首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents new geochemical data on rocks from the Vespor suite, an important mafic unit from the Juruena arc, Roosevelt-Juruena terrain, SW Amazonian craton, northwest Mato Grosso, Brazil, attempting to define their tectonic setting and type of mantle source. The Juruena arc may be part of a magmatic belt (Jamari and Juruena arcs) at the southwestern Amazonian craton during assembly of the Columbia supercontinent. The investigated rocks represent a Paleoproterozoic subduction-related mafic suite of sigmoidal bodies, composed mainly of gabbro, norite, gabbronorite and diorite, that underwent amphibolite facies metamorphism. Here we present also preliminary petrology aspects and zircon U–Pb geochronology. Geochemical character and variation trends of major and trace elements as well as selected trace element ratios suggest that Vespor suite rocks have a tholeiitic lineage of arc affinity controlled by fractional crystallization with a prominent iron enrichment trend. Gabbros, norites and gabbronorites are characterized by enrichment of LILE and weakly to moderately differentiated HFSE patterns, suggesting their deviation from an enriched heterogeneous lithospheric mantle source. Vespor suite rocks are characterized by depletion of Nb–Ta, P and Ti, with flat distribution of HFSE, markedly large variations in most of the LILE, positive anomalies displayed by Ba, K, Th, Sr, Pb and weak negative anomalies of Hf–Zr. These features reflect limited degrees of crustal contamination associated with a subduction-related magma process where the mantle wedge was chemically modified. In addition, the enrichment in LILE and Pb, low values of the ratios (Lan/Smn – 0.83 to 4.58) and (Nbn/Lan – 0.04 to 0.45), but high Th/Yb ratios, gently to moderately sloping REE profiles (La/Ybn = 2.53–7.37), negative anomalies in HFSE (Ta, Zr, Hf, and Ti), and positive anomalies in LILE (Th, Ba, Sr), suggest derivation from a metasomatized lithospheric mantle source above a subduction zone with weak crustal contamination. Both the composition of the mantle source and the degree of partial melting that produced the parental magmas of these rocks, determined by using REE abundance and ratios, indicate that gabbroic/dioritic melts were generated at different degrees of melting of the source: about 5–20% partial melting of a garnet-spinel lherzolite, around 1–10% partial melting of spinel lherzolite source, and approximately 1–5% partial melting of intermediate source composition, and crystallizing between 1.773 and 1.764 Ma.  相似文献   

2.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

3.
Geochemical and isotopic data were used for a comparative analysis of Late Mesozoic (150–120 Ma) granitoids in various geological structures of the upper Amur area. The granitoids are metaluminous high-potassic I-type rocks of the magnetite series. They have variable alkalinity and consist of the monzonite-granite and granosyenite-granite associations. The monzonite-granite association consists of calc-alkaline granitoids of normal alkalinity belonging to the Umlekan-Ogodzhinskaya volcanic-plutonic zone and the Tynda-Bakaran Complex of the Stanovoy terrane. The rocks are characterized by negative anomalies of U, Ta, Nd, Hf, and Ti (in patterns normalized to the primitive mantle), with Eu anomalies pronounced weakly in the granodiorites and quartz and monzodiorites and more clearly in the granites: Eu/Eu* = 0.37–0.95, and (La/Yb)n = 7–24, Tbn/Ybn = 1.4–3.2. The granosyenite-granite association comprises of moderately alkaline rocks, which are subdivided into three groups according to their geochemistry. The first group consists of phase-I granosyenites of the Uskalinskii Massif of the Umlekan-Ogodzhinskaya zone with the highest concentrations of Sc, V, Cr, Co, Ni, Cu, Cs, Rb, Sr, Y, Zr, Yb, and Th; negative anomalies at Ba, Ta, Sr, and Hf; Eu/Eu* = 0.50–0.58, (La/Yb)n = 15–16, and Tbn/Ybn = 1.8. The second group comprises of moderately alkaline granitoids of the Umlekan-Ogodzhinskaya zone and the Khaiktinskii Complex of the Baikal-Vitim superterrane. Geochemically, the granitoids of this group are generally similar to the monzodiorite-granite association and differ from it in having lower concentrations of REE and Y, Eu/Eu* = 6.2–1.0, (La/Yb)n = 28–63, and Tbn/Ybn = 2.1–4.5. The third group consists of granitoids of the Chubachinskii Complex of the Stanovoi terrane, which typically show negative Cs, Rb, Th, U, Ta, Hf, and Ti anomalies; the lowest concentrations of V, Cr, Co, and Ni; and the highest contents of Sr. The granosyenites of the first phase display clearly pronounced negative Eu anomalies (Eu/Eu* = 0.53–0.68), (La/Yb)n = 7–24, and Tbn/Ybn = 0.8–2.0. The granitoids of the second phase have (La/Yb)n = 51–84, no Eu anomalies, or very weak Eu anomalies (Eu/Eu* = 0.97–1.23). The silica-oversaturated leucogranites of the third phase are characterized by elevated concentrations of REE, clearly pronounced Eu anomalies (Eu/Eu* = 0.48), and flat REE patterns (Tbn/Ybn = 1.3). The diversity of the granitoids is demonstrated to have been caused largely by the composition of the Precambrian source, which was isotopically heterogeneous. The rocks of the monzodiorite-granite association and first-group granosyenites of the granosyenite-granite association of the Tynda-Bakaran Complex were supposedly derived from garnet-bearing biotite amphibolites. In contrast to these rocks, the source of the second-group granites of the granosyenite-granite association was of mixed amphibolite-metagraywacke composition. The third-group of granitoids were melted out of Early Proterozoic crustal feldspar-rich granulites of variable basicity, with minor amounts of Archean crustal material. The granitoids were emplaced in a collisional environment, perhaps, during the collision of the Amur superterrane and Siberian craton. This makes it possible to consider these rocks as components of a single continental volcanic-plutonic belt. Original Russian Text ? V.E. Strikha, 2006, published in Geokhimiya, 2006, No. 8, pp. 855–872.  相似文献   

4.
我国东北地区分布有大量中生代(侏罗纪至白垩纪)火山岩。选取大兴安岭西缘玛尼吐组粗安岩-粗面英安岩-流纹岩为研究对象,研究结果显示它们为高钾钙碱性的火山岩,主量、微量元素含量变化较大,SiO2含量为5671%~7185%,Na2O+K2O含量为592%~1018%,Na2O/K2O比值较高,为078~133,Mg#为306~564。玛尼吐组火山岩的稀土元素配分图和微量元素蛛网图右倾明显,可见明显的Nb、Ta、Ti、Sr和Eu负异常(Nb*=017~071,Sr*=024~115,Eu*=049~077)。稀土总量较高,为200×10-6~949×10-6。结果分析可知,玛尼吐组火山岩源岩与霍林河火山岩源岩相似,均为混合了少量先存古老地壳的新生基性下地壳。新生基性下地壳部分熔融形成安山质岩浆,并经角闪石+斜长石+钾长石+磷灰石+钛磁铁矿等的分离结晶形成了玛尼吐组粗安岩-粗面英安岩-流纹岩。玛尼吐组火山岩显著的岛弧地球化学特征说明其形成于与太平洋俯冲有关的岛弧环境。  相似文献   

5.
The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-alkaline granite, as well as metamorphosed Late Paleozoic mafic to granitoid rocks in the Damiao-Changshaoying area. The -2.49 Ga Dantazi Complex comprises dioritic-trondhjemitic-granodoritic-monzogranitic gneisses metamorphosed in amphibolite to granulite facies. Petrochemical characteristics reveal that most of the rocks belong to a medium- to high-potassium calc-alkaline series, and display Mg^# less than 40, right-declined REE patterns with no to obviously positive Eu anomalies, evidently negative Th, Nb, Ta and Ti anomalies in primitive mantlenormalized spider diagrams, εNd(t)=+0.65 to -0.03, and depleted mantle model ages TDM=2.78-2.71 Ga. Study in petrogenesis indicates that the rocks were formed from magmatic mixing between mafic magma from the depleted mantle and granitoid magma from partial melting of recycled crustal mafic rocks in a continental margin setting. The 2.44-2.41 Ga Hongqiyingzi Complex is dominated by metamorphic mafic-granodioritic-monzogranitic gneisses, displaying similar petrochemical features to the Dantazi Complex, namely medium to high potassium calc-alkaline series, and the mafic rocks show evident change in LILEs, negative Th, Nb, Ta, Zr anomalies and positive P anomalies. And the other granitiod samples also exhibit negative Th, Nb, Ta, P and Ti anomalies. All rocks in the Hongqiyingzi Complex show right-declined REE patterns without Eu anomaly. The metamorphic mafic rocks with εNd(t) = -1.64 may not be an identical magmatic evolution series with granitoids that have εNd(t) values of +3.19 to +1.94 and TDM ages of 2.55-2.52 Ga. These granitic rocks originated from hybrid between mafic magma from the depleted mantle and magma from partial melting of juvenile crustal mafic rocks in an island arc setting. All the -311 Ma Late Paleozoic metamorphic mafic rocks and related granitic rocks show a medium-potassium calc-alkaline magmatic evolution series, characterized by high Mg^#, obviously negative Th, Nb, Ta anomalies and positive Sr anomalies, from no to strongly negative Ti anomalies and flat REE patterns with εNd(t) = +8.42, implying that the maflc magma was derived from the depleted mantle. However the other granitic rocks are characterized by right-declined REE patterns with no to evidently positive Eu anomalies, significantly low εNd(t) = -13.37 to -14.04, and TDM=1.97-1.96 Ga, revealing that the granitoid magma was derived from hybrid between maflc magma that came from -311 Ma depleted mantle and granitoid magma from Archean to Early Paleoproterozoic ancient crustal recycling. The geochemistry and Nd isotopic characteristics as well as the above geological and geochronological results indicate that the middle segment of the northern margin of the NCC mainly experienced four crustal growth episodes from Archean to Late Paleozoic, which were dominated by three continental marginal arc accretions (-2.49, -2.44 and 311 Ma), except the 1.76-1.68 Ga episode related to post-collisional extension, revealing that the crustal accretion of this segment was chiefly generated from arc accretion and amalgamation to the NCC continental block.  相似文献   

6.
The Uchi subprovince of the Archean Superior Province is a series of greenstone belts extending 600 km east–west along the southern margin of the North Caribou Terrane protocontinent. The 2.7 Ga Confederation tectonostratigraphic assemblage of the Birch–Uchi greenstone belt, northwest Ontario, is dominated by volcanic suites of mafic, intermediate and felsic composition. Tholeiitic basalts range compositionally from Mg# 59–26 evolving continuously to greater REE contents (La=2–19 ppm; Th/Lapm˜1), with small negative Nb anomalies. Primitive tholeiites are similar to modern intraoceanic arc basalts, whereas evolved members extend to greater concentrations of Ti, Zr, V, Sc, and Y, and lower Ti/Zr, but higher Ti/Sc and Ti/V ratios characteristic of back arc basalts. Calc-alkaline basalts to dacites are characterised by more fractionated REE (La/Ybn=1–8), high Th/Nbpm ratios and deeper negative Nb anomalies; they plot with modern oceanic arc basalts and some may qualify as high magnesium andesites. The two suites are interpreted as a paired arc–back arc sequence. A third group of Nb-enriched basalts (NEB; Nb=9–18 ppm) extend to extremely high TiO2, Ta, P2O5, Sc and V contents, with strongly fractionated REE and ratios of Nb/Ta and Zr/Hf greater than primitive mantle values whereas Zr/Sm ratios are lower. The most abundant rhyolitic suite has extremely enriched but flat trace element patterns and is interpreted as strongly fractionated tholeiitic basalt liquids. A second group are compositionally similar to Cenozoic adakites and Archean high-Al, high-La/Ybn tonalites; they possess Yb ≤ 0.4 ppm, Y ≤ 6 ppm and Sc ≤ 8 ppm, with La/Ybn of 19–30 and Zr/Sm of 50–59. They are interpreted as melts of ocean lithosphere basaltic crust in a hot shallow subduction zone. Adakites are associated with NEB in Cenozoic arcs where there is shallow subduction of young and/or hot ocean lithosphere, often with oblique subduction. Slab melt adakites erupt, or metasomatise sub-arc mantle peridotite to generate an HFSE-enriched source that subsequently melts during induced mantle convection. The Archean adakite–NEB association erupted during development of the tholeiitic to calc-alkaline arc and its associated back arc. Their coexistence in the Confederation assemblage of the Birch–Uchi greenstone belt implies convergent margin processes similar to those in Cenozoic arcs. Received: 2 June 1999 / Accepted: 29 December 1999  相似文献   

7.
甘肃阿克塞县安南坝地区镁铁质麻粒岩呈脉状、透镜状赋存于新太古代米兰岩群和TTG片麻岩中。岩石主要由斜长石(Pl)+斜方辉石(Opx)+单斜辉石(Cpx)+角闪石(Amp)+磁铁矿(Mt)等组成。安南坝镁铁质麻粒岩中Ti、P、Nb、Ta、Th、Hf、Sr及REE等元素与Zr相关性较好,表明其在变质作用过程中保持基本稳定。地球化学数据显示其原岩属于拉斑玄武质岩系列,Si O_2、Ti O_2、Al_2O_3、P_2O_5含量相对较低,Ca O、Mg O含量相对较高。Mg~#值为41.52~43.09,低于原生玄武质岩石的Mg~#值,Fe_2O_3~T、Mg O、Ca O与Si O_2含量呈负相关性,指示原岩岩浆演化过程中可能发生了辉石、角闪石等镁铁质矿物的分异结晶作用。镁铁质麻粒岩∑REE较低,稀土元素配分模式为轻稀土元素弱富集、重稀土元素相对平坦的右倾型,Eu异常不明显(Eu/Eu~*=0.91~1.01)。岩石富集Rb、Ba、Sr等大离子亲石元素,亏损Nb、Ta、Zr、Ti等高场强元素,具有显生宙典型岛弧玄武质岩石的地球化学特征。Sr、Nd、Pb同位素组成显示镁铁质麻粒岩原岩源自富集地幔,并受到一定程度的地壳物质混染。构造环境分析表明安南坝镁铁质麻粒岩原岩形成于与俯冲有关的岛弧环境。在俯冲作用机制下,俯冲板片流体交代使地幔楔发生富集,形成富集地幔,随着(弧后)伸展作用的加强,进一步诱发富集地幔的部分熔融形成镁铁质岩浆,最终岩浆就位形成辉长岩或辉绿岩脉,后期在麻粒岩相变质作用条件下变质为镁铁质麻粒岩。  相似文献   

8.
The watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) is a karstic area. Rare earth elements (REEs) of dissolved loads, suspended particulate material (SPM) and sediments of riverbed are first synthetically reported to investigate REE geochemistry in the three phases in karstic watershed during the high-flow season. Results show that the low dissolved REE concentrations in the CQW are attributed to these rivers draining carbonate rocks. The dissolved REE have significant negative Eu anomaly and coexistence of middle and light REE (MREE??PAAS-normalized La N /Sm N and Gd N /Yb N ; LREE??PAAS-normalized La N /Yb N )-enrichment, which are due to the dissolution of impure Triassic carbonates. REE concentrations in most of SPM exceed that of sediments in the CQW and the average continental crust (UCC). The SPM and the sediments show some common features: positive Eu, Ce anomalies, and MREE enrichment. The controls on the patterns seem to be from weathering profiles: the oxidation state, the REE-bearing secondary minerals (cerianite, potassium feldspar and plagioclase), which are also supported by the evidence of Y/Ho fractionations in the three phases.  相似文献   

9.
10.
胶东北部碱性超基性脉岩地球化学特征及环境和成因探讨   总被引:6,自引:1,他引:5  
胶东地区脉岩属碱性超基性岩系(Na2O+K2O=4.67%~5.43%;SiO2=36.70%~39.99%),岩性为单一的橄榄辉石岩。从主量元素(包括CIPW标准矿物组成)和过渡元素组成来看,该岩系近似原始岩浆组成。电子探针结果显示:橄榄石为富镁质橄榄石(贵橄榄石)(Fo=71~90),单斜辉石为透辉石(次透辉石为主)。岩石富集大离子亲石元素(K、Rb、Sr、Th和Ba),但不具有高场强元素(Nb、Ta、Zr和Hf)的亏损,表明岩石形成于大陆板内环境,为地幔橄榄岩低度部分熔融(3.4%)的产物。同时,它具有大陆边缘弧的特性,暗示其为一种滞后型弧岩浆作用的产物。稀土元素特征显示,岩石强烈富集LREE,而相对亏损HREE,暗示了源区的富集特性。Eu/Eu*=0.89~1.00,总体不表现明显的负Eu异常,暗示斜长石不是主要的分馏矿物相。结合板内碱性岩石的矿物结晶顺序认为,本区岩浆分馏以较弱的橄榄石分馏为主。  相似文献   

11.
Tourmaline rocks of previously unclear genesis and spatially associated with W- (Cu)-bearing calc-silicate rocks occur in Palaeoproterozoic supracrustal and felsic intrusive rocks in the Bonya Hills in the eastern Arunta Inlier, central Australia. Tourmalinisation of metapelitic host rocks postdates the peak of regional low-pressure metamorphism (M1/D1, ~500 °C, ~0.2 GPa), and occurred synkinematically between the two main deformation events D1 and D2, coeval with emplacement of Late Strangways (~1.73 Ga) tourmaline-bearing leucogranites and pegmatites. Tourmaline is classified as schorl to dravite in tourmaline–quartz rocks and surrounding tourmaline-rich alteration zones, and as Fe-rich schorl to foitite in the leucogranites. Boron metasomatism resulted in systematic depletion of K, Li, Rb, Cs, Mn and enrichment of B, and in some samples of Na and Ca, in the tourmaline rocks compared to unaltered metasedimentary host rocks. Whole-rock REE concentrations and patterns of unaltered schist, tourmalinised schist and tourmaline–quartz veins—the latter were the zones of influx of the boron-rich hydrothermal fluid—are comparable to those of post-Archaean shales. Thus, the whole-rock REE patterns of these rocks are mostly controlled by the metapelitic precursor. In contrast, REE concentrations of leucogranitic rocks are low (10 times chondritic), and their flat REE patterns with pronounced negative Eu anomalies are typical for fractionated granitic melts coexisting with a fluid phase. REE patterns for tourmalines separated from metapelite-hosted tourmaline–quartz veins and tourmaline-bearing granites are very different from one another but each tourmaline pattern mirrors the REE distribution of its immediate host rock. Tourmalines occurring in tourmaline–quartz veins within tourmalinised metasediments have LREE-enriched (LaN/YbN=6.3–55), shale-like patterns with higher REE (54–108 ppm). In contrast, those formed in evolved leucogranites exhibit flat REE patterns (LaN/YbN=1.0–5.6) with pronounced negative Eu anomalies and are lower in REE (5.6–30 ppm). We therefore conclude that REE concentrations and patterns of tourmaline from the different tourmaline rocks studied are controlled by the host rock and not by the hydrothermal fluid causing boron metasomatism. From the similarity of the REE pattern of separated tourmaline with the host rock, we further conclude that incorporation of REEs in tourmaline is not intrinsically controlled (i.e. by crystal chemical factors). Tourmaline does not preferentially fractionate specific REEs or groups of REEs during crystallisation from evolved boron- and fluid-rich granitic melts or during alteration of clastic metasediments by boron-rich magmatic-hydrothermal fluids.Editorial responsibility: J. Hoefs  相似文献   

12.
The Boziguoer A-type granitoids in Baicheng County,Xinjiang,belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks.The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite,an aegirine or arfvedsonite alkali feldspar granite,and a biotite alkali feldspar syenite.The major rock-forming minerals are albite,K-feldspar,quartz,arfvedsonite,aegirine,and siderophyllite.The accessory minerals are mainly zircon,pyrochlore,thorite,fluorite,monazite,bastnaesite,xenotime,and astrophyllite.The chemical composition of the alkaline granitoids show that SiO2 varies from 64.55% to 72.29% with a mean value of 67.32%,Na2O+K2O is high (9.85%-11.87%) with a mean of 11.14%,K2O is 2.39%-5.47% (mean =4.73%),the K2O/Na2O ratios are 0.31-0.96,Al2O3 ranges from 12.58% to 15.44%,and total FeOT is between 2.35% and 5.65%.CaO,MgO,MnO,and TiO2 are low.The REE content is high and the total SREE is (263-1219) ppm (mean =776 ppm),showing LREE enrichment and HREE depletion with strong negative Eu anomalies.In addition,the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type.The Zr content is (113-1246) ppm (mean =594 ppm),Zr+Nb+Ce+Y is between (478-2203) ppm with a mean of 1362 ppm.Furthermore,the alkaline granitoids have high HFSE (Ga,Nb,Ta,Zr,and Hf) content and low LILE (Ba,K,and Sr) content.The Nb/Ta ratio varies from 7.23 to 32.59 (mean =16.59) and the Zr/Hf ratio is 16.69-58.04 (mean =36.80).The zircons are depleted in LREE and enriched in HREE.The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly.The Boziguoer A-type granitoids share similar features with A1-type granites.The average temperature of the granitic magma was estimated at 832-839℃.The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature,anhydrous,and low oxygen fugacity conditions.  相似文献   

13.
The Nagoundéré Pan-African granitoids in Central North Cameroon belong to a regional-scale massif, which is referred to as the Adamawa-Yade batholith. The granites were emplaced into a ca. 2.1 Ga remobilised basement composed of metasedimentary and meta-igneous rocks that later underwent medium- to high-grade Pan-African metamorphism. The granitoids comprise three groups: the hornblende–biotite granitoids (HBGs), the biotite ± muscovite granitoids (BMGs), and the biotite granitoids (BGs). New Th–U–Pb monazite data on the BMGs and BGs confirm their late Neoproterozoic emplacement age (ca. 615 ± 27 Ma for the BMGs and ca. 575 Ma for the BGs) during the time interval of the regional tectono-metamorphic event in North Cameroon. The BMGs also show the presence of ca. 926 Ma inheritances, suggesting an early Neoproterozoic component in their protolith.The HBGs are characterized by high Ba–Sr, and low K2O/Na2O ratios. They show fairly fractionated REE patterns (LaN/YbN 6–22) with no Eu anomalies. The BMGs are characterized by higher K2O/Na2O and Rb/Sr ratios. They are more REE-fractionated (LaN/YbN = 17–168) with strong negative Eu anomalies (Eu/Eu* = 0.2–0.5). The BGs are characterized by high SiO2 with K2O/Na2O > 1. They show moderated fractionated REE patterns (LaN/YbN = 11–37) with strong Eu negative anomalies (Eu/Eu* = 0.2–0.8) and flat HREE features (GdN/YbN = 1.5–2.2). In Primitive Mantle-normalized multi-element diagrams, the patterns of all rocks show enrichment in LILE relative to HFSE and display negative Nb–Ta and Ti anomalies. All the granitoids belong to high-K calc-alkaline suites and have an I-type signature.Major and trace element data of the HBGs are consistent with differentiation of a mafic magma from an enriched subcontinental lithospheric mantle, with possible crustal assimilation. In contrast, the high Th content, the LREE-enrichment, and the presence of inherited monazite suggest that the BGs and BMGs were derived from melting of the middle continental crust. Structural and petrochemical data indicate that these granitoids were emplaced in both syn- to post-collision tectonic settings.  相似文献   

14.
The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63–49) and relatively flat rare-earth element (REE) patterns that range from 20–8 x chondrites (Ce/YbN=0.8–1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46–29) and high total REE abundances that range from 70–40 x chondrites (Ce/YbN=1.8–3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79–63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are intercalated with sedimentary rocks and have been intruded by pre- and syntectonic granitoid rocks. However, the geochemistry of the mafic rocks does not correlate fully with that of mafic rocks in modern are evvironments. The low-TiO2 tholeiite is similar to both N-type mid-ocean-ridge basalt (MORB) and low-K tholeiite from immature marginal basins. The calc-alkaline basaltic andesite is like that of low-K calc-alkaline mafic volcanic rocks from oceanic volcanic arcs; however, the high-TiO2 tholeiite is most similar to modern E-type MORB, which occurs in oceanic rifts. The conundrum may be explained by: (1) rifting of a pre-existing immature arc system to produce the bimodal volcanic rocks and high-TiO2 tholeiite; (2) variable enrichment of a previously depleted Archean mantle, to produce both the low- and high-TiO2 tholeiite and the calc-alkaline basaltic andesite, and/or (3) enrichment of the parental rocks of the high-TiO2 tholeiite by crustal contamination.  相似文献   

15.
《Sedimentary Geology》2006,183(3-4):203-216
This paper presents rare earth element (REE) geochemistry of siliceous deposits from which hydrothermal activity and basin evolution are elucidated, in the Late Devonian, in the Yangshuo basin, South China, where siliceous deposits widely occurred as nodular chert in the deep-water limestones and bedded chert interbeded with tuffaceous chert in the early Late Devonian. Both nodular and bedded cherts are characterized by very low La abundances (avg. 2.07 and 2.49 ppm, respectively), intermediate negative Ce anomalies (Ce/Ce*: avg. 0. 69 and 0.61), slight to intermediate positive Eu anomalies (Eu/Eu*: avg. 1.33 and 1.57), and low to intermediate shale-normalized Lan/Ybn values (avg. 0.86 and 0.52) and intermediate Lan/Cen values (avg. 1.61 and 1.72). These suggest both nodular and bedded cherts formed in the open marine basin of South China, rather than in the intracontinental rift basin as previously assumed, with involvement both with seawaters as indicated by intermediate negative Ce anomalies and generally LREE-depleted patterns, and hydrothermal vent fluids as indicated by convex, less LREE-depleted patterns with apparent positive Eu anomalies. In comparison with nodular and bedded chert, the tuffaceous chert has the highest La abundances (avg. 17.11 ppm), similar ranges of Ce anomalies (avg. 0.63) and Lan/Cen values (avg. 1.77), but lower Lan/Ybn values (avg. 0.48) and no apparent positive Eu anomalies (avg. 0.97). This suggests that the tuffaceous fallouts were also significantly modified by the hydrothermal fluid and seawater. Rapid spatial variations of Eu/Eu* values and degree of LREE-depletions in the studied basin are recognized, characterizing a spatially differential hydothermal activity that is not well discriminated by major element features. Such a difference in hydrothermal activity is interpreted as having been related to the intensity and depth of syndepositional tectonic activity, reconciling the structural pattern unraveled by stratigraphic packages.  相似文献   

16.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

17.
The Xuhe mafic rocks, located in Ziyang county of Shaanxi Province, are dominated by diabase-porphyrite, gabbro–diabase, diabase, and pyroxene diorite. Primitive mantle-normalized multi-element patterns show that, the Xuhe mafic rocks are enriched in large ion lithophile elements(LITE), such as Ba and Pb, depleted in K and Sr for basic rocks, and are depleted in Sr, P and Ti for pyroxene diorite. Chondrite-normalized REE patterns display LREE enrichment(LaN/YbN = 9.34–13.99) and have normalized patterns for trace element and REE similar to that of typical OIB. Detailed SIMS zircon U–Pb dating yields emplacement ages of 438.4 ± 3.1 Ma for Xuhe mafic rocks. The relatively low Mg O(basic rock: 3.11–7.21 wt%; pyroxene diorite: 0.89–1.21 wt%) and Mg#(0.20–0.49) for Xuhe mafic rocks suggest that they were possibly originated from an extremely evolved magma. The rising parental mafic magmas underwent pyroxene and plagioclase fractionation. Crustal contamination of pyroxene diorite before emplacement occurred at a higher crustal level compared to other lithology in Xuhe mafic rocks. The degree of partial melt was low(5%–10%) and in garnetspinel transition facies. Sr-Nd isotope of pyroxene diorite and enrichment mantle characteristics for Xuhe mafic rocks suggest that mafic rocks in the North Daba Mountains were derived from a mixture of HIMU, EMII and small amount of EMI components. Furthermore, this study discusses mantle geodynamic significance of Xuhe mafic rocks in the Silurian, which indicates subduction and uplift of magma caused back-arc extension.  相似文献   

18.
骆文娟  张招崇  侯通  王萌 《岩石学报》2011,27(10):2947-2962
茨达复式岩体位于中国西南扬子地台西缘的攀西裂谷内,其岩性从基性到酸性连续变化,SiO2含量为40.06% ~68.54%,但以基性和酸性岩石为主,中性岩石较少,而且非常不均匀,通常具有斑杂构造特征.从基性岩到酸性岩,各岩石样品由轻稀土弱富集型变为较强富集型.微量元素表现为酸性岩中Rb、Th、K、La、Ce、Pb、Nd、Zr、Hf、Sm呈正异常和Ba、Nb、Ta、Sr、P、Ti的负异常;基性岩除Ti负异常和Pb正异常外,其它异常不明显;中性岩具有Ti、Sr负异常和Pb正异常,其它特征介于基性岩和酸性岩石之间.野外和岩相学特征明显指示出中性岩石具有混合特征.酸性端元岩浆准铝质的特征以及相对低的SiO2含量指示其起源于玄武质下地壳的部分熔融,而基性端元岩浆的地球化学特征以及高温特征暗示着其起源于地幔柱源区.锆石U-Pb年龄数据表明,该复式岩体中基性端元LA-MC-ICP-MS U-Pb锆石年龄为243.76±0.77Ma,酸性端元年龄为240.5±0.76Ma,可能代表了峨眉山大火成岩省岩浆活动的尾声阶段.  相似文献   

19.
班公湖-怒江缝合带西段出露大量中酸性侵入岩,为特提斯洋俯冲、拉萨地块与羌塘地块碰撞造山过程中岩浆响应的重要组成部分。本文对该缝合带西段阿翁错地区的闪长岩、花岗闪长岩和花岗岩进行了详细的岩石地球化学和锆石U-Pb年代学研究。锆石LA-ICP-MS U-Pb定年结果表明闪长岩、花岗闪长岩、花岗岩成岩年龄分别为119.3±1.8 Ma、114.7±1.4 Ma和103.2±1.3 Ma。岩石地球化学特征显示中酸性侵入岩属高钾钙碱性系列,具准铝质-弱过铝质I型花岗岩特征;其LREE分馏程度较高,而HREE近于平坦,存在Eu负异常;富集Rb、La等大离子亲石元素和Th、Zr、Hf等高场强元素,亏损Nb、Ta、P、Ti等高场强元素,具有岛弧岩浆岩的特征。研究结果表明在早白垩世晚期(103.0±1.3 Ma)班公湖-怒江特提斯洋壳仍在向北俯冲于南羌塘地块之下,随着俯冲深度增加,大洋板片发生大规模脱水,释放的流体交代地幔楔并引发其部分熔融,产生的幔源岩浆向上运移,与下地壳物质不同比例混合形成了闪长岩和花岗闪长岩;而花岗岩主要由古老下地壳物质部分熔融形成,并有少量地幔物质的参与。  相似文献   

20.
苏海图组火山岩发育自然铜矿化,具有从拉斑玄武岩系列向钙碱性玄武岩系列过渡的特点。依据地球化学特征,表明其TiO2含量较低(1%),玄武岩高的Al2O3含量、低的稀土含量,并且稀土元素曲线具有平缓型到轻稀土低度富集的特点。微量元素原始地幔标准化图解上,它们均富集大离子亲石因素(LILE),亏损高场强元素(HFSE),具有强的Nb和Ta的负异常,Ti的低负异常,以及P和Sm的低正异常。Zr/Nb值和Sm/Nd值接近MORB的范围,Th/Nb值大于0.11,Nb/Zr值小于0.04。以上这些特征均显示出典型岛弧岩浆的特点。所以,苏海图组火山岩为火山弧火山岩,其构造背景为大陆岛弧,源区可能为被流体或沉积物交待改造的亏损地幔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号