首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subglacial meltwater plays a significant yet poorly understood role in the dynamics of the Antarctic ice sheets. Here we present new swath bathymetry from the western Amundsen Sea Embayment, West Antarctica, showing meltwater channels eroded into acoustic basement. Their morphological characteristics and size are consistent with incision by subglacial meltwater. To understand how and when these channels formed we have investigated the infill of three channels. Diamictons deposited beneath or proximal to an expanded grounded West Antarctic Ice Sheet are present in two of the channels and these are overlain by glaciomarine sediments deposited after deglaciation. The sediment core from the third channel recovered a turbidite sequence also deposited after the last deglaciation. The presence of deformation till at one core site and the absence of typical meltwater deposits (e.g., sorted sands and gravels) in all three cores suggest that channel incision pre-dates overriding by fast flowing grounded ice during the last glacial period. Given the overall scale of the channels and their incision into bedrock, it is likely that the channels formed over multiple glaciations, possibly since the Miocene, and have been reoccupied on several occasions. This also implies that the channels have survived numerous advances and retreats of grounded ice.  相似文献   

2.
Several infilled glacial meltwater channels of Anglian age are described from SE Suffolk, U.K. These channels are up to 4km long, 150m wide and 8m deep. They possess a consistent pattern of infill comprising glacifluvial sands and gravels overlain by subglacial water-lain fine sands and silts; these pass conformably upwards through thinly interstratified tills and sands into basal tills. The channels were formed at the ice-margin. Their sedimentary infill indicates overriding by the ice-sheet and subsequent subglacial deposition.  相似文献   

3.
Pleistocene lateral meltwater channels are commonly used as evidence of cold-based or polythermal ice. However, lateral meltwater channel formation has been observed for >40 years along the margins of a rapidly thinning temperate glacier in Glacier Bay, Alaska. Flights of nested linear lateral meltwater channels and in-and-out channels have formed on the sides of emerging nunataks. Nested channels at Burroughs Glacier are up to 200 m long; they are good proxies for the slope of the ice margin along the land surface and are terminated by subglacial chutes. A perched water table associated with precipitation and high ablation rates in the temperate ice causes surface meltwater to flow toward the margin above less permeable ice. The water flows along the margin and erodes lateral meltwater channels until a subglacial chute carries the water into the subglacial water system. Rates of channel formation range from 0 to 8 channels/year. Spacing and rates of channel formation are controlled by the land-surface slope, ablation rate, erodibility of the substrate and stream discharge. Because lateral meltwater channels have been observed forming along a temperate glacier margin, care must be exercised when using the presence of lateral meltwater channels as definitive evidence of cold-based or polythermal ice.  相似文献   

4.
The glacial sediment succession exposed close to the southern margin of the Late Weichselian Scandinavian Ice Sheet in Poland reveals a mosaic consisting of isolated patches of heavily deformed deposits separated by areas lacking any visible evidence of deformation. In the studied outcrop, the subglacial deforming spots composed of outwash deposits intercalated with till stringers are about 2–10 m wide and 20–60 cm thick. They rest on outwash sediments and are covered by a basal till. Based on structural and textural characteristics, the deforming spots are interpreted as previous R‐channels filled with meltwater deposits. Lack of deformation in outwash sediment immediately beneath the deforming spots and in the intervening areas between the channels suggests that the ice‐bed was frozen and the deformation of the channel infill was facilitated by high pore‐water pressure arising because water drainage into the bed was impeded by permafrost. Channel infill deposits and the till immediately above were coevally deformed to a strain of less than 9. This study documents the possible co‐existence of deforming and stable areas under an ice sheet, generated by spatially varying thermal and hydrological conditions affecting sediment rheology.  相似文献   

5.
6.
Mapping of glacial meltwater channels along the length of the 25-km Mid-Cheshire Ridge reveals evidence for four distinctive channel morphologies, which are used to establish the pattern of meltwater flow during the Late Devensian glaciation. A key characteristic of all channels is an abrupt change in morphology between inception on the Mid-Cheshire Ridge and the downstream continuation on the surrounding Cheshire Plain, with large reductions in channel cross-sectional area at this point. The interpretation of this evidence is that meltwater flowing off the bedrock ridge was absorbed into a layer of permeable sediment beneath the Late Devensian ice sheet. This permeable sediment is significant because it would have acted as a deforming layer beneath the former ice sheet in this area. Reconstruction of the Late Devensian ice sheet based on information from the meltwater channels and using values of shear stresses typical of ice sheets resting on deformable beds (ca. 20 kPa) suggests an ice surface elevation over the Irish Sea of ca. 700 m. This value is considerably less than previous estimates of the vertical extent of the ice sheet of ca. 1000–1200 m and has important implications for the rapidity and mode of deglaciation during the Late Devensian. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
An excellent section in the Welzow-Süd open-cast lignite mine in Lower Lusatia, eastern Germany, provided a rare opportunity to study a small (5 m deep), buried subglacial meltwater channel of Saalian age. The channel is steep-sided and distinctly U-shaped. It is separated from undeformed outwash deposits in which it is incised by a sharp erosional contact and it is filled with meltwater sand and till. The till was possibly squeezed into the channel from the adjacent ice/bed interface. Directly beneath the channel, there is a partly truncated diapir of clayey silt, evidencing sediment intrusion into the channel from below. During channel formation, the pressure gradient was oriented from the surrounding sediments into the channel, so that the channel served as a drainage conduit for groundwater from the adjacent subglacial aquifer. The substratum consists largely of sandy aquifers with a total thickness of about 100 m, separated by two aquitards. Channel formation was initiated when hydraulic transmissivity of the bed did not suffice to evacuate all the subglacial meltwater as groundwater flow. As the Welzow-Süd channel belongs to a dense network of subglacial channels in eastern Germany, temporary ice-sheet instability in this region prior to channel formation seems possible.  相似文献   

8.
This article describes distinctive lateral meltwater channels at the margins of low-elevation cold-based glaciers in the Dry Valleys. The channels significantly modify the ground surface and indicate that cold-based glaciers can be active geomorphic agents. Summer meltwater from the glacier surface flows over ice-aprons and erodes into the frozen ground creating channels up to 3 m deep and 10 m wide adjacent to unmodified ground that is protected beneath the glacier itself. Rapid fluvial excavation in the channels leads to undercutting and collapse of channel walls, which is capable of overturning large boulders. During glacial retreat, a succession of channels is incised into newly exposed ground creating a distinctive series of nested lateral channels and ridges. These represent the most obvious and persistent geomorphological signature of cold-based glacier activity in the region. Cold-based glaciers may advance and retreat over the same area many times without necessarily destroying older features, thereby creating a complex series of channels, deposits and remnant surfaces with a disordered chronology. Recognizing the role of cold-based glaciers and their meltwater channels on landscape evolution is critical for interpreting the timing and style of glacial events in the Antarctic.  相似文献   

9.
High-quality subsurface data provide new insights into the formation of Oak Ridges Moraine (ORM), an ~80 km3 sequence of stratified meltwater deposits resting >200 m above adjacent Lake Ontario. The ORM sedimentary succession comprises a three-part regional architecture: (i) ~north–south channel sand–gravel; (ii) channel-capping rhythmites; and (iii) east–west ridge sediments. The ORM depositional sequence overlies a regional unconformity with a cross-cutting channel network resulting from ~north–south meltwater floods that transitioned progressively (falling stage) from a ~NNE to ENE flow direction (parallels Lake Ontario depression). Seismic profiles delineate the channels and channel fill characteristics of bank-to-bank channel sedimentation of thick gradational gravel–sand–mud sequences. Channel-capping mud (~100–236 rhythmites) within multiple channels beneath the ORM landform mark a widespread interval of low-energy, seasonally controlled subglacial pond deposition. During this quiescent period ice-sheet thickness adjusted to flood-induced stretching/thinning and re-profiled slopes. New ice gradients led to east–west flow and deposition of the overlying third element, a sequence of high-energy confined esker–fan sediments along ORM ridge. Close, sequential timing (~329 varve years) of channel, basin and ridge-forming architectural elements supports naming this assemblage the ORM formation. Proposed ORM floods are analogous to Icelandic jökulhlaups based on the size, geometry and sedimentology. The observed rhythmite interval between flood events represents a short period (~236 years) of regional meltwater storage prior to east–west ORM flooding. The ORM channel and overlying esker-fan sediment ridge represent two closely timed meltwater drainage events rather than formation by coalescing ice streams. The scale and timing of the ORM flood events are linked to rapid sea-level rise, ~13.5 ka BP. This high-resolution ORM sedimentological record may provide insights into depositional and glaciogenic controls of other large, stratified moraines. The ORM data indicate deposition in response to hydrodynamic events (outbreak floods, re-profiled ice) rather than direct climate forcing.  相似文献   

10.
The Grès de Champsaur turbidite system, deposited in a distal setting in the Alpine Foreland Basin of south‐eastern France, exhibits a repeated upsection alternation in sand body geometry between incised channels and sheet sands. The channels form symmetric lenticular erosional features, of width 900–1000 m (measured between the lateral limits of incision) and depth 65–115 m, and can be traced axially for up to 5 km. In each case, the channel fill is capped by a laterally persistent sandy sheet‐form interval, which lies upon a fine‐grained substrate beyond the channel margins. No intrachannel elements have been traced into the substrate sequence, suggesting that, before infill, the channels acted as open sea‐floor conduits of essentially the same dimensions as the preserved channel deposits. The channels are vertically stacked, although axial erosion juxtaposes younger channel axis deposits against the fill of older channels and their channel‐capping sheet sandstones to produce an apparently well‐connected composite sandstone body geometry. The predominant channel‐fill facies comprises coarse‐grained, amalgamated sandstones, which are commonly parallel‐ or cross‐stratified. Subsidiary facies of finer grained sandstone–mudstone couplets and clast‐bearing muddy debrites are commonly preserved as erosional remnants, suggesting a complex channel history of aggradation and erosion. The repeated cycles of channel incision, infill and transition to sheet sandstone development indicate repetitive incision and healing of the palaeo‐sea floor. A model is proposed that links incision to the development of relatively steep axial gradients (parallel to the mean dispersal direction) and the return to sheet‐form deposition to the re‐establishment of lower axial gradients, with the repetitive switch between incisional channels and sheet sandstones driven by changes in sediment input rate against a background of ongoing sea‐floor tilting.  相似文献   

11.
A combination of a dense reflection seismic grid and up to 50‐m‐long records from sediment cores and cone penetration tests was used to study the geometry and infill lithology of an E–W‐trending buried tunnel valley in the south‐eastern North Sea. In relation to previously known primarily N–S‐trending tunnel valleys in this area, the geometry and infill of this 38‐km‐long and up to 3‐km‐wide valley is comparable, but its E–W orientation is exceptional. The vertical cross‐section geometry may result from subglacial sediment erosion of advancing ice streams and secondary incision by large episodic meltwater discharges with high flow rates. The infill is composed of meltwater sands and reworked till remnants on the valley flanks that are overlain by late Elsterian rhythmic, laminated, lacustrine fine‐grained sediments towards the centre of the valley. A depression in the valley centre is filled with sediments most likely from the Holsteinian transgression and a subsequent post‐Holsteinian lacustrine quiet‐water setting. The exceptional axis orientation of this tunnel valley points to a regional N–S‐oriented ice front during the late Elsterian. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
《Quaternary Science Reviews》2007,26(7-8):1091-1105
The observations from Breidamerkurjökull reported in Part I are used as a basis for a theory of coupled channel/groundwater flow that suggests that the large scale geometry of the hydraulic system self-organises as a consequence of coupling between groundwater and channel flow. The pattern of channel/esker distribution is largely determined by winter conditions and the sedimentary characteristics of eskers are largely determined by summer conditions, when large discharges of surface meltwater penetrate to the bed in the terminal zone. A simulation model is developed to explore evolution of the channel/groundwater system during a period of glacier growth. It suggests that as the glacier grows, channel/esker frequencies will increase as will the proportion of the melt flux discharged by channel flow, that groundwater impacts can extend to depth, that low water-pressure bulbs will extend downwards beneath channels, that groundwater upwelling towards channels are strong enough to create widespread conditions for liquefaction and that pressure shocks can occur as the channel system reorganises itself.  相似文献   

13.
The Brampton kame belt represents one of the largest glaciofluvial complexes within the UK. It is composed of an array of landform-sediment assemblages, associated with a suite of meltwater channels and situated within a palimpsest landscape of glacial features in the heart of one of the most dynamic parts of the British-Irish Ice Sheet. Glacial geomorphological mapping and sedimentological analysis have allowed a detailed reconstruction of both the morphological features and the temporal evolution of the Brampton kame belt, with processes informed by analogues from modern ice margins. The kame belt demonstrates the development of a complex glacier karst typified by the evolution of subglacial meltwater tunnels into an englacial and supraglacial meltwater system dominated by ice-walled lakes and migrating ice-contact drainage networks. Topographic inversion led to the extensive reworking of sediments, with vertical collapse and debris flows causing partial disintegration of the morphology. The resultant landform comprises a series of kettle holes, discontinuous ridges and flat-topped hills. The Pennine escarpment meltwater network, which fed the Brampton kame belt, is composed of an anastomosing subglacial channel system and flights of lateral channels. The Brampton kame belt is envisaged to have formed during the stagnation of ice in the lee of the Pennines as ice retreated westwards into the Solway Lowlands. The formation of the Brampton kame belt also has particular conceptual resonance in terms of constraining the nature of kame genesis, whereby an evolving glacier karst is a key mechanism in the spatial and temporal development of ice-contact sediment-landform associations.  相似文献   

14.
Glacial meltwater channels are incised into bedrock and diamicton along much of the length of the Mid-Cheshire Ridge. Detailed mapping of one such system near the town of Helsby reveals a dendritic channel network developed in the opposite direction to the regional ice flow during the last (Late Devensian) glaciation. The channels formed subglacially, under atmospheric and not hydrostatic pressure, presumably as the ice sheet downwasted during deglaciation. Morphological and palaeohydraulic evidence suggests that not all of the network was necessarily active contemporaneously. Former water levels in the channels can be estimated due to the presence of bar surfaces, giving a calculated palaeodischarge of at least 111 m3 s−1. The ablation rates required to account for this large discharge are an order of magnitude greater than those obtained from theoretical calculations and those observed in modern glacial environments. This implies that some form of high-magnitude discharge, such as a seasonal flood event, must have taken place in this area during deglaciation. This picture of the Late Devensian ice sheet suggests that during recession the ice sheet was static, crevassed and relatively thin (<50 m). This study also shows that there is no simple relationship between meltwater channel direction and ice dynamics, and that care is required when using the former to make inferences about the latter. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
This article presents the results of a geomorphological and sedimentological investigation of former glacial meltwater drainage in the region of the lower Afon Teifi, one of the major rivers of southwest Wales. Former drainage characteristics in the region are reconstructed concentrating on palaeo-drainage routes associated with successive Pleistocene glaciations and their role in the Quaternary evolution of the lower Teifi. Mapping of these features throughout a c. 100 km 2 area reveals a complex evolution in the establishment of the present-day drainage system, with evidence for the following surface channel types: (i) type 1 channels of primary subglacial origin cut during the late Devensian (late Wisconsinan/late Weichselian) glaciation; (ii) type 2 channels representing either pre-late Devensian subaerial fluvial run-off, unconnected to the course of the preglacial Afon Teifi, or originating as subglacial chute channels; (iii) type 3 channels developed as subglacially modified pre-late Devensian tributaries of the Afon Teifi. Two further features are also described: (iv) type 4 channels are drift-plugged abandoned preglacial courses of the Afon Teifi, and (v) type 5 channels formed as lateglacial and post-late Devensian gorges which bypass type 4 channels. A relative chronostratigraphy based on channel geomorphology and sedimentology reveals an evolutionary sequence considerably more complicated than identified in previous studies, with extensive modification of the lower Afon Teifi region by glacial meltwater during at least two periods of Pleistocene glaciation.  相似文献   

16.
Tunnel channels in southeast Alberta are attributed to erosion by channelized, subglacial meltwater flows. An anabranching tunnel channel network dissects the preglacial drainage divide of the ancestral Milk River. Channel morphology and landform associations are used to evaluate competing hypotheses of tunnel channel formation. Mechanisms that invoke subaerial channel incision, direct glacial erosion or steady state, time-transgressive erosion at the ice margin cannot explain convex-up longitudinal channel profiles, anabranching channel networks or confinement to the preglacial drainage divide. Results conclude that the tunnel channel network in southeast Alberta represents late-stage erosion by a channelised subglacial flow of catastrophic dimensions. Interpretations for this tunnel channel network are in agreement with conclusions obtained for the regional subglacial landform assemblage.  相似文献   

17.
The late Pleistocene Holocene stratigraphic architecture on the northeastern Brazilian continental shelf off the Parnaíba Delta has been explored by high-resolution seismic profiles. The seismic surveys reveal the widespread distribution of incised valleys of different size in offshore continuation of the present-day Parnaiba delta. According to morphology two channel types can be distinguished: U-shaped channels in the eastern part and V-shaped channels in the western part. The stratigraphic successions were grouped into four seismic units separated by different seismic boundaries. The characteristics of the seismic boundaries and internal reflectors of the seismic units were used to distinguish between marine and riverine deposits. The incised-valleys architectural elements were used to link sedimentation processes and variations in base level from late Pleistocene channel avulsion and channel infill in the lowermost course of the paleo-Parnaíba River to marine sediments of the present-day inner shelf. The change of the depositional environments in relation to deglacial sea-level rise is compared to incised valley infills of the Mekong River and Red River systems in Southeast Asia.  相似文献   

18.
At some time close to the Last Glacial Maximum (LGM) high-energy, subglacial, Laurentide, meltwater flows eroded a series of discontinuous tunnel channels into the northeastern flanks of the Porcupine Hills and adjacent parts of the high plains near Nanton, Stavely and Claresholm. Discrete channel segments, kilometers long, up to about 1 km wide, and 100 m deep, were carved into Paleocene sandstone and shale of the Porcupine Hills Formation. Floors of Pine, Boneyard, and Crocodile channels all occur at elevations between 1050 and 1175 m a.s.l., and share the characteristic of strongly convex-up long profiles. Intrachannel drainage divides on each channel floor are tens of meters above the water entry and exit points. Formative flows, therefore, must have been pressurized in the subglacial Nye-channels. Prominent scour-holes at some major bends in the channels now host ephemeral ponds or lakes. During the channel erosion, the overlying Laurentide ice surface was probably close to its local LGM maximum elevation of ca. 1400–1500 m a.s.l. Misfit modern streams now drain in opposite directions within the tunnel channels, and there are only minor, local, distal accumulations of sediment derived from the tunnel channel erosion.  相似文献   

19.
Exceptional exposures of Permian basin floor fans (fans 3, 4) and a slope fan (fan 5) in the Tanqua Karoo foreland basin of South Africa have enabled an investigation of the relation between the pinch-out geometries and fan architecture. The pinch-out geometry of fan 3 is characterized by the down dip transition from thin to medium bedded sheet deposits to pinch-out fingers, which are overlain by younger prograding sheet deposits. This geometry reflects the progradational stacking pattern of the fan. In contrast, the fan 4 pinch-out fingers consist of stacked channel fills in the same conduit. This pinch-out configuration relates to the dominant aggradational style observed on the mid and distal parts of fan 4. Fan 5 represents a slope fan comprising an axial channel conduit, which branches down slope into three distributary channels. The distal fan is characterized by larger channel fills, which may represent bypass channels to other basin floor fans. The very thick-bedded nature of the youngest channel fill unit suggests early bypass followed by retrogradation as indicated by the presence of thinner bedded heterolithic channel fill deposits along the axial conduit. Although some of the massive pinch-out channels exhibit basal scour, their depositional morphology suggests that they mainly originated due to the infill of subtle topographic depressions by low concentration turbidity currents. Instead of describing these features as channel fills, the use of the term pinch-out fingers is preferred.  相似文献   

20.
Clast-supported boulder gravel in outwash-fans along the glacial-maximum margin of the Laurentide Ice Sheet in Wisconsin indicates the occurrence of outburst floods. These sediments, with clast intermediate axes of up to 2 m, are located downstream of tunnel channels and were deposited shortly before cessation of glaciofluvial activity on each fan. Since tunnel channels with fans are widespread along the ice-sheet margin in the western Great Lakes region, these outburst floods were probably common. Paleodischarge estimates derived from the boulder deposits are poorly constrained, but values of at least several hundred m3 s−1 are likely. Four potential water sources for the floods exist: an extreme surface-melt event, an extreme precipitation event, drainage of supraglacial lakes, or drainage of stored subglacial meltwater. We focus on the storage of subglacial meltwater behind the ice-sheet margin, as proglacial permafrost was present as ice advanced to its maximum extent, and a frozen-bed zone upstream from the margin probably impeded drainage through groundwater aquifers. Decay of this permafrost ‘seal’ would have eventually allowed trapped water to drain through the tunnel channels. We suggest that the 2-m boulders were entrained in an outburst of subglacial water that enlarged a pre-existing channel cut by ablation-derived flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号