首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 113 毫秒
1.
姚华舟 《地质论评》1999,45(7):851-857
位于青藏高原东部边缘的义敦岛弧带,晚二叠世以来经历了伸展与挤压相交替的多旋回式构造演化。根据伸展、挤压交替的阶段性变化,其演化历程可划分为10期(阶段):① 二叠纪—前二叠纪:泛扬子板块阶段;② 二叠纪末—中三叠世早期:大陆边缘裂 谷→海洋;③ 中三叠世晚期:不成熟岛弧;④ 早卡尼期:裂谷与海洋;⑤ 晚卡尼期—早诺尼 期:成熟岛弧;⑥ 中—晚诺尼期:岛弧基底上的裂谷作用;⑦ 诺尼期末—瑞替期:弧陆碰撞和残留海;⑧ 侏罗纪—早白垩世:挤压褶皱造山;⑨ 晚白垩世—第三纪:山原裂谷作用和山 间盆地;10 第四纪—现代:快速隆起造山。二叠纪末—三叠纪初为本区构造格局的转折点,即本区脱离扬子板块主体部分向西漂移并导致产生新的洋壳,出现新的构造格局。三叠纪的构造伸展—挤压转换最为频繁,火山—沉积作用也最为活跃,以钙—碱性中酸性火山岩为代表的义敦火山弧形成于这一时期。  相似文献   

2.
上扬子克拉通北部晚古生代-中三叠世的沉积盆地是在勉-略洋盆南侧发展起来的被动大陆边缘盆地, 在泥盆纪-中二叠世以稳定沉降为主, 向北以碳酸盐岩缓坡与台地向勉略洋盆过渡; 中二叠世末期受峨眉地裂运动影响形成隆坳相间的格局; 早-中三叠世构造体制由伸展变为挤压, 沉积建造由开阔海碳酸盐岩台地逐渐向半局限台地、半封闭海湾膏盐湖相以及陆相碎屑岩含煤岩系过渡.该陆缘盆地经历了晚三叠世上扬子北缘前陆盆地、中侏罗世-早白垩世川西、川北前陆盆地, 以及晚白垩世至今构造残留盆地的改造.其中, 晚三叠世须三-须六期上扬子北缘前陆盆地的前缘隆起大致沿汶川、剑阁和万源一线分布.热年代学分析结果表明, 汶川、剑阁和万源一线以南的上二叠统烃源岩在早中生代始终处于埋藏增温状态, 只是自晚白垩世才进入抬升降温阶段, 呈"同代"烃源岩的特征; 而汶川、剑阁和万源一线以北的龙门山、米仓山和大巴山山前冲断地区, 上二叠统烃源岩则围绕生烃窗经历了多次增温和降温过程, 热演化历史复杂, 呈"隔代"烃源岩的特征.因此, 对于上扬子克拉通北部晚古生代-中三叠世陆缘盆地的勘探, 汶川、剑阁和万源一线以南比其北侧更有利.  相似文献   

3.
广西钦防海槽迁移与沉积-构造转换面   总被引:13,自引:0,他引:13       下载免费PDF全文
广西的钦州-防城-带,素以钦防海槽称之,系指加里东期构造运动后,扬子与华夏陆块间的“残留海”。其两侧为古隆所夹持,西为大明山古隆起,东为云开大山古隆起,其间划分为四个构造单元,由东向西依次为:博白坳陷,六万大山隆起,钦州坳陷和十万大山坳陷。现构造形迹的排列,反馈防海槽在早古生代至中生代间深海盆或浅海深水盆地在构造和沉积上有自东向西迁移的特点。晚古生代盆地迁移过程至少有八个沉积-构造转换面可记录盆地的构造演化:第1转换面为早奥陶世与晚寒武世间的沉积界面;第2转换面为早志留世与晚奥陶世间的沉积界面;第3转换面为早泥盆世早期与晚志留世间的海侵上超面;第4转换面为中泥盆世的海侵上超面;第5转换面为中二叠世与晚二叠世间的沉积界面;第6转换面为早三叠世的海侵面;第7转换面为中晚三叠世与早三叠世间的沉积界面;第8转换面为早侏罗世与晚三叠世间的沉积界面。前两个界面为盆山转换面,与华南加里东构造运动过程相耦合,为挤压的构造背景;第3界面为水下间断面,下泥盆统与上志留统为不连续沉积,在构造上应是挤压机制下的破裂不整合,也是加里东期构造运动的响应;第4界为海西期的海侵上超面,与盆地走滑拉张同步;第5界面则反馈于印支期造山的初始阶段,第6界面为中生代盆地迁移转换面;第7界面为印支期造山过程的盆地转换面;第8界面为燕山期造山造盆转换面。其转换面性质的转化,代表钦防海槽可能是个复杂大陆边缘前陆盆地演化史。  相似文献   

4.
柴达木盆地北缘晚海西—印支期古构造应力分析   总被引:1,自引:0,他引:1  
为了更好认识柴北缘晚海西—印支期古构造应力特征与演化过程,在天峻快日玛乡、城墙沟、石灰沟等地区详细野外观测的基础上,利用地层恢复和古构造应力反演技术对柴北缘及邻区石炭系—新生界构造观测数据进行分析。结果表明晚二叠世—中三叠世,柴北缘在南—北向挤压作用下向北俯冲碰撞,盆地内部上二叠—中三叠统缺失。晚三叠世开始,西秦岭斜向碰撞柴达木盆地,柴北缘进入造山阶段,所受挤压作用方向转变为北西—南东向,盆地内大范围缺失上三叠统。晚海西—印支期柴北缘内部二叠纪—三叠纪地层大面积剥蚀加之该期强烈挤压作用造成尕海南山石炭系与白垩系、旺尕秀煤矿石炭系与侏罗系之间的角度不整合,意味着下伏石炭系可能遭受强烈破坏。  相似文献   

5.
构造解析表明,现今观察到的中扬子地区中部江汉叠合盆地主体构造格架面貌大体形成于印支 早燕山碰撞造山期;其中,主造山初期前陆盆地发育阶段,盆区东、西部构造形变差异明显,晚期经调整而渐趋平衡,由此显现华南与华北两大陆块在碰撞造山过程中可能先后经历了早期点状接触与陆间斜向俯冲和晚期线状接触与陆内俯冲两个发展阶段。晚燕山期以来,盆地裂陷阶段构造格架的分区发育与右行旋转特点,证明中扬子地区曾发生过双向伸展和构造旋转作用,暗示晚燕山 早喜马拉雅期华南与华北两大陆块可能处于逐渐焊合的过程,研究区总体处于造山后陆内应力场调整阶段。盆地坳陷期发育阶段山盆非耦合面貌及壳幔“立交桥”式结构特征展示晚喜马拉雅期以来叠合盆地南、北边缘造山带已进入去根与裂解过程中。  相似文献   

6.
目前对华南内陆中生代构造环境与演化过程的认识存在分歧,一定程度上与对多种地质要素的综合研究不够有关。笔者研究认识到湘东南及湘粤赣边区中生代不同构造阶段发育不同的代表性地质要素,并分别指示不同的构造环境。早三叠世-中三叠世早期为前造山阶段,主要发育海相沉积。中三叠世后期-中侏罗世初为陆内造山阶段,其中中三叠世后期发生强烈陆内汇聚挤压,形成的主要地质要素是NNE向的逆冲断裂与褶皱,以及NW向的基底走滑断裂等;中三叠世末-晚三叠世后期为同造山阶段的后碰撞构造环境,形成的主要地质要素是印支期强过铝花岗岩;晚三叠世末-早侏罗世为同造山上隆伸展环境,形成的主要地质要素是裂陷盆地与拉斑玄武岩;中侏罗世初期为挤压环境,形成的主要地质要素是山前冲断收缩盆地及盆地边缘的逆冲断裂。中侏罗世早期-晚侏罗世为后造山阶段,形成的主要地质要素是大量后造山花岗岩以及与花岗岩相关的大量有色金属矿床。白垩纪为陆内裂谷阶段,形成的代表性地质要素有AA型花岗岩、大量陆相红色断陷盆地、基性火山岩、双峰式次火山岩等。结合上述成果和区域资料,提出应通过多种地质要素综合研究华南地区中生代构造演化过程,注意构造环境判别的地质要素代表性、地质要素时限性以及构造发展过程的关联性。  相似文献   

7.
广西十万大山前陆冲断推覆构造   总被引:8,自引:0,他引:8  
通过十万大山盆地内地震剖面资料和TM遥感图象的地质构造解译,结合重力资料和野外地质观察及构造分析,阐述了十万大山前陆冲断推覆构造的发育特征和前陆盆地的构造演化。前陆冲断推覆构造由3个不同的构造变形带组成:卷入海西和印支期花岗岩体的逆冲断裂带、充填中生代陆相沉积并发生构造滑脱的前陆盆地和对应于华南准地台的前陆腹地。冲断推覆构造的形成和演化是与中、晚古生代钦州海槽晚二叠世的褶皱回返和中生代相继的构造复活密切联系的,它经历了3期主要构造应力作用事件:晚二叠世海西运动晚幕为冲断推覆构造的雏形期,晚三叠世印支运动晚幕的近SN向挤压是陆相前陆盆地的发育期;早白垩世末期燕山运动主幕NW—SE向挤压是现今十万大山前陆冲断推覆构造的成型期。  相似文献   

8.
哀牢山造山带构造演化   总被引:11,自引:0,他引:11  
哀牢山造山带造山活动始于晚二叠世的扬子陆块被动边缘的裂谷环境,经过印支及喜马拉雅期两次造山作用,形成了四个构造世代的叠加构造变形。这些不同时期的构造共生组合,既表现出陆内造山带垂向上不同构造层次构造环境的流变学特征,又反映了造山物质从表部下冲到地壳深处,又折返地表的复杂经历。清晰地刻划出哀牢山造山带的所经历的陆内俯冲、主期碰撞造山及后期卷入喜马拉雅造山活动的发展过程。  相似文献   

9.
越南东北部早中生代构造事件的年代学约束   总被引:6,自引:3,他引:3  
越南东北部-海南岛-粤西南构造带整体上呈NW-SE走向展布于华南板块的南缘,是理解华南构造演化的关键地区.作为印支运动代表性地区的越南东北部地区Song Chay构造带上,下古生界浅变质沉积岩、上古生界至早-中三叠世未变质的沉积盖层中都发育向北东逆冲推覆,韧性变形域表现为NE-SW向的矿物拉伸线理和上部指NE的剪切变形,而脆性变形域则记录了大量NE极性的褶皱和冲断构造.两广交界的云开地体和海南岛地区存在着相同样式的构造变形.关于这期变形的时间,本文通过对野外地层以及所出露不同时期岩体变形特征的综合研究,并结合高质量的锆石U-Pb年代学数据,在越南的东北部厘定为237 ~ 228Ma.这期广泛分布于华南板块南缘构造事件的动力学机制同Day Nui Con Voi(大象山)微陆块与华南板块在早中生代的构造拼合事件相关.本文认为华南板块在早三叠世开始沿着越南东北部的Song Chay缝合带俯冲拼合于Day Nui Con Voi微陆块之下,因此在早-中三叠世时期,在作为俯冲盘的华南板块南缘发育一系列的褶皱和逆冲推覆构造,晚三叠世印支造山作用结束.因此,华南板块南缘的越南东北部-海南岛-粤西南构造带被一同卷入早-中三叠世同印支板块的碰撞造山体系之中.  相似文献   

10.
江汉叠合盆地位于扬子地台中部,夹持于秦岭-大别及江南造山带中段之间。中生代以来,先后经历了北部陆陆碰撞、南部陆内挤压造山与断陷、裂陷成盆的演化历程,区域构造体制在中生代发生了重大转换,其中复合、联合了众多的地质现象;盆地历经的海盆、煤盆、盐盆、陆相广盆四个盆地世代详细记录有中国南北大陆联合及东北亚大陆构造体制转换的运动学过程,是认识欧亚大陆东部深层动力地质作用过程的关键地区之一。盆地沉积充填过程可简要概括为前陆、裂陷、坳陷三种基本样式。系统的盆山构造样式及运动学分析结果表明:叠合盆地前陆期发育于同碰撞-造山后作用阶段早期,断、坳陷期发育于造山后作用阶段晚期-非造山裂解阶段。本文运用大陆动力学数值模拟(FLAC软件)方法,从挤压和伸展两方面效验了山-盆演化分别受控于印支-早燕山期的华南与华北陆块的旋转碰撞造山,以及随后的晚燕山-喜山早期碰后陆内俯冲作用所产生的板片断离引起的地幔物质上升与对流作用,晚喜山期太平洋板块俯冲作用以及由此产生的地幔调整等三期动力学系统。为南方中小型叠合盆地动力学解析提供了一种新的思路与研究方法。  相似文献   

11.
Sedimentary response to an orogenic process is important for determining whether South China had compressional or extensional orogeny during the period from the Late Permian to the Middle Triassic besides the tectonic and magmatologic evidence. An intracontinental collision event took place between the Yangtze and Cathaysia blocks in the Late Permian. Beginning at the Late Triassic, the tectonic movement was completely changed in nature and entered a post-collisional extensional orogenic and basin-making process. This paper presents sedimentological evidence from the Late Permian to the Middle Triassic in the Shiwandashan basin at the southwestern end of the junction zone between the Yangtze and Cathaysia blocks.  相似文献   

12.
梁新权  周云  蒋英  温淑女  付建刚  王策 《岩石学报》2013,29(10):3592-3606
二叠纪所发生的东吴运动是华南非常重要的构造事件之一。但在构造运动方式、动力学机制以及岩浆-沉积-成矿等方面存在明显的地区差异性。在扬子板块,东吴运动主要发生在中、晚二叠世之间,由地幔柱活动引起,表现为地壳的大规模抬升和大火成岩省的形成;而在华夏板块,东吴运动发生时间相对较早,始于早二叠世晚期,可能由古特提斯洋的俯冲、闭合以及陆陆碰撞引起,主要体现造山作用和前陆盆地的形成以及大量二叠纪花岗岩的侵入。对晚二叠世吴家坪组碎屑锆石所进行的LA-ICPMS U-Pb年龄系统研究表明,扬子和华夏碎屑锆石所构成的年龄频谱和所反映的信息亦存在明显的地区差异。来自扬子板块吴家坪组碎屑锆石年龄主要集中在250~272Ma,峰值为259Ma,这与峨眉山玄武岩的喷发时间非常一致,说明碎屑物质主要来自峨眉山大火成岩省;来自华夏板块龙潭组(相当于吴家坪组)碎屑锆石年龄明显与扬子板块吴家坪组碎屑锆石年龄不一样,华夏龙潭组碎屑锆石年龄变化范围宽广,介于250~3652Ma之间,具有258Ma、290Ma、447Ma、988Ma和1880Ma 5个大的峰值以及360Ma、541Ma、823Ma和2500Ma 4个小的峰值。这些锆石年龄,除了2500Ma外,在华夏地块中都有同期岩浆岩出露。这说明华夏吴家坪组碎屑物源复杂,源区经历了复杂的地壳演化历史,包括晋宁、加里东和印支等造山作用。华夏板块晚二叠世早期碎屑物源可能通过造山作用和短距离搬运来自华夏本身。  相似文献   

13.
As an important part of South China Old Land, the Jiangnan Orogenic Belt plays a significant role in explaining the assembly and the evolution of the Upper Yangtze Block and Cathaysia, as well as the structure and growth mechanism of continental lithosphere in South China.The Lengjiaxi and the Banxi groups are the base strata of the west section of the Jiangnan Orogenic Belt.Thus, the research of geochronology and tectonic evolution of the Lengjiaxi and the Banxi groups is significant.The maximum sedimentary age of the Lengjiaxi Group is ca.862 Ma, and the minimum is ca.822 Ma.The Zhangjiawan Formation, which is situated in the upper part of the Banxi Group is ca.802 Ma.The Lengjiaxi Group and equivalent strata should thus belong to the Neoproterozoic in age.The Jiangnan Orogenic Belt consisting of the Lengjiaxi and the Banxi groups as important constituents is not a Greenville Orogen Belt(1.3 Ga–1.0 Ga).The Jiangnan Orogenic Belt is a recyclic orogenic belt, and the prototype basin is a foreland basin with materials derived from the southwest and the sediments belong to the active continental sedimentation.By combining large amounts of dating data of the Lengjiaxi and the Banxi groups as well as equivalent strata, the evolutionary model of the western section of the Jiangnan Orogenic Belt is established as follows: Before 862 Ma, the South China Ocean was subducted beneath the Upper Yangtze Block, while a continental island arc was formed on the side near the Upper Yangtze Block.The South China Ocean was not closed in this period.From 862 Ma to 822 Ma, the Upper Yangtze Block was collided with Cathaysia; and sediments began to be deposited in the foreland basin between the two blocks.The Lengjiaxi Group and equivalent strata were thus formed and the materials might be derived from the recyclic orogenic belt.From 822 Ma to 802 Ma, Cathaysia continued pushing to the Upper Yangtze Block, experienced the Jinning-Sibao Movement(Wuling Movement); as result, the folded basement of the Jiangnan Orogenic Belt was formed.After 802 Ma, Cathaysia and the Upper Yangtze Block were separated from each other, the Nanhua rift basin was formed and began to receive the sediments of the Banxi Group and equivalent strata.These large amounts of dating data and research results also indicate that before the collision of the Upper Yangtze Block with Cathaysia, materials of the continental crust became less and less from the southwest to the east in the Jiangnan Orogeneic Belt; only island arc and neomagmatic arc were developed in the eastern section.Ocean-continent subduction or continent-continent subduction took place in the western and southern sections, while intra-oceanic subduction occurred in the eastern section.Comprehensive analyses on U-Pb ages and Hf model ages of zircons, the main provenance of the Lengjiaxi Group is Cathaysia.  相似文献   

14.
In the transitional period between the Middle and the Late Triassic, the Indochina orogeny caused two tectonic events in South China: (1) the formation and uplift of the Qinling-Dabie orogenic belt along the northern margin of the South China Plate, due to its collision with the North China Plate; and 2) the development of a 1300-km-wide intra-continental orogen in the southeastern part of the South China Plate, which led to a northwestward movement of the foreland thrust-fold zone. These tectonic events resulted in the ending of the Yangtze Platform, and were a stable paleogeographic factor from the Eidacaran to the end of the Middle Triassic. This platform was characterized by the widespread development of shallow-water carbonates. After the end of the Yangtze Platform, the upper Yangtze foreland basin (or Sichuan foreland basin) was formed during the Late Triassic and became a accumulation site of fluvial deposits that are composed of related strata of the Xujiahe Formation. In western Sichuan Province, the Xujiahe Formation overlies the Maantang Formation shallow-water carbonate rocks of the Xiaotangzi Formation siliciclastic rocks (from shelf shales to littoral facies). The sequence-stratigraphic framework of the Upper Triassic in the upper Yangtze foreland basin indicates a particular alluvial architecture, characterized by sequences composed of (1) successions of low-energy fluvial deposits of high-accommodation phases, including coal seams, and (2) high-energy fluvial deposits of low-accommodation phases, including amalgamated river-channel sandstones. The spatial distribution of these fluvial deposits belonging to the Xujiahe Formation and its relative strata is characterized by gradual thinning-out, overlapping, and pinching-out toward both the east and south. This sedimentary record therefore expresses a particular sequence-stratigraphic succession of fluvial deposits within the filling succession of the foreland basin. The sequence-stratigraphic framework for the Upper Triassic in the Upper Yangtze region provides a record of the end of the Yangtze Platform and the formation of the upper Yangtze foreland basin.  相似文献   

15.
印支造山带对华南地质演化具有重要影响,南盘江盆地作为华南与印支造山带相关的最大的盆地,其构造演化过程备受关注,然而对于盆地由伸展到挤压的构造转换时限还存在争议。西林县位于南盘江盆地的中部,古生界和中-下三叠统出露良好,是进行沉积大地构造学研究的理想地区。为进一步明确南盘江盆地的构造演化过程,本文选取南盘江盆地中部西林县一带中-下三叠统进行了详细的沉积相分布和演化、古水流以及碎屑组成分析。结果表明,空间上,下三叠统自下而上自北向南依次出露:(1)泥岩、泥灰岩、砂屑灰岩和凝灰岩构成的潮坪-泻湖相沉积;(2)砾岩、含砾砂岩、细砂岩和粉砂岩构成的块体搬运沉积(MTD,Mass-transport deposit)与浊积扇相沉积互层;(3)中粗砂岩、粉砂岩、泥岩组成的浊积扇相沉积,构成向上水体急剧加深的沉积序列。中三叠统为一套浊积扇相沉积,由粗砂岩、细砂岩、粉砂岩和泥岩组成。古水流和碎屑组成分析结果显示,西林县一带下三叠统碎屑物主要来自北侧西林-隆林一带的碳酸盐岩台地,而中三叠统碎屑除来自北侧相邻碳酸盐岩台地外,还可能来自江南造山带、康滇古陆、云开地块和峨眉山玄武岩。沉积相的垂向变化记录了西林一带由古生代孤立碳酸盐岩台地向三叠纪半深海浊积岩盆地的演化过程,而早三叠世MTD是盆地张开过程中的直接沉积记录,以上地质事实暗示了南盘江盆地在早三叠世受控于区域伸展体制,西林一带的古生代孤立碳酸盐岩台地则是伸展过程中形成的断隆。盆地内的基性岩墙侵位(258~248Ma)以及西林一带早三叠世晶屑沉凝灰岩的锆石U-Pb年代学分析结果(249.4±1.2Ma)表明南盘江盆地在晚二叠世至早三叠世处于伸展构造背景之下,中三叠统为半深海浊积岩沉积则表明这一伸展过程至少持续至中三叠世。由于在时间上和空间上,南盘江盆地的张开都与古特提斯分支洋盆的俯冲消减有关,因而我们认为南盘江盆地也是晚二叠世到中三叠世古特提斯洋岩石圈俯冲体系的一部分。由于南盘江盆地及其邻近区缺失上三叠统沉积,这可能说明古特提斯洋俯冲结束于中三叠世。  相似文献   

16.
地层不整合接触是研究地质发展历史和鉴定地壳运动特征的重要依据。通过大范围露头尺度和填图尺度不整合面的识别,结合不同时代地层沉积体系的特征及构造变形样式的对比研究,发现东昆仑造山带东段晚古生代—中生代地层由底到顶共发育有4个不同类型的不整合面,分别是上二叠统格曲组与上石炭统浩特洛哇组之间的角度不整合面、中三叠统希里可特组与闹仓坚沟组之间的微角度不整合面、上三叠统八宝山组与下伏不同时代地层之间的角度不整合面、下侏罗统羊曲组与上三叠统八宝山组之间的平行不整合面。这几个不同时代的不整合面分别代表了东昆仑东段晚古生代—中生代地质演化时期中特定的构造事件。其中,格曲组与浩特洛哇组角度不整合关系代表东昆仑造山带南缘阿尼玛卿—布青山古特提斯洋晚二叠世开始向北俯冲的构造事件;希里可特组与闹仓坚沟组微角度不整合关系与陆(弧)陆局部差异性初始碰撞的洋陆转换构造事件密切相关;八宝山组与下伏不同时代地层角度不整合关系是东昆仑地区分布较广、意义重大的一个不整合面,代表中三叠世晚期—晚三叠世早期东昆仑地区陆(弧)陆全面碰撞的主造山构造事件,同时该期碰撞造山事件铸就了东昆仑及其周缘地区的基本构造格架。羊曲组与八宝山组之间平行不整合面则与晚三叠世晚期—早侏罗世早期陆内演化过程中地壳垂向抬升事件相关。这些不整合面的厘定及其代表的相应构造事件对于合理建立东昆仑地区晚古生代—中生代构造演化过程具有重要意义。  相似文献   

17.
东北及邻区晚古生界及其相关地层间的接触关系含有丰富的大地构造信息,本文系统梳理了这些资料,用以阐述佳-蒙地块的形成与演化。佳-蒙地块南缘的西别河组、北缘的卧都河组及东缘的黑台组等晚志留世—早泥盆世地层底部均发育不整合(或非整合),揭示了东北地区曾经历了一次十分重要的大地构造运动,标志着佳-蒙地块的形成。区内泥盆纪—石炭纪和石炭纪—二叠纪地层之间多为整合接触,说明这一时期佳-蒙地块处于稳定沉降接受沉积阶段。佳-蒙地块南缘晚二叠世林西组底部的平行不整合界面及其上部的磨拉石建造,以及中—晚二叠世地层序列由海相向陆相的转化,表明林西组处于前陆盆地的沉积环境,标志着佳-蒙地块与华北板块发生碰撞拼合。佳-蒙地块南缘早三叠世卢家屯组底部的不整合及卢家屯组下部砾岩所具有的磨拉石建造特征,说明碰撞造山作用仍在持续进行,属于递进造山作用。晚三叠世大酱缸组底部的不整合,说明造山作用已经完成,佳-蒙地块独立发展的历程结束。  相似文献   

18.
李勇  苏德辰  董顺利  颜照坤  贺佩  闫亮 《岩石学报》2011,27(8):2413-2422
晚三叠世龙门山前陆盆地是在扬子板块西缘被动大陆边缘的基础上由印支造山运动而形成的,盆地中地层充填厚度巨大,包括晚三叠世卡尼期至瑞提期的马鞍塘组、小塘子组和须家河组,持续时间达20Myr,显示为1个以不整合面为界的构造层序。位于晚三叠世龙门山前陆盆地构造层序与下伏古生代-中三叠世被动大陆边缘构造层序之间的不整合面属于龙门山前陆盆地的底部不整合面,标志了扬子板块西缘从被动大陆边缘盆地到前陆盆地的转换。该底部不整合面位于晚三叠世马鞍塘组与中三叠世雷口坡组之间,显示为平行不整合面或角度不整合面,在接触面上发育冲蚀坑、古喀斯特溶沟、溶洞、溶岩角砾、古风化壳的褐铁矿、黏土层及石英、燧石细砾岩等底砾岩。该不整合面向南东方向不断地切削下伏地层,且均发育岩溶风化面,上覆的晚三叠世地层沿不整合面向南东超覆,显示了从整合面到不整合面的变化过程,并随着逆冲楔的推进向南东方向迁移,其超覆线、侵蚀带和相带的走向线与龙门山冲断带的走向大致平行。底部不整合面显示为典型的前陆挠曲不整合面,标志着龙门山前陆盆地的形成和扬子板块西缘挠曲下降和淹没过程,底部为古喀斯特作用面,下部为碳酸盐缓坡和海绵礁建造,上部为进积过程中形成的三角洲沉积物,具有向上变粗的垂向结构,表明底部不整合面和前缘隆起的抬升是扬子板块西缘构造负载的挠曲变形的产物,显示了在卡尼期松潘-甘孜残留洋盆的迅速闭合和逆冲构造负载向扬子板块的推进过程。本次在对晚三叠世龙门山前陆盆地底部不整合面的风化壳、残留厚度、地层缺失、剥蚀厚度、地层超覆等研究的基础上,计算了底部不整合面迁移速率、前缘隆起迁移速率、地层上超速率和前缘隆起的剥蚀速率,并与逆冲楔推进速率进行了对比,结果表明,底部不整合面迁移速率、前缘隆起的迁移速率、地层上超速率均介于3~18mm·a-1之间,其与逆冲楔推进速率(5~15mm·a-1)相似,因此,可用底部不整合面迁移速率、前缘隆起的迁移速率和地层上超速率代表逆冲楔推进速率。但是前缘隆起的剥蚀速率很小,介于0.02~0.08mm·a-1之间,仅为逆冲楔推进速率的1/100。  相似文献   

19.
襄樊——广济断裂西段的三里岗——三阳地区出露有构造混杂岩,以含蛇绿岩残块为特征,经历了复杂的构造变形和演化过程。不同区段的构造解析与对比表明,中生代以来该构造混杂岩带主要遭受了4期变形构造的叠加改造:1)高温塑性变形(D1),表现为蛇绿岩残块内部具网状强应变带和透镜状弱应变域相互交织的构造变形样式,强应变带形成以镁铁质糜棱岩为特征的高温韧性剪切带,显示深层次构造变形特征;2)逆冲推覆变形(D2),构造混杂岩带发育叠瓦状逆冲推覆构造和双冲构造,南界韧性剪切带是构造混杂岩带整体运移的主推覆面,发育长英质糜棱岩,形成于中等构造层次,岩石中发育镁铁质糜棱岩糜棱面理的褶皱构造,显示陆内逆冲推覆对先期高温塑性变形构造的叠加改造;3)韧脆性右行平移剪切(D3),形成构造混杂岩带内部浅层次构造变形,构造混杂岩带南侧的花山群钙质片岩揉皱变形,形成枢纽近直立的不对称褶皱,指示右行平移剪切变形;4)伸展正断层(D4),主要发育于构造混杂岩带北侧,呈NW——SE向展布,控制晚白垩世断陷盆地的形成与沉积充填。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号