首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrographic patterns and chlorophyll concentrations in the Columbia River estuary were compared for spring and summer periods during 2004 through 2006. Riverine and oceanic sources of chlorophyll were evaluated at stations along a 27-km along-estuary transect in relation to time series of wind stress, river flow, and tidal stage. Patterns of chlorophyll concentration varied between seasons and years. In spring, the chlorophyll distribution was dominated by high concentrations from freshwater sources. Periods of increased stream flow limited riverine chlorophyll production. In summer, conversely, upwelling winds induced input of high-salinity water from the ocean to the estuary, and this water was often associated with relatively high chlorophyll concentrations. The frequency, duration, and intensity of upwelling events varied both seasonally and interannually, and this variation affected the timing and magnitude of coastally derived material imported to the estuary. The main source of chlorophyll thus varied from riverine in spring to coastal in summer. In both spring and summer seasons and among years, modulation of the spring/neap tidal cycle determined stratification, patterns of mixing, and the fate of (especially freshwater) phytoplankton. Spring tides had higher mixing and neap tides greater stratification, which affected the vertical distribution of chlorophyll. The Columbia River differs from the more tidally dominated coastal estuaries in the Pacific Northwest by its large riverine phytoplankton production and transfer of this biogenic material to the estuary and coastal ocean. However, all Pacific Northwest coastal estuaries investigated to date have exhibited advection of coastally derived chlorophyll during the upwelling season. This constitutes a fundamental difference between Pacific Northwest estuaries and systems not bounded by a coastal upwelling zone.  相似文献   

2.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaquina Estuary (Oregon, USA) as well as the relationships between physical forcing and gross oceanic input of nutrients and phytoplankton. The ocean is the dominant source of dissolved inorganic nitrogen (DIN) and phosphate to the lower portion of Yaquina Bay during the dry season (May through October). During this time interval, high levels of dissolved inorganic nitrogen (primarily in the form of nitrate) and phosphate entering the estuary lag upwelling favorable winds by 2 days. The nitrate and phosphate levels entering the bay associated with coastal upwelling are correlated with the wind stress integrated over times scales of 4–6 days. In addition, there is a significant import of chlorophyll a to the bay from the coastal ocean region, particularly during July and August. Variations in flood-tide chlorophyll a lag upwelling favorable winds by 6 days, suggesting that it takes this amount of time for phytoplankton to utilize the recently upwelled nitrogen and be transported across the shelf into the estuary. Variations in water properties determined by ocean conditions propagate approximately 11–13 km into the estuary. Comparison of nitrogen sources to Yaquina Bay shows that the ocean is the dominant source during the dry season (May to October) and the river is the dominant source during the wet season with watershed nitrogen inputs primarily associated with nitrogen fixation on forest lands.  相似文献   

3.
A hypothesis on the formation and seasonal evolution of Atlantic menhaden (Brevoortia tyrannus) juvenile nurseries in coastal estuaries is described. A series of cruises were undertaken to capture postmetamorphic juvenile menhaden and to characterize several biological and physical parameters along estuarine gradients. The two study systems, the Neuse and Pamlico rivers in North Carolina, contain important menhaden nursery grounds. Juvenile menhaden abundance was found to be associated with gradients of phytoplankton biomass as evidenced by chlorophylla levels in the upper water column. Fish abundances were only secondarily associated with salinity gradients as salinity was a factor that moderated primary production in the estuary. The persistence of spatial and temporal trends in the distribution of phytoplankton in the Neuse and Pamlico estuaries was reviewed. The review suggested that postmetamorphic juvenile menhaden modify their distribution patterns to match those created by phytoplankton biomass, which in turn makes them most abundant in the phytoplankton maxima of estuaries. Because the location of these maxima varies with the mixing and nutrient dynamics of different estuaries, so will the location of the nursery.  相似文献   

4.
Tillamook Bay, Oregon, is a drowned river estuary that receives freshwater input from 5 rivers and exchanges ocean water through a single channel. Similar to other western United States estuaries, the bay exhibits a strong seasonal change in river discharge in which there is a pronounced winter maximum and summer minimum in precipitation and runoff. The behavior of major inorganic nutrients (phosphorus, nitrogen, and silica) within the watershed is examined over seasonal cycles and under a range of river discharge conditions for October 1997–December 1999. Monthly and seasonal sampling stations include transects extending from the mouth of each river to the mouth of the estuary as well as 6–10 sites upstream along each of the 5 major rivers. Few studies have examined nutrient cycling in Pacific Northwest estuaries. This study evaluates the distributions of inorganic nutrients to understand the net processes occurring within this estuary. Based upon this approach, we hypothesize that nutrient behavior in the Tillamook Bay estuary can be explained by two dominant factors: freshwater flushing time and biological uptake and regeneration. Superimposed on these two processes is seasonal variability in nutrient concentrations of coastal waters via upwelling. Freshwater flushing time determines the amount of time for the uptake of nutrients by phytoplankton, for exchange with suspended particles, and for interaction with the sediments. Seasonal coastal upwelling controls the timing and extent of oceanic delivery of nutrients to the estuary. We suggest that benthic regeneration of nutrients is also an important process within the estuary occurring seasonally according to the flushing characteristics of the estuary. Silicic acid, nitrate, and NH4 + supply to the bay appears to be dominated by riverine input. PO4 −3 supply is dominated by river input during periods of high river flow (winter months) with oceanic input via upwelling and tidal exchange important during other times (spring, summer, and fall months). Departures from conservative mixing indicate that internal estuarine sources of dissolved inorganic phosphorus and nitrogen are also significant over an annual cycle.  相似文献   

5.
Environmental factors that influence annual variability and spatial differences (within and between estuaries) in eelgrass meadows (Zostera marine L.) were examined within Willapa Bay, Washington, and Coos Bay, Oregon, over a period of 4 years (1998–2001). A suite of eelgrass metrics were recorded annually at field sites that spanned the estuarine gradient from the marine-dominated to mesohaline region of each estuary. Plant density (shoots m?2) of eelgrass was positively correlated with summer estuarine salinity and inversely correlated with water temperature gradients in the estuaries. Eelgrass density, biomass, and the incidence of flowering plants all increased substantially in Willapa Bay, and less so in Coos Bay, over the duration of the study. Warmer winters and cooler summers associated with the transition from El Niño to La Niña ocean conditions during the study period corresponded with this increase in eelgrass abundance and flowering. Large-scale changes in climate and nearshore ocean conditions may exert a strong regional influence on eelgrass abundance that can vary annually by as much as 700% in Willapa Bay. Lower levels of annual variability observed in Coos Bay may be due to the stronger and more direct influence of the nearshore Pacific Ocean on the Coos Bay study sites. The results suggest profound effects of climate variation on the abundance and flowering of eelgrass in Pacific Northwest coastal estuaries.  相似文献   

6.
Estuarine ecosystem diversity and function can be degraded by low oxygen concentrations. Understanding the spatial and temporal patterns of dissolved oxygen (DO) variation and the factors that predict decreases in DO is thus essential to inform estuarine management. We investigated DO variability and its drivers in Elkhorn Slough, a shallow, well-mixed estuary affected by high nutrient loading and with serious eutrophication problems. Long-term (2001–2012), high-resolution (15 min) time series of DO, water level, winds, and solar radiation from two fully tidal sites in the estuary showed that hypoxia events close to the bottom are common in the summer at the more upstream estuarine station. These events can occur in any lunar phase (spring to neap), at any time of the day, and both on sunny or cloudy days. They are, however, short-lived (lasting in average 40 min) and mainly driven by momentary low turbulent diffusion around slack tides (both at high and low water). Tidal advective transport explains up to 52.1% of the daily DO variability, and the water volume (or DO reservoir) contained in the estuary was not sufficient to avoid hypoxia in the estuary. Solar radiation was responsible for a positively correlated DO daily cycle but caused a decreased in the averaged DO in the summer at the inner station. Wind-driven upwelling reduced the average DO at the more oceanic station during spring. The approach we employed, using robust techniques to remove suspect data due to sensor drift combined with an array of statistical techniques, including spectral, harmonic, and coherence spectrum analysis, can serve as a model for analyses of long-term water quality datasets in other systems. Investigations such as ours can inform coastal management by identifying key drivers of hypoxia in estuaries.  相似文献   

7.
Phytoplankton nutrient limitation experiments were performed from 1994 to 1996 at three stations in the Cape Fear River Estuary, a riverine system originating in the North Carolina piedmont. Nutrient addition bioassays were conducted by spiking triplicate cubitainers with various nutrient combinations and determining algal response by analyzing chlorophyll a production and 14C uptake daily for 3 d. Ambient chlorophyll a, nutrient concentration, and associated physical data were collected throughout the estuary as well. At a turbid, nutrient-rich oligohaline station, significant responses to nutrient additions were rare, with light the likely principal factor limiting phytoplankton production. During summer at a mesohaline station, phytoplankton community displayed significant nitrogen (N) limitation, while both phosphorus (P) and N were occasionally limiting in spring with some N+P co-limitation. Light was apparently limiting during fall and winter when the water was turid and nutrient-rich, as well as during other months of heavy rainfall and runoff. A polyhaline station in the lower estuary had clearer water and displayed significant responses to nutrient additions during all enrichment experiments. At this site N limitation occurred in summer and fall, and P limitation (with strong N+P co-limitation) occurred in winter and spring. The data suggest there are two patterns controlling phytoplankton productivity in the Cape Fear system: 1) a longitudinal pattern of decreasing light limitation and increasing nutrient sensitivity along the salinity gradient, and 2) a seasonal alternation of N limitation, light limitation, and P limitation in the middle-to-lower estuary. Statistical analyses indicated upper watershed precipitation events led to increased flow, turbidity, light attenuation, and nutrient loading, and decreased chlorophyll a and nutrient limitation potential in the estuary. Periods of low rainfall and river flow led to reduced estuarine turbidity, higher chlorophyll a, lower ambient nutrients, and more pronounced nutrient limitation.  相似文献   

8.
Ten years (1985–1994) of data were analyzed to investigate general patterns of phytoplankton and nutrient dynamics, and to identify major factors controlling those dynamics in the York River Estuary, Virginia. Algal blooms were observed during winter-spring followed by smaller summer blooms. Peak phytoplankton biomass during the winter-spring blooms occurred in the mid reach of the mesohaline zone whereas peak phytoplankton biomass during the summer bloom occurred in the tidal fresh-mesohaline transition zone. River discharge appears to be the major factor controlling the location and timing of the winter-spring blooms and the relative degree of potential N and P limitation. Phytoplankton biomass in tidal fresh water regions was limited by high flushing rates. Water residence time was less than cell doubling time during high flow seasons. Positive correlations between PAR at 1 m depth and chlorophylla suggested light limitation of phytoplankton in the tidal fresh-mesohaline transition zone. Relationships of salinity difference between surface and bottom water with chlorophylla distribution suggested the importance of tidal mixing for phytoplankton dynamics in the mesohaline zone. Accumulation of phytoplankton biomass in the mesohaline zone was generally controlled by N with the nutrient supply provided by benthic or bottom water remineralization.  相似文献   

9.
The effectiveness of larval behavior in regulating transport between well-mixed, low-inflow estuaries and coastal waters in seasonally arid climates is poorly known. We determined the flux of an assemblage of benthic crustacean larvae relative to physical conditions between a shallow estuary and coastal waters on the upwelling coast of northern California (38°18′N, 123°03′W) from 29 to 31 March 2006. We detected larval behaviors that regulate transport in adjacent coastal waters and other estuaries for only two taxa in the low-inflow estuary, but they were apparent for taxa outside the estuary. Vertical mixing in the shallow estuary may have overwhelmed larvae of some species, or salinity fluctuations may have been too slight to cue tidal vertical migrations. Nevertheless, all larval stages of species that complete development in nearshore coastal waters were present in the estuary, because they remained low in the water column reducing seaward advection or they were readily exchanged between the estuary and open coast by tidal flows. Weak tidal flows and gravitational circulation at the head of the estuary reduced seaward transport during development for species that completed development nearshore, whereas larval release during nocturnal ebb tides enhanced seaward transport for species that develop offshore. Thus, nonselective tidal processes dominated larval transport for most species back and forth between the low-inflow estuary and open coastal waters, whereas in adjacent open coastal waters, larval behavior in the presence of wind-induced shear was more important in regulating migrations between adult and larval habitats along this upwelling coast.  相似文献   

10.
To determine the effects of the Chesapeake Bay outflow plume on the coastal ocean, nutrient concentrations and climatology were evaluated in conjunction with nitrogen (N) and carbon (C) uptake rates during a 3-year field study. Sixteen cruises included all seasons and captured high- and low-flow freshwater input scenarios. Event-scale disturbances in freshwater flow and wind speed and direction strongly influenced the location and type of plume present and thus the biological uptake of N and C. As expected, volumetric primary productivity rates did not always correlate with chlorophyll a concentrations, suggesting that high freshwater flow does not translate into high productivity in the coastal zone; rather, high productivity was observed during periods where recycling processes may have dominated. Results suggest that timing of meteorological events, with respect to upwelling or downwelling favorable conditions, plays a crucial role in determining the impact of the estuarine plume on the coastal ocean.  相似文献   

11.
Ocean processes are generally large scale on the U.S. Pacific Northwest coast; this is true of both seasonal variations and event-scale upwelling-downwelling fluctuations., which are highly energetic. Coastal upwelling supplies most of the macronutrients available for production, although the intensity of upwelling-favorable wind forcing increases southward while primary production and chlorophyll are higher in the north, off the Washington coast. This discrepancy could be related to several mesoscale features: the wider, more gently sloping shelf to the north, the existence of numerous submarine canyons to the north, the availability of Columbia River plume water and sediment north of the river mouth, and the existence of a semi-permanent eddy offshore of the Strait of Juan de Fuca. We suggest that these features have important effects on the magnitude and timing of macronutrient or micronutrient delivery to the plankton. These features are potentially important as well to transport pathways and residence times of planktonic larvae and to the development of harmful algal blooms. The coastal plain estuaries, with the exception of the Columbia River, are relatively small, with large tidal forcing and highly seasonal direct river inputs that are low to negligible during the growing season. Primary production in these estuaries is likely controlled not by river-driven stratification but by coastal upwelling and exchange with the ocean. Both baroclinic mechanisms (the gravitational circulation) and barotropic ones (lateral stirring by tide and, possibly, wind) contribute to this exchange. Because estuarine hydrography and ecology are so dominated by ocean signals, the coastal estuaries, like the coastal ocean, are largely synchronous on seasonal and event time scales, though, intrusions of the Columbia River plume can cause strong asymmetries between Washington and Oregon estuaries especially during spring downwelling conditions. Water property correlation increases between spring and summer as wind forcing becomes more spatially coherent along the coast. Estuarine habitat is structure not only, by large scale forcing but also by fine scale processes in the extensive intertidal zone, such as by solar heating or differential advection by tidal, curents.  相似文献   

12.
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and nonpoint nutrient inputs to the Patuxent River estuary. We analyzed a 19-year dataset of water quality conditions, nutrient loading, and climatic forcing for three estuarine regions and also computed monthly rates of net production of dissolved O2 and physical transport of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) using a salt- and water-balance model. Point-source loading of DIN and DIP to the estuary declined by 40–60% following upgrades to sewage treatment plants and correlated with parallel decreases in DIN and DIP concentrations throughout the Patuxent. Reduced point-source nutrient loading and concentration resulted in declines in phytoplankton chlorophyll-a (chl-a) and light-saturated carbon fixation, as well as in bottom-layer O2 consumption for upper regions of the estuary. Despite significant reductions in seaward N transport from the middle to lower estuary, chl-a, turbidity, and surface-layer net O2 production increased in the lower estuary, especially during summer. This degradation of water quality in the lower estuary appears to be linked to a trend of increasing net inputs of DIN into the estuary from Chesapeake Bay and to above-average river flow during the mid-1990s. In addition, increased abundance of Mnemiopsis leidyi significantly reduced copepod abundance during summer from 1990 to 2002, which favored increases in chl-a and allowed a shift in total N partitioning from DIN to particulate organic nitrogen. These analyses illustrate (1) the value of long-term monitoring data, (2) the need for regional scale nutrient management that includes integrated estuarine systems, and (3) the potential water quality impacts of altered coastal food webs.  相似文献   

13.
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes.  相似文献   

14.
Willapa Bay is a large, economically and ecologically important estuary on the Washington coast, USA for which the zooplankton community has not previously been studied. Thus, in 2006 and 2007, six stations within Willapa Bay were sampled biweekly for macrozooplankton, chlorophyll, and various abiotic variables to elucidate the processes underlying community composition and dynamics. Non-metric multidimensional scaling identified water temperature and upwelling values as major factors defining two distinct temporal communities. High densities and a community dominated by oceanic species (Calanus pacificus, Centropages abdominalis) marked the winter season, while summer (or the upwelling season) was dominated by estuarine species (Palaemonidae, Clevelandia ios). Smaller scale changes in the community were characterized by variation in chlorophyll a concentration and salinity and were marked by the presence of other taxa (Neotrypaea californiensis, Mysidae). These results point to the importance of physical processes, including the import of marine organisms and retention of estuarine organisms, in the structuring of the macrozooplankton community in Willapa Bay.  相似文献   

15.
The New River Estuary consists of a series of broad shallow lagoons draining a catchment area of 1,436 km2, located in Onslow County, North Carolina. During the 1980s and 1990s it was considered one of the most eutrophic estuaries in the southeastern United States and sustained dense phytoplankton blooms, bottom water anoxia and hypoxia, toxic outbreaks of the dinoflagellatePfiesteria, and fish kills. High nutrient loading, especially of phosphorus (P), from municipal and military sewage treatment plants was the principal cause leading to the eutrophic conditions. Nutrient addition bioassay experiments showed that additions of nitrogen (N) but not P consistently yielded significant increases in phytoplankton production relative to controls. During 1998 the City of Jacksonville and the U.S. Marine Corps Base at Camp Lejeune completely upgraded their sewage treatment systems and achieved large improvements in nutrient removal, reducing point source inputs of N and P to the estuary by approximately 57% and 71%, respectively. The sewage treatment plant upgrades led to significant estuarine decreases in ammonium, orthophosphate, chlorophylla, and turbidity concentrations, and subsequent increases in bottom water dissolved oxygen (DO) and light penetration. The large reduction in phytoplankton biomass led to a large reduction in labile phytoplankton carbon, likely an important source of biochemical oxygen demand in this estuary. The upper estuary stations experienced increases in average bottom water DO of 0.9 to 1.4 mg l−1, representing an improvement in benthic habitat for shellfish and other organisms. The reductions in light attenuation and turbidity should also improve the habitat conditions for growth of submersed aquatic vegetation, an important habitat for fish and shellfish.  相似文献   

16.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

17.
Surface accumulations of foam and flotsam as well as sharp salinity, density, turbidity gradients and regions of acoustic scatter were characteristic of ebb-tidal fronts in Charleston Harbor, South Carolina. Surface convergence velocities at these fronts averaged 0.06 m s?1 into the front at an angle of 30° to 60° with respect to the frontal axis, indicating along-front transport during the ebb. These fronts are tidally-induced, forming on the late flood and ebb along the interfaces of water masses. Horizontal and vertical measurements of density revealed that the upper harbor fronts form along the margin of a freshwater lens produced by riverine input. The hypothesis that these frontal zones have higher densities of phytoplankton and zooplankton than adjacent water masses was tested using chlorophylla measurements and net collections. The fronts did not demonstrate any significant accumulations of phytoplankton or zooplankton during the ebb tide. The results of this study suggest that the physical characteristics of ebb-tidal estuarine fronts in Charleston Harbor are periodic in nature and may indirectly affect plankton transport in this coastal plain estuary.  相似文献   

18.
Using both the photosynthetically active chlorophylla (chla) content of the organic carbon fraction of suspended particulate matter (chla/POC) and the percentage of photosynthetically, active chla in fluorometrically measured chla plus pheophytina (% chla), we determined that under specified hydrodynamic conditions, neap-spring tidal differentiation in particle dynamics could be observed in the Columbia River estuary. During summer time neap tides, when river discharge was moderate, bottom chla/POC remained relatively unchanged from riverine chla/POC over the full 0–30 psu salinity range, suggesting a benign trapping environment. During summertime spring tides, bottom chla/POC decreased at mid range salinities indicating resuspension of chla-poor POC during flood-ebb transitions. Bottom % chla during neap tides tended to average higher than that during spring tides, suggesting that neap particles were more recently hydrodynamically trapped than those on the spring tides. Such differentiation supported the possibility of operation of a particle conveyor belt process, a process in which low-amplitude neap tides favor selective particle trapping in estuarine turbidity maxima (ETM)., while high-amplitude spring tides favor particle resuspension from the ETM. Untrapped river-derived particles at the surface would continue through the estuary to the coastal ocean on the neap tide; during spring tide some particles eroded from the ETM would combine with unsettled riverine particles in transit toward the ocean. Because in tensified biogeochemical activity is associated with ETM, these neap-spring differences may be critical to maintenance and renewal of populations and processes in the estuary. Very high river discharge (15, 000 m3 s−1) tended to overwhelm neap-spring differences, and significant oceanic input during very low river discharge (5,000 m3 s−1) tended to do the same in the estuarine channel most exposed to ocean input. During heavy springtime phytoplankton blooms, development of a thick bottom fluff layer rich in chla also appeared to negate neapspring differentiation because spring tides apparently acted to resuspend the same rich bottom material that was laid down during neap tides. When photosynthetic assimilation numbers [μgC (μgchl,a)−1h−1] were measured across, the full salinity range, no neap-spring differences and no river discharge effects occurred, indicating that within our suite of measurements the compositional distinction of suspended particulate material was mainly a function of chla/POC, and to a lesser extent % chla. Even though these measurements suggest the existence of a conveyor belt process, proof of actual operation of this phenomenon requires scalar flux measurements of chla properties in and out of the ETM on both neap and spring tides.  相似文献   

19.
We investigated the distribution of meroplankton and water properties off southern Washington and simultaneously measured time series of larval abundance and water properties in two adjacent estuaries, Grays Harbor and Willapa Bay. The cruise period, in late May 1999, coincided with large variation in the alongshore wind stress that caused dynamic change in the position of the Columbia River plume, coastal upelling and downwelling, and offshore phytoplankton production. In the coastal ocean, meroplankton groups responded differently to this wind event and the associated advection of water masses. Dungeness crab (Cancer magister) megalopae were largely indifferent to the wide salinity variation, and were found throughout the surveyed area in both plume and recently upwelled waters. Megalopae of kelp crab (Pugettia producta) and hermit crab (Pagurus spp). were more abundant in upwelled water and low numbers were caught in the plume water. Barnacle cyprids appeared to track the advective transport suggesting that they may be more passively dispersed. Within the estuaries, hydrography responded rapidly and synchronously to variation in wind stress. Intrusions of both plume and newly upwelled waters were detected at estuarine sites, depending on the type of water present at the coast, indicating a tight link between the estuaries and the coastal ocean in this region. A 90-d record ofC. magister megalopae abundance was made at 3 estuarine sites using light traps. The bulk of theC. magister recruitment was limited to a relatively brief period in late May through June. Within this window, megalopae occurred in distinct pulses of 3–5 d interspaced with periods of low or zero abundance.C. magister megalopae recruited to the estuaries over a wide range of wind forcing, and were transported into the estuary within varied water types. There were no periodic patterns indicative of spring-neap tidal variations in the abundance time series. Abundance was only weakly cross-correlated between the adjacent Grays Harbor and Willapa Bay estuaries, which contrasts with the more synchronous estuarine-coastal linkages measured for water properties. These results suggest the interaction of larval aggregation size in the ocean with estuary-ocean exchange processes likely controls patterns of estuarine recruitment.  相似文献   

20.
Nutrient inputs have degraded estuaries worldwide. We investigated the sources and effects of nutrient inputs by comparing water quality at shallow (< 2m deep) nearshore (within 200 m) locations in a total of 49 Chesapeake subestuaries and Mid-Atlantic coastal bays with differing local watershed land use. During July–October, concentrations of total nitrogen (TN), dissolved ammonium, dissolved inorganic N (DIN), and chlorophyll a were positively correlated with the percentages of cropland and developed land in the local watersheds. TN, DIN, and nitrate were positively correlated with the ratio of watershed area to subestuary area. Total phosphorus (TP) and dissolved phosphate increased with cropland but were not affected by developed land. The relationships among N, P, chlorophyll a, and land use suggest N limitation of chlorophyll a production from July–October. We compared our measurements inside the subestuaries to measurements by the Chesapeake Bay Program in adjacent estuarine waters outside the subestuaries. TP and dissolved inorganic P concentrations inside the subestuaries correlated with concentrations outside the subestuaries. However, water quality inside the subestuaries generally differed from that in adjacent estuarine waters. The concentration of nitrate was lower inside the subestuaries, while the concentrations of other forms of N, TP, and chlorophyll a were higher. This suggests that shallow nearshore waters inside the subestuaries import nitrate while exporting other forms of N as well as TP and chlorophyll a. The importance of local land use and the distinct biogeochemistry of shallow waters should be considered in managing coastal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号