首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we report standard quartz SAR OSL and post‐IR infrared (IR) stimulated luminescence (post‐IR IRSL; pIRIR290) measurements made on sand‐sized quartz and K‐feldspar extracts from the loess‐palaeosol sequence at Niuyangzigou in northeastern China. The quartz OSL characteristics are satisfactory. Extensive pIRIR50,290 dose recovery tests were performed by adding doses on top of the natural dose. We found that dose recovery ratios improve significantly when the test dose ranges between ~15 and ~80% of the total dose, and good dose recovery (within ±5% of unity) can be obtained up to ~800 Gy. Otherwise, the dose recovery ratio deviates from unity. The De values also depend on the test dose size and so we conclude that the effect of test dose size should be routinely considered in pIRIR dating. First IR stimulation plateau pIRIR290 results are compared with multiple elevated temperature ‐pIRIR (MET‐pIRIR) data. It appears that the low temperature MET‐pIRIR data are strongly affected by poor dose recovery, but this is not the case for the pIRIR290 results. Natural signal measurements at the highest (first IR) stimulation temperature on a sample expected to be in field saturation suggest that ~10% signal loss occurs in pIRIR signals. Long‐term laboratory bleaching experiments (>80 days) show that a constant (or very difficult to bleach) residual pIRIR290 signal is reached after ~300 h, corresponding to a dose of 6.2±0.7 Gy. Quartz OSL and feldspar pIRIR50,290 ages are in good agreement at least back to c. 70 ka. Beyond this the quartz ages begin to underestimate but the feldspar ages are in agreement with the expected Last Interglacial age palaeosol.  相似文献   

2.
Luminescence dating is used extensively to provide absolute chronologies for Late Pleistocene sediments. Nowadays, most optical dates are based on quartz optically stimulated luminescence (OSL). However, the application of this signal is usually limited to the last ~100 ka because of saturation of the quartz luminescence signal with dose. In contrast, the feldspar infrared stimulated luminescence (IRSL) dose–response curve grows to much higher doses; this has the potential to extend the datable age range by a factor of 4–5 compared with quartz OSL. However, it has been known for several decades that this IRSL signal is unstable, and this instability often gives rise to significant age underestimation. Here we test against independent age control the recently developed feldspar post‐IR IRSL approach to the dating of sediments, which appears to avoid signal instability. A physical model explaining our observations is discussed, and the method is shown to be accurate back to 600 ka. The post‐IR IRSL signal is reduced by exposure to daylight more slowly than that from quartz and low‐temperature IRSL, preventing its general application to young (e.g. Holocene) sediments. Nevertheless, this new approach is widely applicable (feldspar of appropriate luminescence behaviour is even more ubiquitous than quartz). These characteristics make this a method of great importance for the dating of Middle and Late Pleistocene deposits.  相似文献   

3.
从湖南省北部赤山岛枫树嘴旧石器遗址剖面第2、第3和第4考古层位采集的3个沉积物样品中提取的细粒混合矿物,尝试对其红外释光(IRSL)信号进行研究。实验表明,虽然长石IRSL信号很弱,但仍可以测得信噪比足够高的红外激发后高温红外激发释光(post-IR IRSL)信号。与此同时,样品存在明显的红外激发后蓝光释光(post-IR OSL)信号,并且样品的IRSL与post-IR OSL信号均以快组分为主,这为该地区沉积物利用长石光释光信号定年提供了新的可能。鉴于长石IRSL信号较弱,根据剂量恢复实验结果,本研究采用post-IR IRSL SAR法(50℃红外激发后270℃高温红外激发,pIRIR270℃)进行等效剂量测量,同时也应用post-IR OSL SAR法定年进行比较。实验结果表明,细粒混合矿物的pIRIR270℃等效剂量分别为418.8±13.2 Gy、562.3±18.2 Gy和694.8±17.9 Gy,相对应的post-IR OSL SAR等效剂量结果为345.0±29.4 Gy、409.6±33.7 Gy和424.7±32.2 Gy。假设强烈化学风化未对沉积物的剂量率造成很大影响,基于长石pIRIR270℃信号的释光年龄为89±6 ka、118±8 ka和152±9 ka,比前人所得的石英OSL SAR法年龄老30%~55%(约20~55 ka)。通过对比不同测量条件下获得的等效剂量值来评估长石IRSL信号是否存在晒退问题,没有发现长石post-IR IRSL信号存在晒退不完全的证据。根据本研究post-IR IRSL SAR法测年结果,赤山岛枫树嘴旧石器遗址似阿舍利技术类型的石器出现在倒数第二次冰期(MIS 6)后期至末次间冰期(MIS 5)前期,比湖南道县福岩洞现代人类牙齿化石年龄(80~120 ka)稍老。作为似阿舍利技术石器制造者的赤山岛古人与福岩洞现代人的关系将是我国旧石器时代考古学和古人类学研究的一个重要课题。  相似文献   

4.
Buylaert, J.‐P., Huot, S., Murray, A.S. & Van den haute, P.: Infrared stimulated luminescence dating of an Eemian (MIS 5e) site in Denmark using K‐feldspar. Boreas, 10.1111/j.1502‐3885.2010.00156.x. ISSN 0300‐9483. Infrared stimulated luminescence (IRSL) dating of K‐feldspars may be an alternative to quartz optically stimulated luminescence (OSL) dating when the quartz OSL signal is too close to saturation or when the quartz luminescence characteristics are unsuitable. In this paper, Eemian (MIS 5e) coastal marine sands exposed in a cliff section on the coast of southern Jutland (Denmark) are used to test the accuracy and precision of IRSL dating using K‐feldspars. This material has been used previously to test quartz OSL dating ( Murray & Funder 2003 ): a small systematic underestimation of <10% compared to the expected age of ~130 ka was reported. In our study, a single‐aliquot regenerative‐dose (SAR) IRSL protocol is used to determine values of equivalent dose (De) and the corresponding fading rates (g values). A significant age underestimation (of up to ~35%) is observed; this is attributed to anomalous fading. Using a single site‐average fading rate of 3.66 ± 0.09%/decade to correct the IRSL ages for all samples provides good agreement between the average fading‐corrected K‐feldspar age (119 ± 6 ka) and the independent age control (132–125 ka). This is despite the reservations of Huntley & Lamothe (2001) that their fading correction method is not expected to work on samples older than ~20–50 ka. This fading‐corrected feldspar result is not significantly different from the overall revised quartz age (114 ± 7 ka) also presented here. We conclude that fading‐corrected IRSL ages measured using K‐feldspar may be both precise and accurate over a greater age range than might be otherwise expected.  相似文献   

5.
使用钾长石进行释光测年时,由于长石的释光信号存在异常衰减,会导致沉积事件年龄的低估。对中国北方4个全新世样品分别使用石英和钾长石矿物组分释光测年,通过测量钾长石的衰退系数(g值)对钾长石使用再生剂量法获得的表征年龄进行了校正。发现对于本文所研究的年轻样品钾长石表征年龄与石英年龄相比系统偏小约2%~9%,钾长石校正年龄与石英年龄相比则严重偏大约16%~40%,表明使用g值无法校正年轻样品的钾长石年龄。对于年轻样品,钾长石IRSL信号异常衰减现象对测年结果的影响是可以忽略的。  相似文献   

6.
Optically stimulated luminescence (OSL) dating was applied to proglacial deposits from the Klettgau Valley in northern Switzerland, which is understood to record several phases of glaciation prior to the Last Interglacial. The aim was to provide an independent chronology for the different sedimentary units to understand better the complex depositional history of the region. This time range requires care when assessing the reliability of the luminescence protocols applied. Equivalent doses for fine‐ and coarse‐grain quartz remained below 300 Gy, while dose response curves for both fractions continued to display growth above 500 Gy. Dose recovery tests confirmed the ability of the single aliquot regenerative (SAR) protocol to recover laboratory doses of a similar size to burial doses, and isothermal decay measurements confirmed the stability of the quartz signal. Having passed rigorous testing criteria, quartz OSL ages of up to ~200 ka were considered reliable but significantly underestimated expected ages and prompt a reconsideration of earlier interpretations of the stratigraphy for this site. Rather than representing three separate glaciations, quartz luminescence ages instead suggest that these deposits record up to four independent ice advances during Marine Isotope Stage 6. For both single grain and single aliquot feldspar dating, it was not possible to separate the conflicting influences of anomalous fading and partial bleaching. However, uncorrected feldspar central age model ages were found to be in reasonable agreement with quartz age estimates, and suggest that feldspar ages may still offer useful additional information in this region.  相似文献   

7.
Here we investigate the use of optically stimulated luminescence (OSL) for dating cobbles from the body of successive beach ridges and compare cobble surface‐derived ages to standard quartz OSL ages from sand. Between four and eight cobbles and sand samples (age control) were dated with the luminescence method, taken from the modern beach and from beach ridges on the south and north extremes of a prograding spit on the westernmost coast of Lolland, Denmark. Luminescence‐depth profiles perpendicular to the surfaces of the cobbles show that the feldspar infrared signals stimulated at 50 °C were fully reset to various depths into the cobbles prior to final deposition; as a result, the equivalent doses determined from close to the surface of such cobbles can be used to calculate burial ages. Beach‐ridge burial ages given by the average of ages of individual cobbles taken from the same site are consistent, within errors, with the ages derived from the sand samples. Cobble‐ and sand‐derived ages show that the southernmost beach ridge at Albuen was formed around 2 ka ago, indicating that this sandy spit is younger than other coastal systems in Denmark. The agreement between ages derived from clasts and from standard quartz OSL in this study confirms that, even in the absence of sandy sediments, we can reliably date sites using OSL by targeting larger clasts. In addition, the record of prior light exposure contained in the shape of the cobbles’ luminescence‐depth profile removes one of the major uncertainties (i.e. the degree of signal reset prior to burial) in the luminescence dating of high latitude sites.  相似文献   

8.
Post‐infrared (pIR) stimulated luminescence dating of sedimentary feldspar largely avoids the effects of anomalous fading that affect conventional infrared stimulated luminescence (IRSL) dating. However, optical resetting of pIR signals is more difficult than resetting the conventional IRSL signal, which may undermine the crucial assumption that pIR signals were effectively bleached upon deposition and burial of sediment grains. In this study, we quantify the bleaching properties of several pIR signals on various samples using laboratory‐simulated bleaching in full sunlight and water‐attenuated sunlight. Our data show that bleaching is most efficient under full spectrum conditions for all pIR signals and that pIR signals measured at elevated temperature are increasingly harder to bleach than IR and pIR signals measured at low temperature (e.g. IR at 50°C). All bleaching curves exhibit a very slow and steady decrease, indicating that a fixed un‐bleachable residual level cannot be reached within the 11 days of solar simulator exposure undertaken here. We show that the magnitude of a laboratory‐determined residual dose depends on the adopted bleaching protocol and cannot be used as a proxy for the dose that remains in the sample at the time of burial (remnant dose). Our data emphasize the importance of finding a balance between sufficient signal stability and a minimized contribution of a remnant dose when using pIR procedures for feldspar luminescence dating.  相似文献   

9.
Optical dating is a method of measuring the time since the sample was buried from last thermal event or light exposure. Samples such as quartz and feldspar grains are the most commonly used sediment of measurement. Single-Aliquot Regenerative-dose (SAR) method has become the most acceptable procedure for obtaining the equivalent Dose (De) of a sample. The Standardised Growth Curve (SGC) method provides a possible procedure for measuring a large number of samples; the limitation is that the growth curve fitted by different samples or even different aliquots is divergent. The global Standardised Growth Curve (gSGC) method improves the shortage by normalizing the dose response curves using one regenerative dose OSL signal. The gSGC provides a possible method for obtaining the De value of the sample efficiently and quickly. However, due to the radiation dose rate, operating procedures and instrument error and the selected regenerative-dose normalized dose value, etc., each laboratory should develop their own gSGC which has unique parameters. This study established the gSGC curve and measurement process of our laboratory, and then compared the consistency of the equivalent Dose (De) values from gSGC and SAR methods. In gSGC procedure, the De value of an aliquot can be estimated from the nature signal, one regenerative dose signal and their corresponding test dose signal. It will speed up the optical dating measurement rate of our laboratory and provide reference to establish gSGC in other laboratories. It is found that in the low dose range (0~100 Gy) the obtained De values were well consistent by gSGC and SAR methods. There were obviously differences in the higher dose range (>100 Gy) compared to the SAR results. It may be due to the insufficient number of older samples used to fit gSGC in this study. It is necessary to gradually accumulate more samples to improve the gSGC parameters in the future work. For some aliquots, individual quartz grains do not follow the global standardised growth curve, which leads to some deviations of De from gSGC. However, these two methods could obtain the similar average De value when multiple aliquots measuring.  相似文献   

10.
In Quaternary studies, tephras are widely used as marker horizons to correlate geological deposits. Therefore, accurate and precise dating is crucial. Among radiometric dating techniques, luminescence dating has the potential to date tephra directly using glass shards, volcanic minerals that formed during the eruption or mineral fragments that originate from the shattered country rock. Moreover, sediments that frame the tephra can be dated to attain an indirect age bracket. A review of numerous luminescence dating studies highlights the method's potential and challenges. While reliable direct dating of volcanic quartz and feldspar as a component in tephra is still methodically difficult mainly due to thermal and athermal signal instability, red thermoluminescence of volcanic quartz and the far-red emission of volcanic feldspar have been used successfully. Furthermore, the dating of xenolithic quartz within tephra shows great potential. Numerous studies date tephra successfully indirectly. Dating surrounding sediments is generally straightforward as long as samples are not taken too close to the tephra horizons. Here, issues arise from the occurrence of glass shards within the sediments or unreliable determination of dose rates. This includes relocation of radioelements, mixing of tephra into the sediment and disregarding different dose rates of adjacent material.  相似文献   

11.
释光技术在水成沉积物测年中的应用进展   总被引:1,自引:0,他引:1  
准确获得水成沉积物的年龄是第四纪年代学重要的前沿问题之一。随着释光技术的发展,水成沉积物释光测年在如下方面有新的进展:具体释光技术的选择、释光测量方法、测年矿物的种类、矿物的粒级和获得等效剂量的统计方法等。线性调整光释光技术能够提取光释光信号中衰退快的组分;单片再生法应用广泛;单颗粒技术在挑选沉积时晒退充分的颗粒方面具有一定的优势;水成沉积物中的石英比长石更易晒退;较多的实验表明水成沉积物中的粗颗粒比细颗粒更易晒退;获得等效剂量的统计模型很多,但尚无一种统计模型适用于所有样品。在此基础上探讨了水成沉积物释光测年在气候、构造运动、冰川进退历史和人类活动主导的土壤侵蚀量变化研究中的意义及今后的研究方向,为全面了解该领域的最新研究进展提供参考。  相似文献   

12.
This paper reports the preliminary application of ESR dating to loess strata. The samples were collected from the 7th palaeosol layer (S7) of the Luochuan section, Shaanxi province in China. The ESR age of S7 is 736 ka (total dose 2945 Gy, annual dose 4 mGy/year). This age represents the original eolian accumulation age. The result is consistent with the palaeomagnetic data (730 ka). We have also carried out thermal annealing experiments on quartz grains from the S7 sample. ESR intensities (g = 2.0005) increase from 25°C to 320°C. It may be that trapped electrons transfer into the E′ centre site. ESR intensities decrease from 340°C to 460°C due to thermal annealing. We obtained a mean-life of E′ centre electrons at 20°C of 6.66 × 108 years. The activation energy is 1.35 eV and frequency factor is 3.7 × 108 min−1.  相似文献   

13.
Optical dating of tsunami-laid sand from an Oregon coastal lake   总被引:1,自引:0,他引:1  
Optical ages for five samples of tsunami-laid sand from an Oregon coastal lake were determined using an infrared optical-dating method on K-feldspar separates and, as a test of accuracy, compared to ages determined by AMS 14C dating of detrital plant fragments found in the same beds. Two optical ages were about 20% younger than calibrated 14C ages of about 3.1 and 4.3 ka. Correction of the optical ages using measured anomalous fading rates brings them into agreement with the 14C ages. The approach used holds significant promise for improving the accuracy of infrared optical-dating methods.Luminescence data for the other three samples result in optical age limits much greater than the 14C ages. These data provide a textbook demonstration of the correlation between scatter in the luminescence intensity of individual sample aliquots and their normalization values that is expected when the samples contain sand grains not adequately exposed to daylight just prior to or during deposition and burial. Thus, the data for these three samples suggest that the tsunamis eroded young and old sand deposits before dropping the sand in the lake.  相似文献   

14.
Bleaching characteristics of Late Glacial and Holocene eolian sands from The Netherlands confirm the suitability for TL dating of these sediments. A solar simulator has been used for both quartz and potassium feldspar separates. A number of bleaching times and dose rate determinations have been used to establish the best plateau for the ED determination and a suitable dose rate respectively, in order to date a Late Glacial cover sand sample.  相似文献   

15.
Optical dating: Recuperation after bleaching   总被引:1,自引:0,他引:1  
Bleaching by sunlight results in rapid reduction of optically-stimulated luminescence, e.g. by a factor of 300 in 15 min for one of the several samples of quartz so far tried. However, if the bleached sample is stored before measurement the signal partially recovers, suggesting the possibility that the observed natural luminescence from a young sediment sample may contain a significant contribution from this component. Recuperation is accelerated if the sample is warmed during storage: after 5 min at 220°C the recuperation levels in the samples of quartz studied were equivalent to the order of one gray. Recuperative effects are also observed in zircon. We suggest that the effect is associated with phototransfer into shallow light-insensitive traps during bleaching, with subsequent thermal redistribution into the traps responsible for the initial luminescence. Investigation of recuperation gives a useful insight into the mechanisms upon which optical dating relies.  相似文献   

16.
The extensive aeolian deposits of the Tibetan Plateau (TP) represent important environmental archives, recording information about the past interplay between the Asian monsoon and Westerlies and the link between dust accumulation and Quaternary glaciations. In the northeast TP, mantles of sandy loess form a distinct belt lying between 3500 and 4500 m a.s.l. on the east‐facing slopes of the Anyemaqen Mountains. However, there is little chronological information about the loess deposits in this region. This study provides a detailed chronology for loess formation in the region using luminescence dating. A total of 29 samples were collected from an 8‐m‐thick homogeneous loess section at Hebei (HB) in order to date sand‐sized (63–90 μm) quartz and K‐feldspar fractions using optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL and pIRIR) signals, respectively. The resulting quartz and feldspar ages are in good agreement over the last 40 ka; beyond this (i.e. De >120 Gy), the quartz age is underestimated, and the pIRIR170 feldspar ages are considered more reliable. The HB loess section records continuous environmental information from c. 50 to c. 30 ka, i.e. throughout Marine Isotope Stage (MIS) 3. Mass accumulation rates (MARs) varied considerably over this period with increased dust accumulation around c. 38 ka and after c. 32 ka; in between, and at the beginning of MIS 3 (50–40 ka), the dust accumulation rate was ~50% lower. Finally, the HB section also records a MIS 2 hiatus of c. 17 ka duration, probably resulting from deflation. This study implies that loess deposition on the TP is predominantly an interglacial/interstadial phenomenon and the TP may be deflating at the same time as the Chinese Loess Plateau is accumulating, at least during MIS 2.  相似文献   

17.
《Quaternary Science Reviews》2003,22(10-13):961-966
Luminescence dating of loess has generally been restricted to a maximum of 100–150 ka, due primarily to the anomalous fading behaviour of feldspar. Recent studies have shown that the far-red luminescence from feldspar does not suffer from anomalous fading, and as such may have the potential to extend the age range of the luminescence dating method. The purpose of the present project is to further develop luminescence dating techniques using red and far-red emissions to date loess older than 100–150 ka. We present results demonstrating the presence of a far-red (λ>665 nm) IRSL emission in Chinese loess, and describe a series of basic experiments which seek to characterise aspects of this emission. These include an examination of sensitivity change, and dose reconstruction tests via the employment of a modified single aliquot regeneration (SAR) protocol. It is demonstrated that (a) far-red IRSL can be observed from Chinese loess; (b) far-red IRSL signal is highly reproducible; and (c) a range of laboratory doses from 100 up to 600 Gy can be accurately recovered using a modified SAR procedure.  相似文献   

18.
We report on quartz Optically Stimulated Luminescence (OSL) dating of the infill of 14 relict sand wedges and composite-wedge pseudomorphs at 5 different sites in Flanders, Belgium. A laboratory dose recovery test indicates that the single-aliquot regenerative-dose (SAR) procedure is suitable for our samples (measured to a given dose ratio 0.980 ± 0.005; n =139). Completeness of resetting of the wedge infill of two samples was confirmed by single-grain analyses. The suite of optical ages indicates that repeated thermal contraction cracking, degradation and infilling with wind-blown sediment appear to have been commonplace in Flanders during the Late Pleniglacial (Oxygen Isotope Stage 2; OIS2); more specifically, around the Last Glacial Maximum (LGM, ∼21 kyr ago) and the transition period between the LGM and the start of the Lateglacial (∼15 kyr ago). Optical dating at one site has revealed two significantly older wedge levels, the younger inset into the older; the younger wedge has an age of 36 ± 4 kyr (Middle Pleniglacial; OIS3), the older wedge 129 ± 11 kyr, which points to formation during the Late Saalian (OIS6). Our OSL ages of the wedges and host sediments bracket formation of the BGB (Beuningen Gravel Bed: a widespread deflation horizon in northwestern Europe) at between ∼15 and 18 kyr; this is in good agreement with previous OSL dating studies. We conclude that optical dating using quartz SAR OSL establishes an absolute chronology for these periglacial phenomena and allows secure palaeoenvironmental reconstructions to be made.  相似文献   

19.
The infrared stimulated luminescence (IRSL) dating method is applied to alkali feldspar coarse grains from the two distinct Middle Pleistocene interglacial estuarine deposits of Tourville, located along the Seine Valley. The upper deposit (unit D), previously dated at 200 ka by ESR on in situ shells and correlated with a stage 7 high sea-level stand (186–245 ka), yields a measured IRSL age of 176 ± 21 ka. The lower deposit (unit B) assigned to a distinctly older high sea-level event (stage 9: 303–339 ka) yields a measured IRSL age of 273 ± 28 ka. The nearby stage 7 raised beach of Sangatte, in Northwestern France, previously dated by TL on quartz (229 ± 18 ka) yields a measured IRSL age of 186 ± 19 ka. These IRSL age estimates systematically underestimate the expected geological ages. This could be due to the long-term fading or instability of the luminescence signal in alkali feldspars. The correction for long-term fading has been tested on these samples. At Tourville, it yields corrected IRSL ages of 196 ± 23ka and 314 ± 32ka, for the upper and lower units respectively and, at Sangatte, a corrected IRSL age of 206 ± 20 ka. These corrected IRSL age estimates are in better agreement with the expected geological ages. This study demonstrates the potential of the feldspar luminescence dating method to provide chronological information on Middle Pleistocene interglacial estuarine sediments within the North Sea-English Channel Basin.  相似文献   

20.
The present study provides improved chronology for the desert margin fluvial sediments of semi-arid region located in the Mahi river basin, western India. The sequence has preserved a near-continuous record of climate change since the Last Interglacial. An earlier attempt of dating based on feldspar IRSL chronology shows a combined effect of anomalous fading and unbleached components resulting in age inversions. The present work tries to explore the possibility of using blue light stimulated luminescence (BLSL) of quartz, infra-red stimulated luminescence (IRSL) of feldspar and the newly developed methodologies, like natural correction factor based single aliquot regeneration (NCF-SAR) protocol and decision making schemes based on distribution of doses and beta heterogeneity concept for luminescence dating of sediments. Observations suggest that quartz suffered from significant sensitivity changes during natural signal measurement and partial bleaching. A combination of NCF-SAR protocol and sample specific equivalent dose computation helped in arriving at better age estimate for present samples. The study also compares the criteria for the selection of different age models that are used at present. The age of the alluvial sequence is now bracketed between 10 ka (upper aeolian unit) and 75 ka (lowermost fluvial unit).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号