首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以西安地铁隧道穿越骊山山前断裂为研究原型,分析了该断裂的活动特征,并基于近场区地震危险性分析结果,对断裂黏滑活动可能产生的地表最大垂直位错量进行了预测;运用数值模拟方法,研究了断裂错动造成地层与隧道的变形响应特征,并对分段隧道结构受损的临界位错量值进行了分析验证;计算了断裂活动的影响范围,确定了地铁隧道穿越断裂带的主要设防区域。研究结果表明,随着断裂位错量的增大,上盘地层的沉降响应表现较明显,上下盘地层的差异沉降区域集中在断裂带附近,并呈"倒三角"形状逐渐向两侧扩展;当断裂位错量大于20cm时,上下盘远离断裂带的地铁隧道差异沉降尤为严重;当上盘沉降量达到50cm时,相邻分段隧道产生拉张、位错破坏;基于隧道拱顶处地层的竖向位移变化特征,得到地铁隧道穿越该断裂带的最小纵向设防长度为上盘40m、下盘15m,经对比验证,数值模拟计算结果与现场勘察结论一致;最后提出了相应的设防建议措施。  相似文献   

2.
黄强兵  彭建兵  邓亚虹  范文 《岩土力学》2010,31(9):2882-2888
基于西安地裂缝成因、基本特征和未来活动趋势分析,通过几何缩比为1:5的地裂缝活动模型试验和地裂缝活动对盾构隧道影响的数值模拟计算,研究了西安地铁2号线隧道正交穿越地裂缝带的设防参数。通过分析地裂缝年平均活动速率和历史最大活动量,确定了与地铁2号线相交的各条地裂缝的最大垂直位移量的预测值和设计建议值。模型试验和数值模拟结果表明,正交条件下地铁隧道在地裂缝活动地段的设防宽度为60 m,即上盘为35 m,下盘为25 m;沿隧道纵向地裂缝两侧地层变形规律呈现台阶状突变变形,隧道纵向设计可将上盘视为整体下降来考虑;地铁隧道穿越地裂缝带必须分段设缝以适应地裂缝的变形,其分段长度在地裂缝主影响区按10 m进行设防,在一般影响区可按10~15 m进行分段设防。研究结果可为地铁隧道穿越地裂缝带的结构设计提供参考。  相似文献   

3.
孙飞  张志强  易志伟 《岩土力学》2019,(8):3037-3044,3053
以乌鲁木齐市轨道交通1号线地铁区间隧道穿越九家湾断层为工程依托,开展地铁隧道分段式衬砌结构穿越倾角60°正断层的大型剪切错动模型试验,对断层错动模拟过程中的隧道结构变形、应变分布特征、围岩压力、开裂形态等关键力学特征进行监测分析,获得了正断层黏滑错动下的隧道结构响应规律。研究结果表明:(1)正断层黏滑错动影响下,断层面处的隧道拱脚处于压剪状态,断层面附近的上盘仰拱及下盘拱顶处于纵断面内的受拉状态,断层面两侧较大范围内的隧道仰拱内侧及墙脚外侧处于横断面内的大偏心受力状态;(2)断层错动后,隧道开裂破坏形态主要包括斜裂缝、纵向裂缝及环向裂缝;(3)正断层黏滑错动达到7.0cm(相当于实际错动量1.75m)后,上盘隧道结构的破坏范围为4.2D(D为隧道跨度),下盘破坏范围为2.4D,上盘破坏范围明显大于下盘。  相似文献   

4.
震害调研表明,活动性断裂带区域的隧道灾害最为严重。针对错动作用下穿越活动性断裂带隧道的纵向响应进行了研究,推导了隧道纵向力学响应的解析解并进行了验证。考虑断裂破碎带围岩力学性质较差且处于错动变形的主要影响区,将隧道沿纵向进行分区,包括错动影响区、过渡影响区和非影响区。采用Pasternak双参数弹性地基梁,假定不同分区的地基参数和计算模式不同,建立了满足变形和内力连续的隧道纵向力学解析模型并进行了求解。解析计算结果与数值模拟结果、室内试验数据基本一致,验证了解析解的正确性。结果表明:错动作用下,活动性断裂带区域的隧道内力和变形发生了显著变化;隧道纵向挠曲变形与错动方向一致,但在断裂带与上下盘交界区域发生了反向的挠曲;在正断层错动下,纵向弯矩在断裂带与上下盘交界区域达到最大值,且上、下盘区域的隧道拱顶分别出现受拉和受压区域;断裂带区域内的剪力远大于其他区域,且受到较大弯矩,隧道结构易发生破坏。上述计算结果与实际调研结果相一致,表明了提出的解析计算方法可用于活动性断裂带错动下的隧道纵向响应分析。最后,针对地基系数和断裂带宽度两个关键参数进行了敏感性分析,得到了有益规律,可为该类区域的隧道设计和施工提供技术支撑。  相似文献   

5.
震害调研表明,活动性断裂带区域的隧道灾害最为严重。针对错动作用下穿越活动性断裂带隧道的纵向响应进行了研究,推导了隧道纵向力学响应的解析解并进行了验证。考虑断裂破碎带围岩力学性质较差且处于错动变形的主要影响区,将隧道沿纵向进行分区,包括错动影响区、过渡影响区和非影响区。采用Pasternak双参数弹性地基梁,假定不同分区的地基参数和计算模式不同,建立了满足变形和内力连续的隧道纵向力学解析模型并进行了求解。解析计算结果与数值模拟结果、室内试验数据基本一致,验证了解析解的正确性。结果表明:错动作用下,活动性断裂带区域的隧道内力和变形发生了显著变化;隧道纵向挠曲变形与错动方向一致,但在断裂带与上下盘交界区域发生了反向的挠曲;在正断层错动下,纵向弯矩在断裂带与上下盘交界区域达到最大值,且上、下盘区域的隧道拱顶分别出现受拉和受压区域;断裂带区域内的剪力远大于其他区域,且受到较大弯矩,隧道结构易发生破坏。上述计算结果与实际震害调研结果相一致,表明了本文提出的解析计算方法可用于活动性断裂带错动下的隧道纵向响应分析。最后,针对地基系数和断裂带宽度两个关键参数进行了敏感性分析,得到了有益规律,可为该类区域的隧道设计和施工提供技术支撑。  相似文献   

6.
震害调研表明,活动性断裂带区域的隧道灾害最为严重。针对错动作用下穿越活动性断裂带隧道的纵向响应进行了研究,推导了隧道纵向力学响应的解析解并进行了验证。考虑断裂破碎带围岩力学性质较差且处于错动变形的主要影响区,将隧道沿纵向进行分区,包括错动影响区、过渡影响区和非影响区。采用Pasternak双参数弹性地基梁,假定不同分区的地基参数和计算模式不同,建立了满足变形和内力连续的隧道纵向力学解析模型并进行了求解。解析计算结果与数值模拟结果、室内试验数据基本一致,验证了解析解的正确性。结果表明:错动作用下,活动性断裂带区域的隧道内力和变形发生了显著变化;隧道纵向挠曲变形与错动方向一致,但在断裂带与上下盘交界区域发生了反向的挠曲;在正断层错动下,纵向弯矩在断裂带与上下盘交界区域达到最大值,且上、下盘区域的隧道拱顶分别出现受拉和受压区域;断裂带区域内的剪力远大于其他区域,且受到较大弯矩,隧道结构易发生破坏。上述计算结果与实际震害调研结果相一致,表明了本文提出的解析计算方法可用于活动性断裂带错动下的隧道纵向响应分析。最后,针对地基系数和断裂带宽度两个关键参数进行了敏感性分析,得到了有益规律,可为该类区域的隧道设计和施工提供技术支撑。  相似文献   

7.
以西安市昆明路地下综合管廊穿越f3地裂缝为研究对象,基于有限元数值模拟分析了地裂缝错动作用下分段地下综合管廊的变形与受力特征。结果表明:地裂缝错动作用下地下管廊顶板竖向沉降变形整体上呈现反“S”形特征,其变形量随地裂缝错动量的增大而增大;管廊结构纵向变形大致可划分3个变形段即下盘翘曲变形段、不均匀沉降段和上盘整体沉降段;在管廊设计使用寿期100 a内地裂缝错动量为50 cm时,管廊接头部位顶板的水平位移在地裂缝带处达到峰值,为4.1 cm,而底板水平位移为3.2 cm,管廊接头部位易发生张开、错位破坏现象,应予以加固;在地裂缝带附近,上盘管廊底板的接触压力减低至0,存在底板脱空现象,应预留注浆孔便于必要时进行注浆加固处理,而下盘管廊底板的接触压力则有明显增大的趋势;当地裂缝错动量超过20 cm时管廊结构顶、底板的拉应变超过了混凝土的极限拉应变,管廊变形破坏模式主要为拉张破坏。研究结果可以为西安市及其他地裂缝发育区地下综合管廊穿越地裂缝带的结构设计提供科学依据。  相似文献   

8.
地裂缝是西安市最典型的地质灾害之一,地裂缝地段地铁隧道施工引起地层及地表沉降是较为突出的工程地质和岩土工程问题。文章以西安地铁六号线浅埋暗挖隧道穿过f8地裂缝为工程背景,基于有限元数值模拟,对地裂缝地段交叉中隔墙法(CRD工法)暗挖施工引起的地表沉降和隧道变形进行了分析。结果表明:暗挖施工引起的地表沉降随开挖进尺呈反S型曲线变化特征,地裂缝带上盘的开挖进尺影响范围大于下盘;隧道中心线地表沉降在地裂缝带出现错台且靠近上盘5 m处出现集中沉降区;地裂缝地段隧道暗挖施工对地表的影响区范围约为80 m即上盘约45 m、下盘约35 m,在此范围应考虑暗挖施工对附近地表建(构)筑物的影响;开挖过程中地裂缝带上盘沉降过程变长且大于下盘;地表横向变形曲线符合高斯分布,上盘沉降大于下盘,在上盘靠近地裂缝位置处地表沉降槽宽度、沉降量明显增大;距地裂缝带5 m处上盘拱顶出现最大沉降,其值为25 mm,而在地裂缝位置处拱底出现27 mm的隆起变形,拱顶和拱底变形在地裂缝带附近出现错台;地裂缝带隧道暗挖施工对拱顶、拱底影响区范围分别为50 m和55 m,靠近上盘地裂缝位置附近隧道暗挖施工衬砌应及时支护,防止土体塌落与隧道变形。研究结果可为西安地铁隧道穿越地裂缝带暗挖施工提供科学依据和技术指导。  相似文献   

9.
针对隐伏正断层活动引发上覆黏土中的隧道位错破坏研究相对不足,基于不排水条件的总应力分析方法,展开隧道破坏的有限元计算。数值计算结果与试验数据表明,正断层错动影响下,上覆黏土变形由下盘一侧向上盘一侧可划分为静止区、剪切区和刚体位移区。上覆土体中产生的不均匀沉降区域随埋深逐渐减小,使得地下结构物的影响范围随埋深而减小,但破坏程度则逐渐增加。当隧道与周边土体可近似为绑定接触时,基岩断层投影附近区域以受弯变形破坏为主,而远离基岩断层投影的两侧区域则呈现受拉破坏。隧道拱顶衬砌在基岩下盘一侧受拉,在基岩上盘一侧则为受压。拱底与拱顶的轴向应变分量呈反对称分布。  相似文献   

10.
拟建西安地铁2号线穿越10条地裂缝,地裂缝活动将影响地铁2号线的安全运营。应用三维离散元程序3DEC建立三维计算模型,分析了裂缝带错动对地铁区间隧道盾构管线的影响,得出了不同错距工况下隧道衬砌的变形和应力。通过计算得知,当土体上下盘底部竖向错距由10cm增大到93cm时,引起的衬砌竖向变形量由0. 712cm增大到13. 99cm,且最大变形均发生在沿纵向约35~36m处,距裂缝带距离约为9. 5~8. 5m;引起的管道纵向最大拉应力则由0. 65MPa增大到18. 43MPa,最大压应力由0. 611MPa增大到16. 9MPa,且最大应力区与最大变形区一致。这一结论的获得可为地铁设计、施工及其安全运营提供科学的理论指导及设计依据。  相似文献   

11.
地铁隧道受平行向地裂缝错动影响数值分析   总被引:2,自引:0,他引:2  
西安地铁3号线局部地段通过f7地裂缝上盘,并且和f7地裂缝近似平行。基于f7地裂缝长期水准监测预测的未来最大活动量值,采用数值方法,研究了西安典型的黄土、古土壤和粉质黏土地层下地铁隧道受平行向地裂缝活动的影响。通过逐渐变化地铁隧道衬砌外皮同地裂缝间的距离,计算了6种工况下地铁隧道衬砌的变形和内力。计算结果表明:当地铁隧道衬砌外皮距离地裂缝30m时,隧道衬砌是安全,并有一定的安全储备。  相似文献   

12.
陡倾断层上下盘开挖引起地表变形的数值模拟分析   总被引:1,自引:0,他引:1  
考虑地下开挖区与断层相对位置关系,采用简化数值模型对陡倾断层上下盘开挖引起的地表变形特征进行了数值模拟。结果表明,当断层位于地下开挖引起地表变形的压缩区且开挖区位于下盘时,地表出现不连续变形的可能性小;当断层位于地下开挖引起地表变形的压缩区且开挖区位于上盘时,随下向开挖进行地表断层处裂缝有减小趋势;而当断层位于地下开挖引起的地表变形拉张区时,断层出露处水平拉张明显,表现为拉张裂缝,随下向开挖深度增加、规模增大,不论开挖区位于上盘还是下盘,极可能导致地表出现正断层式的错动.  相似文献   

13.
西安地铁正交地裂缝隧道的模型试验研究   总被引:2,自引:1,他引:1  
以西安地铁二号线穿越地裂缝的区间隧道为对象,通过几何相似比尺50:1的物理模型试验,开展了地裂缝活动条件下地铁隧道骑缝(变形缝与地裂缝一致)正交穿越地裂缝时衬砌结构与围岩相互作用机制的试验研究。结果表明,在地裂缝发生各级错动位移条件下,不同围岩应力场的围岩土压力、衬砌结构应力及其不均匀沉降位移变化规律相似;上下盘内的衬砌结构之间具有明显的错断位移,下盘内衬砌结构的沉降量越小,上盘内衬砌结构的沉降量越大,均呈渐变趋势;上盘内衬砌结构应力、围岩土压力随地裂缝错动位移的增加而减小,下盘衬砌结构应力和围岩土压力随地裂缝错动位移的增加而增大,围岩土压力和衬砌结构应力的增量峰值均发生在地裂缝附近。模型试验研究研究结果对于分析地裂缝活动区间地铁隧道工程的运营及维护具有重要的理论与实际意义。  相似文献   

14.
隧道斜交穿越地裂缝的模型试验研究   总被引:1,自引:0,他引:1  
李建军  邵生俊  熊田芳 《岩土力学》2010,31(Z1):115-120
西安地区由北向南间隔分布有十多条近东西走向的地裂缝,建设中的多条地铁线路与地裂缝呈斜交状态。为了揭示地铁隧道斜交穿越地裂缝时受地裂缝活动而产生的力学性状变化,采用50:1几何相似比尺的物理模型试验仪,在合理模拟围岩地层、衬砌结构、应力条件、地裂缝与洞轴线交角及其错动位移基础上,开展了斜交地裂缝活动条件下隧道衬砌结构与围岩相互作用的物理模型试验研究,并与正交地裂缝活动下的测试结果进行了对比分析。表明斜交地裂缝活动对地铁隧道的影响范围更大,各变形缝均有明显的沉降差发展;邻近斜交地裂缝的衬砌结构易处于“悬臂梁”受力状态,衬砌结构不均匀沉降使其产生旋转位移,围岩土压力变化使衬砌结构内力产生显著变化;随着地裂缝错动位移的发展,上盘内拱顶和下盘拱顶、拱底出现围岩作用的加强,而上盘拱底出现围岩作用的松弛。与隧道正交穿越地裂缝的情况比较,斜交穿越地裂缝时围岩土压力和衬砌结构内力变化更大,易出现拉裂破坏。  相似文献   

15.
《岩土力学》2017,(Z1):189-194
采用土工离心机试验,研究正断层和逆断层错动引起上覆饱和黏土层在20步连续断层错动作用下的变形特性以及裂缝扩展的规律。研究结果显示,正断层错动后地表呈现多条且平行断层面的张拉裂缝,随着错动量的增大,正断层破裂逐渐偏离基岩断层的错动方向,偏向上盘一侧,裂缝逐渐向上盘的方向开裂,裂缝主要发生在断层延长线附近;逆断层错动后地表裂缝均分布在上盘,而且离断层尖端延长线较远,产生的裂缝较细、数量较少,随着断层错动量的增大,地表位移增大,靠近断层下盘一侧的地表受断层错动影响较小,位于断层上盘一侧的地表则随着断层错动显著移动;随着断层错动量的增大,最大地表坡度随之增大,正断层引起的最大坡度的位置逐渐向上盘方向移动,逆断层引起的最大坡度的位置逐渐向下盘方向移动,逆断层的影响范围比正断层的影响范围更广。  相似文献   

16.
闫高明  申玉生  高波  郑清  范凯祥  黄海峰 《岩土力学》2019,40(11):4450-4458
数次大地震震害调查表明,隧道穿越断层处是受地震破坏较为严重的区域。为此,基于地震动能量的传播与释放特征,建立了一种穿越断层隧道结构抗减震的设计理念,并提出了一种穿越断层隧道节段接头形式。以跨断层龙溪隧道为依托,采用振动台模型试验研究了单一错动方式与断层错动-震动综合加载方式下带有接头的衬砌结构响应。研究结果证明:强震作用下,地震波对穿越断层隧道的影响是不可忽略的,断层错动-震动综合加载方式是合理的;新型接头能够自身适应性变形协调减轻隧道结构震害,节段间接头的设置改变了隧道的变形形态,提高隧道整体抗震能力;同时减小了衬砌的环向破坏,消弱了节段间地震力的传递,实现了衬砌震害的局部化。由于接头的设置,上盘隧道结构震害集中在距断层1.8倍洞径的范围内,下盘处隧道衬砌震害集中在距断层1.2倍洞径范围内;上盘的衬砌震害主要是由错动-震动联合作用造成的,而下盘衬砌震害主要受地震动的影响。  相似文献   

17.
柴达木盆地逆掩断裂发育,由于受断裂影响,下盘成像困难且复杂。为此以地震数值模拟技术为依托,综合地震、测井数据建立地质模型开展正演,指导地震资料的处理解释工作。英雄岭地区逆掩带正演结果表明:由于上盘高速地层的存在,对下盘断裂覆盖地层造成单斜、局部假断层、基岩同相轴上拉、断面形态发生改变等地震假象。文中的成果对柴达木盆地英雄岭地区及其他构造油气藏的勘探目标区的地震数据处理、解释具有借鉴作用。  相似文献   

18.
地裂缝活动对土体应力与变形影响的试验研究   总被引:4,自引:1,他引:3  
通过进行西安典型地层环境下地裂缝活动的大型模型试验,研究了隐伏地裂缝活动引起附近土体应力与变形的规律。试验表明,地裂缝活动在上盘土体中产生负的附加应力,引起土体应力降低,而在下盘土体中产生正的附加应力,引起土体应力增强,且距离地裂缝越远由地裂缝活动引起的附加应力越小。地裂缝活动导致其两侧土体发生台阶状位移突变现象,随着地层由深至浅,土体变形范围明显增大,且影响区范围上盘大于下盘。地裂缝活动引起附近土体应力的分布在空间上大致分为4个区域即下盘原始应力区、应力增强区、应力降低区和上盘原始应力区,其中应力降低区范围约为应力增强区的1.5~2倍。同时,地裂缝附近土体沉降变形也可分为3个带,即下盘稳定带、差异沉降过渡带和上盘稳定带,其中上盘差异沉降带范围约为下盘沉降差异带的2倍。  相似文献   

19.
简述了临潼—长安断裂带的特征及与地裂缝的关系,根据临潼—长安断裂带内两场地地层勘探剖面,证实了临潼—长安断裂带内地裂缝的存在,表明其与发育在临潼—长安断裂带上盘的西安地裂缝具有相同的性质和特征。同时通过地裂缝两侧地层的错断及厚度变化分析了地裂缝的特点及其地质历史活动规律,表明临潼—长安断裂带内的地裂缝活动受断裂活动影响也表现为东强西弱的特征。  相似文献   

20.
地裂缝活动作用下地层应力和位移传递规律研究   总被引:3,自引:3,他引:0       下载免费PDF全文
以西安地裂缝典型地段为研究对象,建立基于实际地裂缝活动方式的地质力学模型,通过FLAC3D数值模拟,研究地裂缝活动作用下地层应力和位移传递规律。结果表明:地裂缝活动作用下,地表竖向沉降变形曲线近似呈反“S”形,表现出“牵引挠曲”现象,水平位移曲线出现明显波峰现象;随着地裂缝位错量的增大,地表竖向和水平位移均逐渐增大;基于地裂缝活动引起的地表变形平均倾斜值,确定了地裂缝带影响区范围为上盘21 m和下盘13 m。地裂缝活动引起两侧地层断距由深部到浅表部逐渐减小,具有明显的变形传递衰减特征,且地层断距随埋深的变化曲线可近似概化为一个四次多项式方程。地裂缝活动导致上盘地层出现应力降低区,下盘地层出现应力增强区,上盘应力降低区范围大于下盘应力增强区,且上、下盘应力变化范围随着位错量的增大均逐渐增大。地裂缝活动作用下地裂缝两侧地层应力影响区随地层埋深的增大而增大,其与埋深之间关系近似满足三次多项式方程。研究结果可为盆地断裂控制型地裂缝发育区的工程防灾减灾提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号