首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the beginning of the Tertiary the sedimentology of the Gulf of Mexico Basin has been dominated by the depositional activity of the Mississippi River. The sedimentologic influence of the Mississippi diminishes with distance east or west of the Louisiana shelf, however. The Texas and northwest Florida shelf margins, for example, are characterized by a series of smaller deltas. In the inner and mid-shelf areas of these regions the near-surface sedimentary units include infilled stream channels and small deltas. Such features are commonly observed in sub-bottom seismic records from the middle and inner shelf of the northeastern Gulf, along the Apalachicola River coast of northwest Florida.

The Apalachicola River is the principal source of clastic sediment to the northeastern Gulf of Mexico. During the late Holocene virtually all of the river's sediment load has been deposited in the modern Apalachicola Delta and in the river's estuary, Apalachicola Bay, which has been filling rapidly. During late Quaternary lowstands, prior to the development of the modern estuary, the river traversed the present-day inner and mid-shelf, incising a network of channels. Based on seismic records, many of these buried shelf channels were considerably larger than their modern counterparts.

During lowstands the Apalachicola River also deposited coarse sediment on the shelf as deltaic and associated river-mouth sediments. These deposits comprise the modern near-surface sediments of the inner and middle shelf. An investigation of subsurface sedimentary features observed in seismic profiles provides details on the late Quaternary development of the northeastern Gulf of Mexico shelf. Seismic reflection profiles obtained on the inner and mid-shelf regions of northwest Florida reveal an approximately 50 m thickness of late Quaternary sediments, comprised of two and sometimes three discrete clastic sequences. Two lower fluvial sequences total as much as 40–50 m in thickness. A transgressive marine sand deposit overlies the older features in some places, varying in thickness from 0 to 5 m. Identification of seismic facies, combined with stratigraphic data from a suite of coastal boreholes, enables correlation of offshore seismic stratigraphic units with late Tertiary and Quaternary coastal stratigraphy.  相似文献   


2.
A study of the San Pedro River (SPR), which is located in a semi-arid region in Sonora, Mexico, was conducted to evaluate the chemical, spatial and temporal (mobilization) trends of potentially harmful metals in its sediment in the rainy and dry seasons. High total concentrations of metals were detected in the following order: Fe > Cu > Mn > Zn > Pb > Cd. All studied metals except for Pb were increased during the dry season showing the effect of climate on the metal distribution in sediments. The results of sequential extraction indicated that the residual and Fe/Mn oxide fractions were the most important with regard to retaining potentially harmful metals in the sediments. In the exchangeable carbonate and Fe oxide fractions, high concentrations of metals were detected, representing high environmental risk. The geoaccumulation index shows slight to moderate contamination in most samples, and sampling point E4 (related to cattle activity) shows strong contamination for Cd, Cu, Pb and Zn. Enrichment factors (EFs) demonstrate anthropogenic origins for Pb (EF: 3–57), Cd (EF: 6–73) and Cu (EF: 1.5–224). This study shows that sediments are impacted by anthropogenic activities related to the mining industry, untreated wastewater discharges from the city of Cananea and cattle activities. Metal mobility in the SPR can disrupt the development of aquatic species in the river.  相似文献   

3.
Massive sediment deposition on the Mississippi River Delta establishes reducing conditions sufficient to bring about Mn dissolution in the top millimeters of sediment. As a result, significant fluxes of dissolved Mn pass from the Delta sediments to the overlying water column. This process is examined by study of chemical partitioning of Mn in river particulates and Delta sediments and from interstitial water chemistry. Remobilized Mn is actively transported away from the Delta area with aluminosilicate detritus thereby providing “excess” Mn to the deep Gulf of Mexico at the expense of the Delta sediments.  相似文献   

4.
Four sediment cores and one hundred surface sediments were collected from the intertidal zone of the northern Beibu Gulf (SW China). In order to detect the intensity of metal contamination recently, the background levels were successfully established for Pb, Zn, Cd and Cr, based on the linear regression of deeper sediments (pre-industrial). Aluminum is a better geochemical normalizer than Fe and it is commonly used to describe the natural metal variability of the coastal sediments. The evident enrichment of Zn and Cd is recorded in the surface sediments of the eastern side of the Guangxi coast and the central part of the Qinzhou Bay, but it does not exceed the effects range-low values, due to a low percentage of fine-grained sediments in the region. Although the Pb and Cr concentrations are mainly of natural origin, 3 and 6% sites exceed the effects range-low values, respectively; indicating the potential for adverse ecological effects of metals on the benthic communities.  相似文献   

5.
Oysters and sediment have been collected from most major US Gulf of Mexico bays and estuaries each year since 1986. Selected samples of oyster soft tissue, shell and sediments were analyzed for Cd, Cr, Cu, Fe, Mn, Pb, and Zn for this study. Concentrations varied considerably from place to place but ratios of metals remained relatively constant. Cu and Zn are greatly enriched in oyster tissues, which is related to their physiological function. Cd is enriched in oyster shell because of the easy substitution between Cd and Ca. The concentrations of Pb and Cr in oysters are significantly lower than that in sediment, suggesting a good discrimination against these metals by oysters. Metal variations are a result of both nature and human activity. Received: 13 September 1999 · Accepted: 8 December 1999  相似文献   

6.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

7.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

8.
Historical profiles of metal accumulation have been generated for the lower St. Johns River and Hillsborough Bay, Florida, in cores representing approximately 50 yr of sediment and metal accumulation. These profiles demonstrate that Cd, Pb, and Zn are enriched in these Florida estuarine sediments. Pb enrichment has decreased since the mid 1970s because of reduced use of leaded gasoline. In the St. Johns River, most metals exhibit a trend of increasing enrichment with time. Cd enrichment significantly decreased between 1970 and 1975 as a result of reduced discharges into the river and control of aquatic vegetation. In Hillsborough Bay, enrichment factors for most metals are relatively high and show little change downcore. Cr, Cu, and Ni border on enrichment and Pb, Cd, and Zn are enriched. The results of this study are consistent with other studies of surficial-sediment metal concentration in other Florida estuaries.  相似文献   

9.
Surface sediments of nine islands of Lakshadweep were evaluated for their heavy metal concentration (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Sediments of thirteen seagrass and seven non seagrass sites were collected randomly and analysed for heavy metal concentration using Inductively Coupled Plasma Optical Emission Spectrometer. Heavy metals like Cu, Ni and Zn were found in higher concentrations in the seagrass sediments, whereas other heavy metals such as Cd, Co, Cr, Fe, Mn and Pb were higher in non seagrass sediments. Different pollution indices were calculated to evaluate contamination level of all heavy metals in the sediments. Cadmium recorded higher contamination factor (1.733–21.067), enrichment factor (276.10–12,270) and Geo-accumulation Index (0.208–3.811) both in seagrass and nonseagrass sediments. Multivariate statistical analysis such as principal component analysis and cluster analysis coupled together with correlation co-efficient was used to identify the possible sources of heavy metal pollution in the region. Average concentrations of Cd in Lakshadweep islands were slightly higher than effective range, low but still below effective range medium. All other metals were still below these ranges indicating fairly uncontaminated sediment in the region.  相似文献   

10.
《Chemical Geology》2002,182(2-4):377-394
Bulk heavy metal (Fe, Mn, Zn, Cu, Pb, Cd), Al, organic carbon and carbonate concentrations, grain sizes, and δC13 of the organic carbon distributions were studied in sediments collected throughout the East China Sea continental shelf and the Yangtze River Delta. The results demonstrated that terrigenous sediments from the Yangtze River is a dominating factor controlling the spatial variations of heavy metals and organic carbon concentrations on the East China Sea continental shelf. In addition, grain size and recent anthropogenic influences are also major factors modifying the spatial and vertical variations of heavy metals.Large spatial variations with a band type distribution of heavy metals, grain size, organic carbon and carbonate were observed. Higher concentrations of heavy metal and light δC13 of the organic carbon were found primarily in the Deltaic and inner shelf sediments. The band type distribution generally followed the coastline with little variations in the north–south direction. Away from the Delta and inner shelf (west–east direction), most heavy metal concentrations decreased rapidly with the exception of Cd where high concentrations of Cd were also found in the carbonate-rich shelf break sediments. Coarse-grained relict sediments and biogenic carbonate are two primary diluting agents for the fine-grained aluminosilicate sediments from the Yangtze River with high concentrations of heavy metals.Unusually high concentrations of Cu, Pb, and Cd showed both spatially and vertically that more pollution prevention measures are needed in the Yangtze River drainage basin in order to prevent further heavy metal pollution of the East China Sea inner continental shelf.  相似文献   

11.
A sediment core collected from coastal zone near the Qiao Island in the Pearl River Estuary was analyzed for total metal concentrations, chemical partitioning, and physico-chemical properties. Three vertical distribution patterns of the heavy metals in the sediment core were identified, respectively. The dominant binding phases for Cu, Pb, Cr, and Zn were the residual and Fe/Mn oxides fractions. Cd in all sediments was mainly associated with exchangeable fraction. Influences of total organic carbon content and cation exchange capacity on the total concentrations and fractions of almost all the metals were not evident, whereas sand content might play an important role in the distributions of residual phases of Cr, Cu, Pb, and Zn. In addition, sediment pH had also an important influence on the Fe/Mn oxides, organic/sulfide and residual fractions of Cr, Cu, and Zn. Contamination assessment on the heavy metals in the sediment core adopting Index of Geoaccumulation showed that Cr, V, Be, Se, Sn, and Tl were unpolluted, while Cu, Ni, Pb, Zn, Cd, and Co were polluted in different degrees throughout the core. It was remarkable that the various pollution levels of the metals from moderate (for Cu, Pb, and Zn) to strong (for Cd) were observed in the top 45 cm of the profiles. The relative decrease of the residual fraction in the upper 45 cm of the core is striking, especially for Zn and Cu, and, also for Pb, and Cr. The change in fraction distribution in the upper 45 cm, which is very much contrasting to the one at larger depths, confirms that the residual fraction is related to the natural origin of these metals, whereas in the upper part, the non-residual fractions (mainly the Fe/Mn oxides fraction) are increased due to pollution in the last decade. The possible sources for Cu, Pb, Zn, and Cd contaminations were attributed to the increasing municipal and industrial wastewater discharges, agricultural runoff, atmospheric inputs, and runoff from upstream mining or smelting activities, which may be associated with an accelerating growth of economy in the Pearl River Delta region in the past decade.  相似文献   

12.
《Applied Geochemistry》2004,19(5):769-786
Heavy metal (Zn, Cd, Cu and Pb) mass balances in the Lot-Garonne fluvial system have been established for 1999 and 2000. The mean annual discharges of these years are close to the mean discharge of the previous decade. The estimated annual dissolved and particulate fluxes in this model watershed integrate daily input from diffuse and point sources, diffusive fluxes at the water/sediment interface, changes in the dissolved-particulate partition and changes in sediment stock. Cadmium, Zn, Cu and Pb entering the Gironde estuary via the Garonne River (11–14 t a−1 of Cd; 1330–1450 t a−1 of Zn; 126–214 t a−1 of Cu and 127–155 t a−1 of Pb) are mainly transported in the particulate phase and the major part (i.e. ∼74 to 96% for Cd, ∼60% for Zn, ∼50 to 60% for Cu and ∼80% for Pb) is transported by the Lot River. The main anthropogenic heavy metal point source is located in a small upstream watershed (Riou-Mort River) accounting for at least 47% (Cd), ∼20% (Zn), ∼4% (Cu) and ∼7 to 9% (Pb) of the total heavy metal inputs into the Garonne River, although it contributes only 1% of the discharge. Mass balances for 1999 suggest that under mean annual hydrologic conditions on the basin scale, the heavy metal budget of the Lot-Garonne fluvial system is balanced and that the stocks of Cd [200 t; Environ. Tech. 16 (1995) 1145] and Zn in the Lot River sediment are constant under mean discharge conditions. Heavy metal input by molecular diffusion at the sediment surface represents an important component of dissolved metal inputs into the system (e.g. 30% for Cu). Except for Cu, these dissolved inputs are totally removed from solution by SPM. Based on the generally constant Zn/Cd (∼50) concentration ratio in sediment cores from the polluted Lot River reaches and the sediment stock of Cd [200 t; Environ. Tech. 16 (1995) 1145], the present day Zn stock in the Lot River sediments has been estimated at about 10,000 t. In addition to the mobilization of river-bed sediment and associated heavy metals by intense floods, local human activities, including river-bed dredging, may strongly modify the heavy metal budget of the river system. In 2000, the dredging-related remobilization of polluted Lot River sediment released 2–6 t Cd. This additional Cd point source was estimated to account for 15–43% of the gross inputs into the Gironde Estuary.  相似文献   

13.
为深入了解北部湾海域沉积物污染现状及生态风险,分析了Cu、Pb、Zn、Cd、As、Hg 6种重金属元素在北部湾海域表层沉积物中的含量及分布特征,并运用潜在生态危害指数法评价了这些重金属元素对研究区生态系统的潜在危害。结果表明: Cu、Pb、Zn、As、Cd元素含量不高,仅部分站位Hg元素含量高于国家Ⅰ类海洋沉积物标准值; 6种重金属元素在雷州半岛、海南岛西北部以及海南岛南部分布趋势相似,高值区均出现在东方市附近。主成分分析结果表明,重金属来源主要有3个途径,分别是工业及生活排污、农业(农药、化肥等)残留和有机物降解,前3个主成分贡献率分别为47.13%、18.44%和18.35%。单项重金属元素潜在生态风险等级评价结果显示,研究区重金属元素潜在生态风险强弱次序为Hg>Cd>As>Pb>Cu>Zn,As、Pb、Cu、Zn和Cd重金属元素潜在生态风险等级为轻微,而Hg潜在生态风险等级达到了强级。多项重金属元素潜在生态危害评价综合分析结果显示,北部湾海域生态风险等级为中等,部分区域生态风险等级达到了强级,特别是昌化江入海口附近地质环境较差,相关部门应予以足够重视。  相似文献   

14.
The geochemistry of oxic sediments was contrasted across a range of Canadian aquatic ecosystems; 7 freshwater lakes, (3 circumneutral and 4 acidic), 15 peatlands (5 mineral-rich, 5 moderately-poor and 5 mineral-poor), 9 wetlands (3 oligosaline, 3 mesosaline and 3 euryhaline), an estuary (deposited and suspended sediments) and an intertidal region. Sediments were characterized by a simultaneous extraction that separated sediments into easily reducible (ER) metal (oxyhydroxides of Mn and easily reducible amorphous oxyhydroxides of Fe) and reducible (R) metal (more crystalline forms of oxyhydroxides of Fe), organic matter, and, the concentrations and partitioning of Zn, Cu and Cd associated with these 3 sediment components. Ecosystems were distinct with respect to ER Fe and organic matter [canonical variate analysis (CVA)] with 53% of among system variation in geochemistry attributed to these 2 components. Sediments of peatlands and wetlands contained greater amounts of organic matter whereas sediments of lakes, intertidal and estuarine deposited and suspended sediments were characterized by greater amounts of ER Fe. A further 21% of among system variation could be ascribed to organically bound Fe that was greater in acidic lakes and mineral-rich peatlands as compared to other systems. Concentration and partitioning of Cd within sediments was regionally dependent with 41% of among system variation (CVA) attributed to differences in ER Cd and R Cd. Cadmium from peatlands and lakes located in Ontario was recovered from all 3 sediment components whereas sediment from wetlands, the estuary and the intertidal regions of British Columbia (BC) contained no organically bound Cd with amounts recovered occurring mostly as ER Cd. Lakes and peatlands located in Ontario contained 3–5-fold total Cd as compared to ecosystems located in BC. A further 21% of among ecosystem variation was attributed to Zn partitioning. Zinc in peatland and wetland sediments occurred as R Zn as compared to lake and estuarine deposited sediments where Zn was recovered both as ER and R Zn. Total Zn was also 3–5-fold greater in sediments of systems in Ontario as compared to those sampled in BC. Concentration and partitioning of Cu was similar across all systems with Cu recovered from the organic component of sediment. The geochemistry of surficial oxic sediments with respect to ER Mn, R Fe and organic matter and the geochemical associations among these sediment components is ecosystem and region dependent. For assessing impacts of metals on sediment dwelling biota the geochemical characteristics of the system under study should first be defined.  相似文献   

15.
Maps of the distributions of the four major clay minerals (smectite, illite, kaolinite and chlorite) in and around the Mississippi River drainage basin and in the Northern Gulf of Mexico have been produced using newly acquired data from erodible/alluvial terrestrial sediments and marine surface sediments, as well as from previously published data. East of the Rockies, North America can be divided into four, large, clay-mineral provinces: (1) the north-western Mississippi River watershed (smectite rich), (2) the Great Lakes area and eastern Mississippi River watershed (illite and chlorite rich), (3) the south-eastern United States (kaolinite rich) and (4) the Brazos River and south-western Mississippi River watersheds (illite and kaolinite rich). The clay mineral distributions in surface sediments of the present-day Gulf of Mexico are strongly influenced by three main factors: (1) by relative fluvial contributions: the Mississippi River delivers the bulk of the clay input to the Northern Gulf of Mexico whereas the Apalachicola, Mobile, Brazos and Rio Grande rivers inputs have more local influences; (2) by differential settling of various clay mineral species, which is identified for the first time in Northern Gulf of Mexico sediments; and (3) by oceanic current transport: the Gulf of Mexico surface and subsurface circulation distributes the clay-rich sediments from river mouth sources throughout the Northern Gulf of Mexico.  相似文献   

16.
Metal concentrations were examined in sediments from 497 sites within the estuaries of the Gulf of Mexico by the United States Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Data were normalized for extant concentrations of aluminum to isolate natural factors from anthropogenic ones. The normalization was based on the hypothesis that metal concentrations vary consistently with the concentration of aluminum, unless metals are of anthropogenic origin. Strong linear correlations (>75% variation explained) were observed between Al and Cr, Cu, Pb, Ni, and Zn. Moderate correlations (50–75% variation explained) were observed between Al and As or Ag. Weak but significant correlations (30–40% variation explained) were observed between Al and Hg or Cd. Based on these results, the spatial extent of contamination was examined. About 39% of sites with contamination by at least one metal occurred near population centers, industrial discharge sites, or military bases. The remainder of the observed contamination represented a dispersed pattern, including the lower Mississippi River (7%) and numerous agricultural watersheds (54%), suggesting that the contamination might be from nonpoint sources.  相似文献   

17.
以金矿开发影响的黄河二级支流太峪水系沉积物为研究对象,沿河采集16个表层沉积物样品,分层采集垂向剖面10件水库沉积物样品,测定了样品中重金属元素Hg、Pb、Cd、Cr、As、Cu和Zn的含量,采用Hakanson潜在生态指数法和Tomlinson污染负荷指数法评价重金属元素污染程度和潜在生态风险。结果表明,矿业活动是太峪水系沉积物重金属元素污染的主要因素;变异系数、富集系数和最高污染系数均反映Hg、Pb、Cd是太峪水系沉积物的特征污染重金属元素,Cr和As的质量分数接近地区背景值;太峪水系表层沉积物受到重金属元素的极强污染,山区段污染较山外更严重;整个流域的Hg、Pb、Cd具有很强的潜在生态危害,Cr、As、Zn的潜在生态危害轻微;太峪水系沉积物垂向各层沉积物都受到重金属元素的极强污染,生态问题以Hg、Pb、Cd的潜在生态危害为主,其污染和生态危害程度都高于流向上的沉积物。潜在生态危害指数评价突出了不同元素的毒性和危害程度,而污染负荷指数法侧重于样本空间上的污染程度,二者互补使用有利于实际问题的全面评价。  相似文献   

18.
Partitioning of heavy metals (Cd, Cr, Cu, Pb, Zn) in marine sediments collected from various sites in Hong Kong waters were determined using sequential extraction method. Sediments from Kellette Bank, located in Victoria Harbour, had higher metal concentrations especially Cu and Zn than most other sites. Slightly over 20% of total Cu and Cr existed as readily available forms in Peng Chau and Kellette Bank. At most sampling sites, over 15% of the Cu existed as the exchangeable form indicating that Cu could be readily released into the aqueous phase from sediments. A significantly higher percentage of Pb and Zn was associated with the three non-residual fractions. Hence, there is a greater environmental concern for remobilization of Pb and Zn compared with Cr. The high amount of residual Cd (>50%) and the relatively lower Cd content indicate that little environmental concern is warranted for the remobilization of Cd. Distribution of metals in sediments collected from different depth at Kellette Bank shows that metal concentrations decreased with profile depth. The levels of Pb and Zn associated with the two readily available fractions increased sharply in the surface sediment. These metals represented the pollutants, which were introduced into the area in the mid-eighties through early nineties as a result of rapid economic and industrial development in the territory. As significant portions of these metals were bound to the readily available phases in the surface sediments, metal remobilization could be a concern. An erratum to this article can be found at  相似文献   

19.
The chemical forms of Fe, Mn, Zn, Cu, Cr, Pb and Cd in the Huanghe River sediments have been studied by sequential extraction techniques and the comparison with data from the Rhine River sediments has been made. In the Huanghe River sediments the average contents of metals, without exception, are below their respective contents in average shales and very close to their levels in Ca-poor granites. The major portion of metals is combined with the detrital and moderately reducible phases. Both in the Huanghe River and in the Rhine River sediments the distribution ratios of metals between the moderately reducible and the easily reducible phases are generally more than unity. However, the distribution ratios of Mn, Zn and Cd are obviously lower than those of Fe, Cr, Cu and Pb. As a result of contamination, the ratios of Fe, Cr, Cu and Pb show an apparent increase, but no remarkable ratio variation is observed for Mn, Zn and Cd. Metals in the Huanghe River sediments, especially Cu and Zn, show a tendency to be associated with the organic phase. The effect of carbonate on metal association preference seems to be less important than that in the Rhine River although there is higher content of carbonate in the Huanghe River sediments. Cd has a greater percentage of the exchangeable phase, which is similar to the result from the Rhine River sediments.  相似文献   

20.
Following recent concerns of chemical pollution around Lake Naivasha, especially originating from recent agricultural activities in the catchment, samples of water, sediments, and fish Common carp (Cyprinus carpio) were collected from the Hippo Point, Kasarani, Mouth of Malewa River, Mouth of Karati River, Crescent Island, Sher Karuturi Discharge outlet and Oserian Bay for analysis of Cu, Cd and Pb by FAAS. The mean heavy metal levels ranged from 5.12?C58.11 (Pb), 1.06?C1.73 (Cd), and <0.03?C2.29 (Cu) mg/kg wet weight in C. carpio muscle, <100?C179.83 (Pb), <10.00?C10.06 (Cd) and <30.00?C32.33 (Cu) ??g/L in surface water, and 17.11?C53.07 (Pb), 1.18?C5.58 (Cd) and 3.00?C8.48 (Cu) mg/kg dry weight in sediment and showed a wide variation within and between samples with relatively high concentrations in sediments and fish muscle tissues. The results indicate that Lake Naivasha, in some parts, is polluted with these heavy metals of which relatively higher concentrations are found at the discharge outlets near Sher Karuturi and Oserian Bay. This indicates possible contribution from surrounding horticultural/floricultural activities and the Mouths of the Rivers Malewa and Karati which flow from it??s upper catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号