain the Cuddapah basin's flexuring and magnitude of subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号