首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
<正>土壤是陆地生态系统的重要组成成分,它与大气和陆地生物群落共同组成了系统中碳与植物营养元素的主要贮存库和交换库。在全球温室气体持续上升的今天,土壤已经被看成是有效缓解大气CO2浓度上升的积累库,土壤碳循环成为影响未来气候变化的重要科学问题。果园生态系统是指以果树为主要生产者的陆地生态系统。由于是人工建立的生态系统,人的作用非常突出。大部分生产力随收获而被移出系统,养分循环主要靠系统外投入而保持平衡。果园是我国重要的土地利用类型之一,果园面积占我国  相似文献   

2.
多年冻土区储存着大量的土壤有机碳, 其碳库变化及生态系统碳反馈机制是当前全球气候变化研究中备受关注的热点问题。为了增强对多年冻土碳循环的认识, 通过综合第三极和北极地区多年冻土碳循环研究, 概述了土壤有机碳库大小、 脆弱性及生态系统碳交换过程, 分析了涉及大气、 海洋和陆地综合影响的多年冻土区生态系统碳循环。研究表明: 第三极和北极多年冻土区碳储量不确定性较大, 影响和控制有机碳分解和生态系统碳交换的生物地球化学过程仍需进一步研究, 进而改进生态系统碳循环相关的模拟研究。在全球气候变化背景下, 研究多年冻土碳库变化及其对气候变化的响应, 是预估未来气候变化的关键环节。  相似文献   

3.
杨忠芳 《地学前缘》2011,18(6):4-I0001
近年来,全球变化与碳循环问题越来越得到各国政府、科学界和公众的关注。土壤碳库是陆地生态系统碳库的重要组成部分,其碳储量占整个陆地生态系统的3/4,约是大气碳库的2倍。土壤碳库的微小变化能引起大气CO2等温室气体浓度的明显改变。研究土壤碳库转化机理,从而抑制土壤碳源,增加土壤碳汇,是应对全球变化的重要措施之一。此外,提高...  相似文献   

4.
陆地生态系统和气候系统紧密相关,特别是植物,土壤和大气圈之间的碳循环。已有人提出气候和大气二氧化碳浓度的变化调整循环,使大量的碳沉淀提供给陆地生态系统,但直接证据很有限。估计了稳定气候态之间变化引起的生态系统碳储备变化,但对生态系统碳流动对短期气候变化的动力响应不了解得不够充分。用一个陆地生物持球化学模式,配合一个一般的循环莱模拟短期气候变化,定量研究1861-2070年大气CO2气候引起的短期生  相似文献   

5.
连宾  侯卫国 《第四纪研究》2011,31(3):491-497
近年来,全球变暖趋势越来越明显,大气CO2浓度不断升高被认为是引起全球气候变化的主要原因之一.大气CO2来源主要有海洋释放、土壤呼吸、化石燃料燃烧、动植物呼吸和植被破坏等;而大气CO2的归宿被认为主要有海洋吸收和植物光合作用等.全球陆地生态系统中的碳有2126 Pg.其中46%储存在森林中.土壤真菌占地下总微生物量的8...  相似文献   

6.
中国陆地生态系统近 2 0年碳空间动态的初步研究(英文)   总被引:4,自引:0,他引:4  
CONGPeng  XUMing 《地学前缘》2002,9(1):55-61
陆地生态系统的净生产力 (NEP)是生态系统净初级生产力 (NPP)和异氧呼吸 (Rh)之差。在全球尺度上 ,反映NPP和Rh之差的NEP直接揭示陆地生态系统与大气系统之间的二氧化碳交换 ,即碳平衡 ,因此 ,意义重大。文章简短回顾了关于中国陆地生态系统碳平衡的研究状况。由于植物根部呼吸很难从土壤表面总二氧化碳 (CO2 )通量中分开 ,因此直接从野外测量土壤异氧呼吸几乎是不可能的。虽然由于像诸如火灾、森林砍伐、土地利用变化及气候和大气变化等干扰因素 ,全球陆地生态系统很大程度上处于非平衡态 ,利用生态系统在平衡态时NPP等于Rh这一事实 ,我们估算了全球和中国森林生态系统的土壤异氧呼吸。利用遥感和地面的NPP观测数据 ,我们也估算了中国森林生态系统逐月的净生产力 (1982— 1998)。NPP的估算主要采用NOAA卫星AVHRR 8km的NDVI数据 ,结合地面气候数据完成。土壤呼吸是通过地面观测数据与温度和降水的关系得到的。在此基础上我们得到了中国陆地生态系统在过去近 2 0年中碳的动态变化 ,并给出了初步结果。  相似文献   

7.
海洋的挑战     
据估计,太平洋底有丰富的锰或多金属结核.若与陆地相比的话,在陆地上开采这类金属每投资9美元其年产值只有1美元,而大洋中采矿每投资1美元每年可收回3美元:可以预计,这些海洋产的金属将只及陆地产金属价格的1/5或1/10. 据估计,大陆上这些金属矿产的储量为:镍0.54亿吨,铜4.60亿吨,钴0.015亿吨,锰2亿吨. 海洋,这个占地面积达3.62亿平方公里的地方,在那蔚蓝色的海水下面,据认为有15%的海底赋存着结核.这一粗略的估计与“挑战者号”考察所得  相似文献   

8.
过度使用化石能源致使过量排放以CO_2为主的温室气体,并增强全球气候变暖的趋势。碳封存是有效缓解大气中CO_2浓度激增的重要手段。海洋碳封存是一种新兴的碳减排理念,其封存主体是海洋水柱和海底沉积物,它们不但封存潜力巨大,而且与陆地碳封存相比安全性更高。阐述了海洋碳封存的技术原理与封存机制、海洋碳封存的潜力与封存时间、影响海洋碳封存的主要因素、海上CO_2注入技术、CO_2泄漏对海洋生物的影响以及CO_2泄漏的监测技术等,并对未来海洋碳封存的发展前景进行了展望,指出了未来海洋碳封存技术的主要研究热点。  相似文献   

9.
<正>河流连接陆地与海洋,在向海洋输送碳(0.9 Pg C yr-1)的同时向大气释放了大量CO2(1.8 Pg C yr-1[1])。输送量级与IPCC最新估计的陆地生态系统净吸收碳的量相当(2.6Pg C yr-1)。这种新认识更新了陆地碳支出核算[2],已经被纳入了IPCC(2013)最新公布的全球碳循环模型。河流水-气界面CO2交换研究对区域和全  相似文献   

10.
草地土壤碳库碳储量及其变化与调控机制是草地碳循环研究的核心.草地生态系统正经受着越来越严重的人为与自然因素干扰,如土地利用变化、大气氮沉降增加、施肥及大气CO2浓度与温度升高.因此,加强人为干扰和全球变化背景下草地土壤有机碳库的响应研究有重要意义.总结了放牧、草地开垦及外来氮素输入等3种主要的人类活动对土壤有机碳总量和活性碳组分的影响及其对全球变化的响应与适应,在此基础上指出了目前草地生态系统土壤有机碳库研究的薄弱环节及今后的重点研究领域.  相似文献   

11.
陆地生态系统碳循环、氮循环和水循环是生态系统生态学和全球变化科学研究长期被关注的三大物质循环,它们表征着全球、区域及典型生态系统的能量流动、养分循环和水循环。然而,自然界的生态系统碳循环、氮循环和水循环是相互联动、不可分割的耦合体系,在生态学、生理学、生物化学等方面受多个生物、物理、化学和生物学过程的调节和控制。本文在综合论述陆地生态系统碳-氮-水耦合循环研究的理论和实践意义的基础上,探讨了陆地生态系统碳-氮-水耦合循环的关键过程,提出该研究领域的基本科学问题,重点分析了植被-大气、土壤-大气和根系-土壤3个界面上碳、氮、水交换的生物物理过程,典型生态系统碳-氮-水耦合循环的生物学化学过程,制约典型生态系统碳-氮-水循环耦合关系的生态系统生态学机制,以及制约生态系统碳-氮-水循环空间格局耦联关系的生物地理生态学机制。在现有科学研究的基础上,构建了陆地生态系统碳-氮-水耦合循环机制的逻辑框架系统,讨论了开展陆地生态系统碳-氮-水耦合循环研究的主要技术途径与方法。  相似文献   

12.
陆地生物圈在全球碳(C)循环方面起着重要作用。尽管陆地生物圈是碳的净源,但一些陆地生态系统目前正在吸收碳,这对于控制现存的陆地(森林、农田和沙漠)生态系统以维持或增加碳的吸存量而言,是切实可行的。利用森林生态系统可吸存和保存全球大量的碳。农业生态系统和贫瘠的土地可用于保存现有的陆地碳,但这些系统中的植物对二氧化碳的吸存速率相对较低。可把森林生态系统和农田生态系统的生物量视为一种能源,而且林木可用于储存城市环境中的能量。通过开展一些生态系统的管理实践,进行碳吸存和保存可获得额外利益。  相似文献   

13.
大气CO2浓度升高已成为全球备受关注的环境问题.CO2排放量的增加加剧了地球表层的温室效应,也对生态系统的结构和功能产生了重要影响.生态系统对CO2浓度升高的响应是一个长期的过程.在干旱半干旱区,CO2浓度的升高对生态系统生产力、植物、土壤和微生物等都有影响,尤其改变了生态系统中的碳循环,并加剧了生态系统对氮的需求.碳...  相似文献   

14.
秦小光  宁波  殷志强  穆燕 《地球科学》2011,36(2):386-392
冰期-间冰期的陆地碳库变化成为最近十几年来碳循环研究的热点之一,以深海氧同位素、模型模拟和古环境证据等手段展开对不同时间尺度上不同碳库之间碳通量变化研究.土壤碳库的巨大储量导致了土壤碳库的任何微小波动都比陆地生态系统其他碳库更容易影响陆地生态系统碳循环以及大气CO2浓度,并最终影响到全球气候变化.通过对过去4万年来黄土高原地区土壤有机碳碳库的演变研究发现,深海氧同位素第3阶段期间,土壤有机碳碳密度相对于磁化率在细节上更能够表现出气候的小波动,这一期间的土壤有机碳碳密度快速上升,在较高的水平上多次波动,可能是因为这一时期的气候环境整体上更适宜碳在黄土古土壤中的累积和保存.在末次盛冰期(LGM)时,土壤有机碳碳密度急剧下降,伴随气候的快速波动,其间有一次较大规模的反弹,持续约2 ka,最低值出现在14 ka BP和19 ka BP.对比深海氧同位素曲线,土壤有机碳碳库与其在末次盛冰期和全新世都表现出良好的一致性.而磁化率在大约15 ka BP以后就开始增加,似乎超前于土壤有机碳碳密度和深海氧同位素的增加.并且,在全新世早期到晚期土壤有机碳碳密度经历了逐渐上升继而下降的变化过程,该时段的最高值出现在大约7~5 ka BP.   相似文献   

15.
科学确定陆地生态系统碳减排增汇优先区,优化全国陆地生态系统碳汇管理格局,将对有效发挥我国陆地生态系统的碳汇功能,减少向大气的碳排放,推进实现我国2020年碳减排目标具有重要实践价值。本研究分析了中国陆地生态系统碳源汇分布格局及其影响因素的空间差异,结合中国陆地生态系统碳库潜力及其变化的空间分异规律,建立了中国陆地生态系统碳减排增汇优先区的确定方法,得出了19个中国陆地生态系统碳减排增汇优先区,并提出了优先区管理的政策建议。  相似文献   

16.
^14C在全球变化研究中的意义   总被引:1,自引:0,他引:1  
系统地总结了对比了不同因素对^14C计年的影响及误差校正方法,认为含碳样品的^14C/^12C初始比,不 对^14C计年精度影响极大,而且比值本身对环境变化研究也具有极其重要的意义,年龄校正需要对样品形成的地质地球化学进行详细的研究。核实验验形成大量的^14C可以示踪碳在大气,海洋以及陆地生态系统三大碳储库之间的交换通量和滞留时间,“弹-14”在大气,海洋和土壤中的分布可以解决洋流的变化,大气与海  相似文献   

17.
陆地生态系统碳汇是实现碳中和的重要支撑。作为我国乃至亚洲的生态安全屏障,青藏高原具有良好的生态资源、固碳增汇潜力大。本文系统梳理了青藏高原陆地生态系统碳汇现状与未来潜力估算。主要结果如下:通过整合自下而上(清查法和生态系统模型)和自上而下(大气反演模型)不同方法的研究,当前碳汇大小为每年26.5~33.7 Tg C,占全国陆地生态系统碳汇的9.9%~19.6%;未来气候暖湿化以及生态恢复与管理措施加强情景下,到2060年碳汇有望实现倍增,达到每年53.0~63.7 Tg C。但高原碳汇估算仍存在很大不确定性,未来研究应聚焦在减少土壤碳汇不确定性、极端气候事件对碳汇功能影响、冻土碳库脆弱性、退化生态系统增汇潜力与途径、水体碳源汇功能和其他温室气体源汇功能等方面;通过补齐高原关键区域观测短板、研发自然与人文耦合的生物地球化学模型、构建模型-多源观测数据融合系统,以准确揭示青藏高原碳汇现状与未来趋势,为青藏高原碳中和贡献先行示范区和生态文明高地建设提供参考与支撑。  相似文献   

18.
陆地生态系统通过植被的光合作用吸收大气中的CO_2,深入了解陆地生态系统碳吸收强度的空间变异及其区域特征对于准确地预测和评估全球碳收支以及制定高效的区域性生态系统管理政策具有重要的指导性意义。本文以ChinaFLUX的长期联网观测数据为基础,整合了北半球区域已发表的涡度相关文献数据,对北半球区域碳交换通量,即总初级生产力(GPP)、生态系统呼吸(RE)和净生态系统生产力(NEP)的空间格局及其区域特征进行综合分析。我们获取了233个通量站点,732条站点年数据。观测站点分布于亚洲、欧洲和北美洲,纵跨纬度2.97°N到74.47°N,横跨经度148.88°W到161.34°E。气候类型涵盖了热带、亚热带、温带、北方林、极地与亚极地以及高山气候类型。生态系统类型包涵了森林(107个站点)、草地(65个站点)、农田(33个站点)和湿地(28个站点)四大生态系统。研究结果得出:北半球陆地生态系统GPP和RE呈现出显著的随着纬度升高而线性降低的趋势,纬度每升高1°N,GPP和RE在空间格局上约减少22.9g C/m~2/a,而NEP的纬向变化规律不明显。森林和农田生态系统的GPP和NEP显著高于草地和湿地生态系统。RE则在森林生态系统最高,平均约为1185±641g C/m~2/a,而在其余生态系统间无显著差异。在亚洲、欧洲和北美洲3个区域之间,森林、农田和湿地生态系统的GPP,RE和NEP均无显著差异。仅在草地生态系统中,欧洲草地生态系统的GPP和RE分别为1472±473g C/m~2/a和1236±452g C/m~2/a,显著高于亚洲和北美洲。GPP,RE和NEP呈现出从温暖性气候区向寒冷性气候区逐渐降低的趋势,同时受到水分状况的调节,表现出在相同的温度带里,相对湿润的气候区具有更高的NEP。这些结果表明北半球陆地生态系统碳交换通量存在着空间变异性,但没有显著的区域差异,然而在不同气候区和生态系统类型间差异显著,这意味着北半球陆地生态系统碳交换通量主要受到温度和水分环境条件以及人类活动的共同影响。  相似文献   

19.
陆地生态系统古碳储量演化历史既是理解过去区域碳循环过程的基础,也是预测未来陆地碳库变化趋势的重要参照。以往由于实测记录的缺乏和现代碳循环模型应用的局限,难于实现过去陆地碳库的准确重建。本研究通过地质时期86个点位的孢粉记录与古碳循环模型模拟的结合,在定量化重建全新世渭河流域古气候参数空间格局的基础上,模拟了自然植被时空演化过程及其陆地生态系统碳储量变化。结果表明,全新世早期到中期,流域森林面积覆盖度由34%增至63%,导致陆地生态系统碳储量从2.48 Pg C增至3.40 Pg C;全新世中期到晚期,流域森林面积覆盖度降至20%,陆地生态系统碳库储量随之减少了1.03 Pg C。空间上,流域碳密度变化主要受控于植被类型的分布,后者又与地貌条件密切相关。全新世中期全球增温情形下渭河流域森林植被大面积扩张和碳储量显著增加的结果,预示着未来全球变暖背景下该流域陆地生态系统具有较强的碳汇潜力。  相似文献   

20.
土壤碳动力学同位素示踪研究进展   总被引:1,自引:1,他引:0  
土壤是陆地生态系统中最大的碳库。土壤碳动力学旨在研究土壤有机碳库的大小及更新速率。土壤有机碳库可分为 3个亚碳库:"活动"、"缓慢"和"稳定"碳库。碳同位素特别是 14 C可作为研究土壤碳动力学的理想示踪剂;δ 13 C值是定量研究C3和C4植被更替历史的有效手段; 14 C示踪及年代测定与 13 C信号联合使用,可以估算土壤碳库的大小和驻留时间。碳同位素示踪应用于土壤碳动力学研究取得了较大进展,但是由于缺乏可靠的全球数据库和标准方法来量化土壤有机碳库,导致对土壤各亚碳库的大小和更新速率以及土壤CO2的估算仍存在较大的不确定性,从而难以估计土壤碳库大小的变化对大气CO 2浓度和全球气候变化的潜在贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号