首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment waves are commonly observed on the sea floor and often vary in morphology and geometry according to factors such as seabed slope, density and discharge of turbidity currents, and the presence of persistent contour currents. This paper documents the morphology, internal geometry and distribution of deep‐water (4000 to 5000 m) bedforms observed on the sea floor offshore eastern Canada using high‐resolution multibeam bathymetry data and seismic stratigraphy. The bedforms have wavelengths of >1 km but fundamentally vary in terms of morphology and internal stratigraphy, and are distinguished into three main types. The first type, characterized by their long‐wavelength crescentic shape, is interpreted as net‐erosional cyclic steps. These cyclic steps were formed by turbidity currents flowing through canyons and overtopping and breaching levées. The second type, characterized by their linear shape and presence on levées, is interpreted as net‐depositional cyclic steps. These upslope migrating bedforms are strongly aggradational, indicating high sediment deposition from turbidity currents. The third type, characterized by their obliqueness to canyons, is observed on an open slope and is interpreted as antidunes. These antidunes were formed by the deflection of the upper dilute, low‐density parts of turbidity currents by contour currents. The modelling of the behaviour of these different types of turbidity currents reveals that fast‐flowing flows form cyclic steps while their upper parts overspill and are entrained westward by contour currents. The interaction between turbidity currents and contour currents results in flow thickening and reduced sediment concentration, which leads to lower flow velocities. Lower velocities, in turn, allow the formation of antidunes instead of cyclic steps because the densiometric Froude number (Fr′) decreases. Therefore, this study shows that both net‐erosional and net‐depositional cyclic steps are distributed along channels where turbidity currents prevail whereas antidunes form on open slopes, in a mixed turbidite/contourite system. This study provides insights into the influence of turbidity currents versus contour currents on the morphology, geometry and distribution of bedforms in a mixed turbidite–contourite system.  相似文献   

2.
Mass transport deposits, up to 3·9 m thick, have been identified from piston cores collected from canyon floors and inter-canyon ridges on the central Scotian Slope. These deposits are characterized by four distinct mass-transport facies – folded mud, dipping stratified mud, various types of mud-clast conglomerate, and diamicton. Commonly, the folded and stratified mud facies are overlain by mud-clast conglomerate, followed by diamicton and then by turbidity current deposits of well-sorted sand. Stratified and folded mud facies were sourced from canyon walls. Overconsolidation in clasts in some mud-clast conglomerates indicates that the source sediment was buried 12–33 m, much deeper than the present cored depth, implying a source in canyon heads and canyon walls. The known stratigraphic framework for the region and new radiocarbon dating suggests that there were four or five episodes of sediment failure within the past 17 ka, most of which are found in more than one canyon system. The most likely mechanism for triggering occasional, synchronous failures in separate canyons is seismic ground shaking. The facies sequence is interpreted as resulting from local slides being overlain by mud-clast conglomerate deposits derived from failures farther upslope and finally by coarser-grained deposits resulting from retrogressive failure re-mobilizing upper slope sediments to form debrisflows and turbidity currents.  相似文献   

3.
Subaqueous sand dunes are common bedforms on continental shelves dominated by tidal and geostrophic currents. However, much less is known about sand dunes in deep‐marine settings that are affected by strong bottom currents. In this study, dune fields were identified on drowned isolated carbonate platforms in the Mozambique Channel (south‐west Indian Ocean). The acquired data include multibeam bathymetry, multi‐channel high‐resolution seismic reflection data, sea floor imagery, a sediment sample and current measurements from a moored current meter and hull‐mounted acoustic Doppler current profiler. The dunes are located at water depths ranging from 200 to 600 m on the slope terraces of a modern atoll (Bassas da India Atoll) and within small depressions formed during tectonic deformation of drowned carbonate platforms (Sakalaves Seamount and Jaguar Bank). Dunes are composed of bioclastic medium size sand, and are large to very large, with wavelengths of 40 to 350 m and heights of 0·9 to 9·0 m. Dune migration seems to be unidirectional in each dune field, suggesting a continuous import and export of bioclastic sand, with little sand being recycled. Oceanic currents are very intense in the Mozambique Channel and may be able to erode submerged carbonates, generating carbonate sand at great depths. A mooring located at 463 m water depth on the Hall Bank (30 km west of the Jaguar Bank) showed vigorous bottom currents, with mean speeds of 14 cm sec?1 and maximum speeds of 57 cm sec?1, compatible with sand dune formation. The intensity of currents is highly variable and is related to tidal processes (high‐frequency variability) and to anticyclonic eddies near the seamounts (low‐frequency variability). This study contributes to a better understanding of the formation of dunes in deep‐marine settings and provides valuable information about carbonate preservation after drowning, and the impact of bottom currents on sediment distribution and sea floor morphology.  相似文献   

4.
The deeply dissected Southwest Grand Banks Slope offshore the Grand Banks of Newfoundland was investigated using multiple data sets in order to determine how canyons and intercanyon ridges developed and what sedimentary processes acted on glacially influenced slopes. The canyons are a product of Quaternary ice‐related processes that operated along the margin, such as ice stream outwash and proglacial plume fallout. Three types of canyon are defined based on their dimensions, axial sedimentary processes and the location of the canyon head. There are canyons formed by glacial outwash with aggradational and erosional floors, and canyons formed on the slope by retrogressive failure. The steep, narrow intercanyon ridges that separate the canyons are composite morphological features formed by a complex history of sediment aggradation and degradation. Ridge aggradation occurred as a result of mid to late Quaternary background sedimentation (proglacial plume fallout and hemipelagic settling) and turbidite deposition. Intercanyon ridge degradation was caused mainly by sediment removal due to local slump failures and erosive sediment gravity flows. Levée‐like deposits are present as little as 15 km from the shelf break. At 30 km from the shelf, turbidity currents spilled over a 400 m high ridge and reconfined in a canyon formed by retrogressive failure, where a thalweg channel was developed. These observations imply that turbidity currents evolved rapidly in this slope‐proximal environment and attained flow depths of hundreds of metres over distances of a few tens of kilometres, suggesting turbulent subglacial outwash from tunnel valleys as the principal turbidity current‐generating mechanism.  相似文献   

5.
Submarine turbidity currents are one of the most important processes for moving sediment across our planet; they are hazardous to offshore infrastructure, deposit petroleum reservoirs worldwide, and may record tsunamigenic landslides. However, there are few studies that have monitored these submarine flows in action, and even fewer studies that have combined direct monitoring with longer‐term records from core and seismic data of deposits. This article provides one of the most complete studies yet of a turbidity current system. The aim here is to understand what controls changes in flow frequency and character along the turbidite system. The study area is a 12 km long delta‐fed fjord (Howe Sound) in British Columbia, Canada. Over 100 often powerful (up to 2 to 3 m sec?1) events occur each year in the highly‐active proximal channels, which extend for 1 to 2 km from the delta lip. About half of these events reach the lobes at the channel mouths. However, flow frequency decreases rapidly once these initially sand‐rich flows become unconfined, and only one to five flows run out across the mid‐slope each year. Many of these sand‐rich, channelized, delta‐sourced flows therefore dissipated over a few hundred metres, once unconfined, rather than eroding and igniting. Upflow migrating bedforms indicate that supercritical flow dominated in the proximal channels and lobes, and also across the unconfined mid‐slope. These supercritical flows deposited thick sand beds in proximal channels and lobes, but thinner and finer beds on the unconfined mid‐slope. The distal flat basin records far larger volume and more hazardous events that have a recurrence interval of ca 100 years. This study shows how sand‐rich delta‐fed flows dissipate rapidly once they become unconfined, that supercritical flows dominate in both confined and unconfined settings, and how a second type of more hazardous, and much less frequent event is linked to a different scale of margin failure.  相似文献   

6.
Preservation of cyclic steps contrasts markedly with that of subcritical‐flow bedforms, because cyclic steps migrate upslope eroding their lee face and preserving their stoss side. Such bedforms have not been described from turbidite outcrops and cores as yet. A conceptual block diagram for recognition of cyclic steps in outcrop has been constructed and is tested by outcrop studies of deep water submarine fan deposits of the Tabernas Basin in south‐eastern Spain. Experimental data indicate that depositional processes on the stoss side of a cyclic step are controlled by a hydraulic jump, which decelerates the flow and by subsequent waxing of the flow up to supercritical conditions once more. The hydraulic jump produces a large scour with soft‐sediment deformation (flames) preserved in coarse‐tail normal‐graded structureless deposits (Bouma Ta), while near‐horizontal, massive to stratified top‐cut‐out turbidite beds are found further down the stoss side of the bedform. The architecture of cyclic steps can best be described as large, up to hundreds of metres, lens‐shaped bodies that are truncated by erosive surfaces representing the set boundaries and that consist of nearly horizontal lying stacks of top‐cut‐out turbidite beds. The facies that characterize these bedforms have traditionally been described as turbidite units in idealized vertical sequences of high‐density turbidity currents, but have not yet been interpreted to represent bedforms produced by supercritical flow. Their large size, which is in the order of 20 m for gravelly and up to hundreds of metres for sandy steps, is likely to have hindered their recognition in outcrop so far.  相似文献   

7.
Sea‐floor topography of deep‐water folds is widely considered to have a major impact on turbidity currents and their depositional systems, but understanding the flow response to such features was limited mainly to conceptual notions inspired by small‐scale laboratory experiments. High‐resolution three‐dimensional numerical experiments can compensate for the lack of natural‐scale flow observations. The present study combines numerical modelling of thrusts with fault‐propagation folds by Trishear3D software with computational fluid dynamics simulations of a natural‐scale unconfined turbidity current by MassFlow‐3D? software. The study reveals the hydraulic and depositional responses of a turbidity current (ca 50 m thick) to typical topographic features that it might encounter in an orthogonal incidence on a sea‐floor deep‐water fold and thrust belt. The supercritical current (ca 10 m sec?1) decelerated and thickened due to the hydraulic jump on the fold backlimb counter‐slope, where a reverse overflow formed through current self‐reflection and a reverse underflow was issued by backward squeezing of a dense near‐bed sediment load. The reverse flows were re‐feeding sediment to the parental current, reducing its waning rate and extending its runout. The low‐efficiency current, carrying sand and silt, outran a downslope distance of >17 km with only modest deposition (<0·2 m) beyond the fold. Most of the flow volume diverted sideways along the backlimb to surround the fold and spread further downslope, with some overspill across the fold and another hydraulic jump at the forelimb toe. In the case of a segmented fold, a large part of the flow went downslope through the segment boundary. Preferential deposition (0·2 to 1·8 m) occurred on the fold backlimb and directly upslope, and on the forelimb slope in the case of a smaller fold. The spatial patterns of sand entrapment revealed by the study may serve as guidelines for assessing the influence of substrate folds on turbiditic sedimentation in a basin.  相似文献   

8.
Advances in acoustic imaging of submarine canyons and channels have provided accurate renderings of sea‐floor geomorphology. Still, a fundamental understanding of channel inception, evolution, sediment transport and the nature of the currents traversing these channels remains elusive. Herein, Autonomous Underwater Vehicle technology developed by the Monterey Bay Aquarium Research Institute provides high‐resolution perspectives of the geomorphology and shallow stratigraphy of the San Mateo canyon‐channel system, which is located on a tectonically active slope offshore of southern California. The channel comprises a series of crescent‐shaped bedforms in its thalweg. Numerical modelling is combined with interpretations of sea‐floor and shallow subsurface stratigraphic imagery to demonstrate that these bedforms are likely to be cyclic steps. Submarine cyclic steps compose a morphodynamic feature characterized by a cyclic series of long‐wave, upstream‐migrating bedforms. The bedforms are cyclic steps if each bedform in the series is bounded by a hydraulic jump in an overriding turbidity current, which is Froude‐supercritical over the lee side of the bedform and Froude‐subcritical over the stoss side. Numerical modelling and seismic‐reflection imagery support an interpretation of weakly asymmetrical to near‐symmetrical aggradation of predominantly fine‐grained net‐depositional cyclic steps. The dominant mode of San Mateo channel maintenance during the Holocene is interpreted to be thalweg reworking into aggrading cyclic steps by dilute turbidity currents. Numerical modelling also suggests that an incipient, proto‐San Mateo channel comprises a series of relatively coarse‐grained net‐erosional cyclic steps, which nucleated out of sea‐floor perturbations across the tectonically active lower slope. Thus, the interaction between turbidity‐current processes and sea‐floor perturbations appears to be fundamentally important to channel initiation, particularly in high‐gradient systems. Offshore of southern California, and in analogous deep‐water basins, channel inception, filling and maintenance are hypothesized to be strongly linked to the development of morphodynamic instability manifested as cyclic steps.  相似文献   

9.
钟广法 《沉积学报》2023,41(1):52-72
超临界流在现代沉积环境中几乎无处不在,但相关沉积物却极少从地层记录中被辨识出来,这是当前沉积学研究所面临的一个困境,文中称之为“超临界流沉积问题”。按弗劳德数增大顺序,超临界流可依次形成稳定逆行沙丘、不稳定逆行沙丘、急滩—深潭及周期阶坎等底形,相应的地貌动力学也从同相位体制(逆行沙丘)逐渐过渡为水跃体制(急滩—深潭和周期阶坎)。相对于明渠流,浊流因折算密度低而更易成为超临界流。超临界浊流底形的长波长、低幅度、逆流(坡)迁移特性,决定了其沉积物发育特征的后积层理、近平行—低角度交错层理、与水跃有关的快速堆积及冲刷—充填和建造—充填构造。超临界浊流沉积可以通过沉积体的几何形态(包括波长/波高比、平面和剖面形态等)和内部沉积特征(包括波脊逆坡迁移、沉积构造、粒度变化趋势及沉积相组合等)的综合分析加以鉴别。露头、岩心分析与高分辨率地震、浅剖、多波束测深等地球物理资料的综合,是准确鉴别超临界浊流沉积单元的重要途径。本文对超临界浊流地貌动力学研究进展进行综述,并对地层记录中超临界浊流沉积的鉴别标志及相关问题进行探讨。  相似文献   

10.
Submarine canyons are conduits for the distribution of sediment across continental margins. Although many canyons connect directly with fluvial or marine littoral system feeders, canyons detached from direct hinterland supply are also recognized. The fill of detached canyons remains enigmatic, because their deep‐water setting restricts analysis of their evolution and stratigraphic architecture. Therefore, this study aims to investigate the sedimentary processes that infilled deep‐water canyons and the resulting architecture. Miocene outcrops of an exhumed deep‐water system from the East Coast Basin, New Zealand, are documented and compared with the morphology and seismic scale architecture of a modern detached canyon system on the same convergent margin. The outcropping system preserves the downstream margin of a sub‐basin deposited at palaeo‐water depths >700 m. A 6 km wide by 430 m deep incision is filled by heterogeneous siliciclastic sediments, 50% of which comprise graded thin‐beds with traction structures, interpreted to result from oscillatory flows. These are intercalated with concave‐up lenses, up to 15 m thick, of sigmoidally‐bedded, amalgamated sandstones, which preserve ripple casts on bed bases, interpreted as deposits at the head of a deep‐marine canyon. Palaeo‐flow was eastward, into the sub‐basin margin. On the adjacent margin of the sub‐basin down‐dip, stacked and amalgamated sandstones and conglomerates represent the fill of a submarine channel complex, at least 3 km wide. The channels are inferred to have been fed by the up‐dip canyon, which traversed the intervening structural high; similar relationships are seen in the bathymetry data. Seismic studies on this margin demonstrate that multiple phases of canyon cut and fill may occur, with downstream architectural evolution comparable to that seen at outcrop, demonstrating that detached canyons may act as sediment conduits. Breaching of developing sea‐floor structures by detached canyons can modify tortuous sediment pathways, supplying sediment to otherwise starved areas of the slope.  相似文献   

11.
Submarine lobes have been identified within various deep-water settings, including the basin-floor, the base of slope and the continental slope. Their dimensions and geometries are postulated to be controlled by the topographic configuration of the seabed, sediment supply system and slope gradient. Ten experiments were conducted in a three-dimensional-flume to study the depositional characteristics of submarine lobes associated with: (i) different basin floor gradients (0 to 4°); (ii) different sediment concentrations of the parent turbidity current (11 to 19% vol); and (iii) varying discharge (25 to 40 m3 h−1). Most runs produced lobate deposits that onlapped onto the lower slope. Deposit length was proportional to basin-floor angle and sediment volume concentration. A higher amount of bypass is observed in the proximal area as the basin-floor angles get steeper and sediment concentrations higher. Deposits of runs with lower discharge could be traced higher upslope while runs with higher discharge produced an area of low deposition behind the channel mouth, i.e. discharge controlled whether lobe deposits were attached or detached from their channel-levée systems. A particle-advection-length scale analysis suggests that this approach can be used as a first order estimation of lobe element length. However, the estimations strongly depend on the average grain size used for calculations (for example, silt is still actively transported after all sand has been deposited) and the method cannot be used to locate the main depocentre. Furthermore, attempted reconstructions of turbidity current velocities from natural systems suggest that the method is not appropriate for use in inversions from more complex composite bodies such as lobes.  相似文献   

12.
《Sedimentology》2018,65(6):2202-2222
Sorted bedforms are widely present in sediment‐starved littoral and inner shelf settings; they are indicators for hydrodynamic conditions and a primary contributor for the subsurface structure. This study investigated the morphology and migration of sorted bedforms on the inner shelf of Long Beach Barrier Island, New York, USA , by repeat geophysical and geological surveys in 2001, 2005 and 2013 (following superstorm Sandy) involving swath bathymetry, backscatter, chirp seismic reflection data and grab sampling. Swath data revealed that the western sector, comprising the western 75% of the survey region, is dominated by NNE –SSW ‐oriented, 0·5 to 1·0 km wide sorted bedforms with highly asymmetrical cross‐sections, with steeper slopes and coarser sands on the eastern (stoss) flanks. Many secondary bedforms were also observed (north–south to north‐east/south‐west oriented lineation structures) at the western edges of coarse sand zones. The eastern sector displays an unusual sorted bedform pattern that is dominated by coarse‐grained substrate, with isolated patches of fine‐grained sands oriented north‐east/south‐west which are 0·15 to 1·0 km in length and ca 30 to 200 m in width, similar in scale and orientation to the secondary bedforms in the western sector. Comparison analysis of the swath data sets indicates that the primary transverse sorted bedform morphology within the western sector was largely stable over this time frame, although the swales were deepened following the storms. The coarse/fine sand boundaries did migrate, however, moving ca 1 to 5 m eastward between 2001 and 2005, and ca 5 to 20 m westward between 2005 and 2013; the higher migration rates (up to 2·5 m year−1) in the latter time period may be attributable to large storm forcing (for example, hurricanes Irene and Sandy). Significant north‐westward migration of the secondary bedforms and coarse sand patches in the western sector, as well as fine sand patches in the eastern sector were also observed; these features are far more mobile than the primary sorted bedforms, possibly because they are fine sand drifts that do not erode into the coarse substrate. Seismic reflection data revealed a transgressive ravinement beneath sorted bedforms, merging with the sea floor at the bottom of swales. The authors hypothesize that long‐term topographic migration of transverse sorted bedforms contributes to the formation and evolution of the ravinement.  相似文献   

13.
In the northeast Atlantic, much of the deep cold water flow between the Norwegian Sea and the main North Atlantic basin passes through the Faroe‐Shetland and Faroe Bank Channels, generating strong persistent bottom currents capable of eroding and transporting sediment up to and including gravel. A large variety of sedimentary bedforms, including scours, furrows, comet marks, barchan dunes, sand sheets and sediment drifts, is documented using sidescan sonar images, seismic profiles, seabed photographs and sediment cores from the floor of the channel. Published information on current velocities associated with the various bedforms has been used to reconstruct the pattern of bottom currents acting on the channel floor. The results broadly reflect the current pattern predicted on the basis of regional oceanographic observations, but add considerable detail. The internal consistency of the results suggests that the methods used are robust, giving confidence in the fine detail of the observed bottom current structure. Bottom current velocities in the range < 0·3 to > 1·0 m s?1 are indicated by the range of observed bedforms, with the strongest currents associated with south‐west transport of Norwegian Sea Deep Water (NSDW) at water depths of 800–1200 m. The main NSDW flow forms a relatively narrow core that follows the base of the Faroes slope. This core follows the 90° change in trend of the Faroes slope at the junction between the Faroe‐Shetland and Faroe Bank Channels. The strongest currents within the NSDW core are found over the shallowest sill in the Faroe‐Shetland Channel and in the narrowest part of the channel immediately downstream of the sill, and are generated by topographic constriction of the flow. Eastward flow of deep water along the northern flank of the Wyville‐Thomson ridge suggests a complex current pattern with some recirculation of deep water within the deep Faroe Bank Channel basin. The observations suggest that Coriolis force is the main agent controlling the westward deflection of the NSDW into the Faroe Bank Channel, contradicting a previous suggestion that this was controlled by the topography of the Wyville Thomson Ridge.  相似文献   

14.
Pyroclastic currents are catastrophic flows of gas and particles triggered by explosive volcanic eruptions. For much of their dynamics, they behave as particulate density currents and share similarities with turbidity currents. Pyroclastic currents occasionally deposit dune bedforms with peculiar lamination patterns, from what is thought to represent the dilute low concentration and fluid‐turbulence supported end member of the pyroclastic currents. This article presents a high resolution dataset of sediment plates (lacquer peels) with several closely spaced lateral profiles representing sections through single pyroclastic bedforms from the August 2006 eruption of Tungurahua (Ecuador). Most of the sedimentary features contain backset bedding and preferential stoss‐face deposition. From the ripple scale (a few centimetres) to the largest dune bedform scale (several metres in length), similar patterns of erosive‐based backset beds are evidenced. Recurrent trains of sub‐vertical truncations on the stoss side of structures reshape and steepen the bedforms. In contrast, sporadic coarse‐grained lenses and lensoidal layers flatten bedforms by filling troughs. The coarsest (clasts up to 10 cm), least sorted and massive structures still exhibit lineation patterns that follow the general backset bedding trend. The stratal architecture exhibits strong lateral variations within tens of centimetres, with very local truncations both in flow‐perpendicular and flow‐parallel directions. This study infers that the sedimentary patterns of bedforms result from four formation mechanisms: (i) differential draping; (ii) slope‐influenced saltation; (iii) truncative bursts; and (iv) granular‐based events. Whereas most of the literature makes a straightforward link between backset bedding and Froude‐supercritical flows, this interpretation is reconsidered here. Indeed, features that would be diagnostic of subcritical dunes, antidunes and ‘chute and pools’ can be found on the same horizon and in a single bedform, only laterally separated by short distances (tens of centimetres). These data stress the influence of the pulsating and highly turbulent nature of the currents and the possible role of coherent flow structures such as Görtler vortices. Backset bedding is interpreted here as a consequence of a very high sedimentation environment of weak and waning currents that interact with the pre‐existing morphology. Quantification of near‐bed flow velocities is made via comparison with wind tunnel experiments. It is estimated that shear velocities of ca 0·30 m.s?1 (equivalent to pure wind velocity of 6 to 8 m.s?1 at 10 cm above the bed) could emplace the constructive bedsets, whereas the truncative phases would result from bursts with impacting wind velocities of at least 30 to 40 m.s?1.  相似文献   

15.
ABSTRACT
An anomalous sequence of thick fossiliferous marine shale of late Oligocene-early Miocene age, here termed the Opuama Shale Member, occurs within the paralic Agbada Formation in the subsurface of the western Niger Delta. The Opuama Shale fills a deep palaeochannel which was cut into Eocene-early Oligocene paralic beds. Planktonic and benthic foraminifera suggest that deposition in the channel began in the late Oligocene-early Miocene at outer shelf-slope depths, and that by the late early Miocene the channel had filled to shallow neritic depths. The channel, which is believed to be of submarine origin, is termed the Opuama canyon. The Opuama canyon originated during the pronounced early-Middle Oligocene drop in sea-level, and was cut by turbidity currents. It was filled, during the major late Oligocene-early Miocene rise of sea-level.
The location of the Opuama canyon in the western re-entrant of the Niger Delta supports Burke's (1972) conclusion that the western and eastern (where ancient submarine canyon fills are known) re-entrants of the delta are potential sites for ancient submarine canyons. Burke based his conclusion on the observation that the eastern and western re-entrants of the modern delta are areas where opposing longshore drifts converge and generate turbidity currents which cut submarine canyons.  相似文献   

16.
自1993年至今,美国地质调查局的科学家及其合作伙伴在美国西海岸的Monterey海底峡谷进行了针对现代浊流过程的一系列基础性研究,并成功地在世界上首次实地测量到高精度浊流流速及粒度参数.近20年来的数据和知识积累为解释海底峡谷内沉积物和其他颗粒物质输运的机理,以及浊流在维持深海峡谷中生机勃勃的生态系统所起的重要作用提供了直接依据.通过展示把海底观测应用于海洋沉积动力学研究过程中的成果、经验、教训,以及介绍目前还在讨论中的研究计划,以期达到以下宏观论点:在海洋科学里,只有科学与技术不脱节的科研团队才有希望获得成果和突破.  相似文献   

17.
High‐resolution swath bathymetry data collected in fjord‐lakes Pentecôte, Walker and Pasteur (eastern Québec, Canada) allowed imaging in great detail the deltas of four rivers in order to understand the factors controlling the formation and downslope evolution of bedforms present on their slopes. The morphometry and morphology of 199 bedforms reflect the behaviour of sediment density flows. The shape of the bedforms, mostly crescentic, and the relationships between their morphological properties indicate that they were formed by supercritical density flows and that they are cyclic steps. The crescentic shape suggests an upslope migration while the aspect ratios and increasing wavelengths with distance from the shore (and decreasing slopes) are compatible with a cyclic step origin. At the rollover point, the acceleration of the density flows on steep slopes produces tightly spaced hydraulic jumps and favours short wavelength and symmetrical bedforms. Further downslope, decreasing slopes and increasing specific discharge increase the wavelength and asymmetry of the bedforms. The wavelength and asymmetry are increased because density flows require longer distances to become supercritical again on lower slopes after each successive hydraulic jump. Bedform morphometry and morphology are used to reconstruct density flow behaviour downslope. Froude numbers are high near the rollover point and gradually decrease downslope as the slope becomes gentler. Conversely, the specific discharge and flow depth are low near the rollover point and gradually increase downslope as the flow either erodes sediments or becomes more dilute due to sediment deposition and water entrainment. The supercritical density flows are believed to be triggered mainly by hyperpycnal flows but some evidence of delta‐front slope failures is also observed. The differences in delta morphology and bedform development between the four deltas are linked to basin morphology and watershed hydrology, but also mainly to the fjord heritage of the lakes that allowed the focusing of sediment at the delta front.  相似文献   

18.
Turbidity currents are one of the main sediment transport processes on Earth, yet are notoriously difficult to monitor directly. This article presents the first direct and high bandwidth observation of a turbidity current using a cabled sea floor observatory. On 5 June 2012, a platform on Ocean Networks Canada, located in 107 m of water on the Fraser River delta slope, was displaced downslope and severed from its data cable. The platform weighed ca 1000 kg in water. The event took place during high river discharge, high tides and rapid sediment accumulation on adjacent upslope areas of the sea floor. Data recorded as it tumbled downslope allow a reconstruction of the flow, which is inferred to have been an unconfined turbidity current. Lines of evidence indicate that the flow came in as a bed hugging wedge, and built up to between 1 m and 4 m in height as the head passed through. Comparison with laboratory data suggest that the flow was initially supercritical. While the adjacent slope offset to the north clearly exhibits change over an annual resurvey period, the bathymetry directly at the event location show no resolvable change over a period from seven months before the event to one month after. Sediment cores collected after the event were pervasively biototurbated and they contain no obvious deposit connected with this event. The remarkable aspects of this research follow. The flow was powerful enough to carry a 1 tonne platform and sever a heavily armoured cable. The current occurred on the unchannelized open slope. This powerful event failed to cause discernible seabed elevation change. The flow was triggered by tidal conditions. The event was detected by a purpose‐designed cabled observatory, thus providing high bandwidth data and also alerting researchers in real time to mount follow‐on investigations.  相似文献   

19.
Interpretation of a grid of high resolution seismic profiles from the offshore eastern part of the Benin (Dahomey) basin in southwestern Nigeria area permitted the identification of cyclic events of cut and fill associated with the Avon canyon. Seismic stratigraphic analysis was carried out to evaluate the canyon morphology, origin and evolution. At least three generations of ancient submarine canyons and a newly formed submarine canyon have been identified. Seismic reflection parameters of the ancient canyons are characterized by transparent to slightly transparent, continuous to slightly discontinuous, high to moderate amplitude and parallel to sub-parallel reflections. Locally, high amplitude and chaotic reflections were observed. The reflection configurations consist of regular oblique, chaotic oblique, progradational and parallel to sub-parallel types. These seismic reflection characteristics are probably due to variable sedimentation processes within the canyons, which were affected by mass wasting. Canyon morphological features include step-wise and spoon-shaped wall development, deep valley incision, a V-shaped valley, similar orientation in the southeast direction, and simple to complex erosion features in the axial floor. The canyons have a composite origin, caused partly by lowering of the sea level probably associated with the formation of the Antarctic Ice Sheet about 30 Ma ago and partly by complex sedimentary processes. Regional correlation with geological ages using the reflectors show that the canyons cut through the Cretaceous and lower Tertiary sediments while the sedimentary infill of the canyon is predominantly Miocene and younger. Gravity-driven depositional processes, downward excavation by down slope sediment flows, mass wasting from the canyon walls and variation in terrigenous sediment supply have played significant roles in maintaining the canyons. These canyons were probably conduits for sediment transport to deep-waters in the Gulf of Guinea during their period of formation.  相似文献   

20.
New observations concerning the degree of current-induced erosion and deposition in the path of the 1929 Grand Banks turbidity current are presented. Most of the observations are available from Eastern Valley, Laurentian Fan. Seabeam and SeaMARC I data reveal widespread current erosion along the valley over a distance of 200 km from the shelfbreak. Erosional valley-floor channels are preferentially developed adjacent to the valley margins and the flanks of intravalley highs. Asymmetric transverse bedforms (herein termed gravel waves) are moulded in a deflationary pebble and cobble lag that overlies the eroded valley floor. In contrast, at the distal limit of Eastern Valley, thick deposits of massive granule gravel indicate deposition beneath a decelerating turbidity current. Symmetrical transverse bedforms (herein termed macrodunes) are developed within these granule gravel sediments. The spatial distribution of both bedforms and the areas of erosive excavation suggest that the turbidity current in 1929 was accelerating over the first 100 km from the shelfbreak and was eroding and entraining sediment from the valley floor over a distance of at least 200 km. With the loss of lateral constraint at the distal limit of Eastern Valley the turbidity current spread laterally and started depositing sediment as it decelerated. Current-induced erosion of the valley floor represented a potential source of between 50 and 100 km3 of sediment for incorporation into the resulting turbidite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号