首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship of atrazine-degrading bacteria Arthrobacter sp. HB-5 and nitrogen and phosphorus fertilizer to atrazine degradation and detoxification in soil was investigated in a microcosm pot experiment. Treatments of soil containing atrazine (AW) with atrazine plus strain HB-5 alone (A), together with atrazine and strain HB-5 plus nitrogen alone (AN), phosphate alone (AP), and nitrogen and phosphate together (ANP) were used to investigate atrazine degradation and ecotoxicity. Atrazine residues in the soils were determined by high performance liquid chromatography, while soil ecotoxicity was tested by micronucleus (MN) assay of Vicia faba root tip cells. The results showed that degradation of atrazine in soil could be facilitated by the treatment of strain HB-5 as well as strain HB-5 application with the addition of nitrogenous and/or phosphorus fertilizers. The degradation rates varied as the following: ANP > AP > AN > A > AW in different treatments. At 10 days post treatment, degradation efficiency of over 90 % was achieved in all strain HB-5 treatments except AW, but with no statistically significant differences found between treatments. Soil ecotoxicity was significantly reduced along with the degradation of atrazine by strain HB-5, and the ecotoxicity of soils with applied fertilizer was below that of treatments without fertilizer. On the seventh day and later, the MN frequencies of all treatments were decreased in the control levels except for AW. Thus, adjusting soil nutrient contents not only promoted strain HB-5 to remove atrazine in soil but also mitigated soil ecotoxicity effects caused by atrazine. These results are important keystones for future remediation of atrazine-contaminated soils.  相似文献   

2.
Surface soil and sediment samples were collected from the surroundings of the Ittehad Chemical Industries Kalashah Kaku industrial zone to assess residual level of 19 organochlorine pesticides (OCPs) and identify their sources. DDTs and HCHs were most prevalent OCPs and general pattern of contamination followed the order: ∑DDT > ∑HCH > dicofol > endrin > heptachlor > dieldrin > endosulfan II. Total measured concentrations of HCHs (6.38–121.71 ng/g) and DDTs (759.65–1811.98 ng/g) were greater in the soil samples collected from fodder/rice fields irrigated with the factory effluents and in the surrounding of waste disposal site. Ratios of β to γ-HCH highlighted an old mixed source of technical HCH and lindane in surface soils. Predominance of p,p′-DDT and p,p′-DDE among isomers and metabolites showed that large quantity of technical grade DDT is still present in the surrounding surface soils. Six soil samples were categorized as heavy polluted soils (class III category of DDT > 1,000 ng/g), two soil samples into less polluted soil between class I and II (50–500 ng/g) and 28 soil samples as non-polluted (<50 ng/g) according to environmental quality standards for surface soils. Six soil samples were categorized as less polluted between class I and II of HCHs (50–500 ng/g). Greater concentration of DDTs and HCHs above quality guideline poses potential exposure risk to biological organisms, safety of agricultural products and human health in the surrounding of the Ittehad Chemical Industries.  相似文献   

3.
Copper contamination in soils and vegetables in the vicinity of an abandoned copper mine in China was investigated. The Cu concentrations of 93 soil samples ranged from 30.4 to 3,191 mg kg−1 soil for a mean of 816.8 mg kg−1 soil. Among 15 samples from a 0 to 20-cm soil layer used for the toxicity characteristic leaching procedure (TCLP) test, the highest value of Cu-TCLP was 133.8 mg kg−1 soil and the TCLP values were positively correlated with the total Cu content of the soils. The sequential extraction of soils in the 0–20-, 20–40-, and 40–60-cm soil layers showed that Cu existed mainly in the Fe–Mn oxide fraction, sulfide/organic fraction, and residual fraction. The copper contamination of 21 species of vegetables from in situ sampling was also examined. Cu concentrations in the edible portions of Brassica chinensis and Solanum melongena were higher than the FAO/WHO standard (40 mg kg−1 DW). The health risk of copper for local inhabitants from consuming these vegetables was assessed on the basis of the target hazard quotient. Enriched concentrations of copper were also found in situ in eight cultivars of B. chinensis planted in the fields, with two levels of Cu concentration. The results showed that there is severe copper contamination in this mine area, and the pollutant in soils show a high risk of leaching into the groundwater and diffusing through the food chain.  相似文献   

4.
Contamination of soils with heavy metals is widespread and poses a long-term risk to ecosystem health. Abandoned and active mining sites contain residues from ore-processing operations that are characterised by high concentrations of heavy metals. The distribution and mobility characteristics of heavy metals (As, Cd, Cu, Pb, and Zn) in paddy soil samples from Kočani Field (Macedonia) using ICP-EAS and a sequential extraction procedure was evaluated. The results indicate that highly elevated concentrations of As, Cd, Cu, Pb, and Zn were detected in the paddy soil sample from location VII-2 in the vicinity of Zletovo mine and Zletovska river in the western part of Kočani Field, which drains the untreated acid mine waters and mine wastes from the active Zletovo mine. The degree of contamination based on index of geoaccumulation (I geo) from strong to weak in the paddy soils samples is Pb > As > Cd > Zn > Cu. The mobility potential of heavy metals in all paddy soil samples increases in the order As < Cu < Pb < Zn < Cd. According to the results of the anthropogenic impact on the paddy soils, a further study on the heavy metal concentrations in rice and other edible crops, the remediation process of the paddy soils and a dietary study of the local population are needed.  相似文献   

5.
《Applied Geochemistry》2006,21(6):964-976
Hopanoids have been widely used as characteristic biomarkers to study inputs of bacterial biomass to sediments because they are preserved in the geologic record. A limited number of studies have been performed on hopanoid biomarkers in soils. The present study examined the distribution and potential preservation of hopanoids in soils that are developed under different climatic conditions and varying vegetative inputs. Solvent extraction and sequential chemical degradation methods were employed to extract both “free” and “bound” hopanoids, from three grassland soils, a grassland–forest transition soil, and a forest soil from Western Canada. Identification and quantification of hopanoids in the soil samples were carried out by gas chromatography–mass spectrometry. Methylbishomohopanol, bishomohopanol and bishomohopanoic acid were detected in all solvent extracts. The base hydrolysis and ruthenium tetroxide extracts contained only bishomohopanoic acid at a concentration range of 0.8–8.8 μg/gC and 2.2–28.3 μg/gC, respectively. The acid hydrolysis procedure did not release detectable amounts of hopanoids. The solvent extraction yielded the greatest amounts of “free” hopanoids in two of the grassland soils (Dark Brown and Black Chernozems) and in the forest soil (Gray Luvisol). In contrast, the chemical degradation methods resulted in higher amounts of “bound” hopanoids in the third grassland soil (Brown Chernozem) and the transition soil (Dark Gray Chernozem), indicating that more hopanoids exist in the “bound” form in these soils. Overall, the forest and the transition soils contained more hopanoids than the grassland soils. This is hypothesized to be due to the greater degradation of hopanoids in the grassland soils and or sorption to clay minerals, as compared to the forest and transition soils.  相似文献   

6.
Coal handling, crushing, washing, and other processes of coal beneficiation liberate coal particulate matter, which would ultimately contaminate the nearby soils. In this study, an attempt was made to determine the status of soil bio-indicators in the surroundings of a coal beneficiation plant, (in relation to a control site). The coal beneficiation plant is located at Sudamudih, and the control site is 5 km away from the contaminated site, which is located in the colony of Central Institute of Mining and Fuel Research Institute, Digwadih, Dhanbad. In order to estimate the impact of coal deposition on soil biochemical characteristics and to identify the most sensitive indicator, soil samples were taken from the contaminated and the control sites, and analyzed for soil organic carbon (SOC), soil N, soil basal respiration (BSR), substrate-induced respiration (SIR), and soil enzymes like dehydrogenase (DHA), catalase (CAT), phenol oxidase (PHE), and peroxidase (PER). Coal deposition on soils improved the SOC from 10.65 to 50.17 g kg−1, CAT from 418.1 to 804.11 μg H2O2 g−1 h−1, BSR from 8.5 to 36.15 mg CO2–C kg−1 day−1, and SIR from 24.3 to 117.14 mg CO2–C kg−1 day−1. Soils receiving coal particles exhibited significant decrease in DHA (36.6 to 4.22 μg TPF g−1 h−1), PHE (0.031 to 0.017 μM g−1 h−1), PER (0.153 to 0.006 μM g−1 h−1), and soil N (55.82 to 26.18 kg ha−1). Coal depositions significantly (P < 0.01) decreased the DHA to 8.8 times, PHE to 1.8 times, and PER to 25.5 times, but increased the SOC to 4.71 times, CAT to 1.9 times, SIR to 4.82 times, and BSR to 4.22 times. Based on principal component analysis and sensitivity test, soil peroxidase (an enzyme that plays a vital role in the degradation of the aromatic organic compounds) is found to be the most important indicator that could be considered as biomarkers for coal-contaminated soils.  相似文献   

7.
阿特拉津是一种典型的环境激素, 铁氧化物是土壤矿物质的主要成分之一, 研究铁氧化物对阿特拉津的吸附行为有助于深入了解环境激素在环境中的行为.在研究阿特拉津的污染土壤与铁氧化物的混合物对阿特拉津吸附与解吸作用机理的基础上, 通过采用不同配比的土壤与铁氧化物的混合物对农药阿特拉津进行解吸行为过程的模拟, 并改变解吸时间、温度、pH值等因素, 研究影响解吸行为的主要因素.结果表明: 温度、pH值、铁氧化物与土壤的不同配比等因素均会对阿特拉津的解吸作用产生不同程度的影响.混合物对阿特拉津的解吸一般在4h左右便可达到动态平衡, 酸性或碱性环境以及适当的温度条件均会在一定程度上增强解吸作用, 且发现混合物比原土壤的解吸效果更明显.   相似文献   

8.
毛萌  任理 《水科学进展》2005,16(2):222-232
以模拟农田尺度降雨入渗—重分布条件下阿特拉津(atrazine)在非饱和土壤中的淋溶动态为数值算例,通过在北京东郊的一块27m×27m的农田采集100个土壤样品,测定其主要理化性质,间接计算获得各土壤样品的van Genuchten型水力学参数、溶质运移的弥散度及atrazine在土壤中吸附的分配系数,进而基于柱模型假设,运用HY DRUS 1D软件得到不同时刻采样区内土壤水负压和atrazine浓度的平均分布。在此基础上,重点探讨了应用幂平均算法计算不同的等价有效参数对农田尺度下土壤水负压和atrazine浓度平均分布的数值模拟精度的影响。就所设计的降雨入渗—重分布条件下atrazine淋溶的算例而言,土壤水力学参数、溶质运移参数和吸附特性参数取几何平均或调和平均作为有效参数值,空间平面上呈正态分布的土壤水负压的初值采用算术平均值作为流场模拟的初始条件,可以获得满意的数值模拟结果。  相似文献   

9.
Simultaneous competitive adsorption behavior of Cd, Cu, Pb and Zn onto nine soils with a wide physical–chemical characteristics from Eastern China was measured in batch experiments to assess the mobility and retention of these metals in soils. In the competitive adsorption system, adsorption isotherms for these metals on the soils exhibited significant differences in shape and in the amount adsorbed. As the applied concentration increased, Cu and Pb adsorption increased, while Cd and Zn adsorption decreased. Competition among heavy metals is very strong in acid soils with lower capacity to adsorb metal cations. Distribution coefficients (K dmedium) for each metal and soil were calculated. The highest K dmedium value was found for Pb and followed by Cu. However, low K dmedium values were shown for Zn and Cd. On the basis of the K dmedium values, the selectivity sequence of the metal adsorption is Pb > Cu > Zn > Cd and Pb > Cu > Cd > Zn. The adsorption sequence of nine soils was deduced from the joint distribution coefficients (K dΣmedium). This indicated that acid soils with low pH value had lower adsorption capacity for heavy metals, resulting in much higher risk of heavy metal pollution. The sum of adsorbed heavy metals on the soils could well described using the Langmuir equation. The maximum adsorption capacity (Q m) of soils ranged from 32.57 to 90.09 mmol kg−1. Highly significant positive correlations were found between the K dΣmedium and Q m of the metals and pH value and cation exchange capacity (CEC) of soil, suggesting that soil pH and CEC were key factors controlling the solubility and mobility of the metals in soils.  相似文献   

10.
The high phosphorus levels cause the release of phosphorus from soils, thereby increasing the potential for phosphorus export to adjacent water bodies. The loss of phosphorus from soils to surface waters is a major source of water quality impairment. Therefore, soil phosphorus immobilization seems necessary. In this study, red mud (RM) was employed to immobilize phosphorus in a typical agricultural soil. It was found that phosphorus was effectively immobilized by RM. Batch leaching experiments showed that RM reduced phosphorus release from 14.38 to 2.56 mg/kg when soil was amended with 1% RM. Column leaching experiments showed that RM reduced the total amount of phosphorus released from 36.73 to 18.79 mg/kg during the investigated period. Sequential chemical extraction results indicated that RM amendment transformed H2O-P into more stable fractions. The results suggested that application of RM amendment to soils could significantly immobilize soluble phosphorus, reducing phosphorus release to the environment.  相似文献   

11.
Rapid transport of anthropogenic lead through soils in southeast Missouri   总被引:1,自引:0,他引:1  
To investigate Pb transport and cycling, soils from the forest floor and cores from White Oaks (Quercus alba L.) were collected near a Pb smelter in SE Missouri at varying depths from the surface and varying distances. Lead concentrations in soil samples at the surface drop dramatically with distance from approximately 1500 mg/kg at less than 2 km from the smelter to around 100 mg/kg at localities greater than 2 km from the smelter. Lead contents in tree rings are below 0.5 mg/kg in samples dated prior to 1970, and rapidly increase in 1975–1990 samples. Isotopic compositions of soils and tree rings exhibit systematic variations of Pb isotopic compositions with depth and tree ring age. Distinguishable isotopic signatures for Pb sources allowed quantification of the contribution of smelter Pb to the soils. At depths where Pb concentrations decreased and approached constant values (10–25 cm, 10–30 mg/kg), 50–90%, 40–50% and 10–50% of the Pb could be derived from the smelter for the samples at locations less than 2, 2–4 and over 4 km from the smelter, respectively. The remaining portion was attributable to automobile emission and bedrock sources. Because the smelter operated from 1963 to 2003 and samples were collected in 1999, it is estimated that smelter Pb infiltrates at rates of 1 cm/yr (30 cm in 30 yr). At distances less than 1.5 km from the smelter, even though Pb concentrations become asymptotic at a depth of 30 cm, isotopic evidence suggests that Pb has migrated below this depth, presumably through exchange with naturally occurring Pb in the soil matrix. This implies that soils heavily polluted by Pb can exceed their Pb carrying capacity, which could have potential impacts on shallow groundwater systems and risk further exposure to human and ecological receptors.  相似文献   

12.
中国黄土中古土壤的发生学研究   总被引:4,自引:2,他引:4  
石元春 《第四纪研究》1989,9(2):113-122
应用形态学、微形态学、化学和矿物学研究了中国黄土中古土壤的发生学性状和成土过程。离石黄土(中更新世)中古土壤为发育程度(碳酸盐淋溶和粘化)不同的褐土型土壤。马兰黄土(晚更新世)中为生草过程强和粘化过程稍弱的灰褐土型土壤。全新世黄土中为碳酸盐淋溶和粘化过程均弱的弱度发育的碳酸盐灰褐土型土壤。午城黄土(早更新世)中可能是棕褐土。本文还探讨了黄土中古土壤在时间和空间上的演替和分类问题。  相似文献   

13.
This contribution analyzes the similarities and differences between the measured activities of 137Cs and excess 210pb (210Pbex) in the cultivated brown and cinnamon soils of the Yimeng Mountain area, discusses the influ- ence of soil texture on the measurement of 210Pbex, and presents differences between the two types of soils. Fields A and B were selected to represent the fields that contain cultivated brown and cinnamon soils, respectively. From either study field, one site of sectioned core and six bulk cores were collected to measure 137Cs levels, 210Pbex levels, and the particle-size composition of soil samples. Three undisturbed soil samples were collected to measure capillary and aeration porosities. The 137Cs inventories for the two study fields are very similar. The 137Cs is a man-made ra- dionuclide, which means that its measured levels for soils are unaffected by soil texture. In contrast, levels of the naturally occurring 210Pbex of soils from Field A were lower than those of Field B by about 50%. In contrast to aquatic sediments, levels of 210Pbex in terrestrial surface soils are affected by the emanation of 222Rn from the soils. It can be assumed that the coarser the soils, the greater the emanation of 222Rn; in addition, the lower the measured 210pbex, the greater the underestimate of this value. The cultivated brown soils in Field A are coarser than the culti- vated cinnamon soils in Field B. As a result, 222Rn in Field A will diffuse more easily into the atmosphere than that in Field B. As a consequence, the measured 210pbex in soils from Field A is much lower than the actual value, whereas the value measured for Field B is much closer to the actual value.  相似文献   

14.
Organic material in metal contaminated soils around an abandoned magnetite mine–smelter complex in the critical Highlands watershed protects the groundwater and surface water from contamination. Metals in these waters were consistently below local and national water standards. Two groups of soil types cover the area: (1) Group A disturbed metal-rich soils, and (2) Group B undisturbed organic soils. Chromium and nickel were more elevated than other metals with Cr more widespread than Ni. In Group A, Cr correlated strongly with sesquioxides in the lower horizons (Fe2O3: r = 0.74, p < 0.025; Al2O3: r = 0.92, p < 0.005). In Group B, Cr correlated strongly (r = 0.96, p < 0.005) with soil organic matter (SOM) in the O-horizons. Ni–Cr (Group A: 52 and 70% in O- and lower horizons, respectively; Group B: ~100% in both horizons) and V–Cr correlations (78% only in Group A lower horizons) suggest similar retention mechanisms for these elements. Average soil \textpH\textCaCl2 {\text{pH}}_{{{\text{CaCl}}_{2} }} for both groups ranged between 3.65 and 5.91, suggesting that soil acidity is determined by organic acids and solubility of Al3+ releasing H+ ions. SOM and sesquioxides contribute significantly to creating naturally occurring filtration systems, removing metals, and protecting water quality. High Ca, Fe, and Ti in Group A soils suggest slag and ash were mixed into the soils. Some low-Cr sources include magnetite, slag, and ash (100, 100 and 200 mg/kg, respectively). Constant ZrO 2 :TiO 2 ratios in the lower soils indicate soil formation from breakdown of underlying tailing rocks, contributing Cr to these layers.  相似文献   

15.
In vitro bioaccessibility tests (IVBA) are inexpensive, physiologically-based extraction tests designed to estimate the bioaccessibility of elements along ingestion exposure pathways. Published IVBA protocols call for the testing to be done on the <250-μm fraction of soil, as these particles are most likely to adhere to the hands of children and be ingested. Most IVBA in the literature to date have been applied to soil samples from highly contaminated sites or to spiked samples, and relatively little work has been done to evaluate bioaccessibility of elements in a wide variety of uncontaminated ‘background’ soils.In 2004, the US Geological Survey and the Geological Survey of Canada sampled soils along north–south and east–west transects across the two countries to test and refine sampling and analytical protocols recommended for the planned soil geochemical survey of North America. Samples were collected at 220 sites selected randomly at approximately 40-km intervals. The focus of the investigation presented in this paper was twofold: (1) to begin to examine variations in bioaccessibility of As, Cd, Cr, Ni and Pb in a number of ‘background’ (i.e., unpolluted) soils from around North America and (2) to determine if there are significant differences that would preclude using the standard size fraction of <2 mm for extraction with a simulated gastric fluid as an expeditious and inexpensive bioaccessibility screening tool for the large numbers of future samples to be collected by this continental-scale project. A subset of 20 soil samples collected along the north–south transect at a depth of 0–5 cm was used for this study. Two separate size fractions (<2 mm and <250 μm) were extracted using a simulated human gastric fluid consisting of a solution of HCl and glycine adjusted to a pH of 1.5. In general, the leachate results for the <2-mm size fraction were not substantially different than those for the <250-μm size fraction for concentrations of As, Cd, Cr, Ni and Pb. Leachate concentrations for Cd, Ni and Pb appear to be controlled to some extent by the total concentration of the element in soil. Bioaccessibility of the elements in this study decreased in the order, Cd > Pb > Ni > As > Cr.  相似文献   

16.
Expansive soils exhibit large volume changes when their water content changes. Alternate heave and settlement due to seasonal climatic variations result in distress and damage in civil infrastructure systems. This research focuses on the understanding of swelling and shrinkage phenomenon in the surface layer of expansive soils. Undisturbed field samples were used to capture the effect of in situ conditions (geologically induced fissuring and environmentally caused saturation) on volume change properties of Regina clay. Based on laboratory investigations, the swelling potential and swelling pressure of the native clay at S = 82% were found to be 1.5% and 3.5 kPa, respectively. The swell-shrink path during progressive soil drying followed an S-shaped curve comprising of an initial low structural shrinkage followed by a sharp decline during normal shrinkage and then by a low decrease during residual shrinkage. The soil microstructure correlated well with the observed volume change behaviour as well as with the consistency limits. The presence of fissures in field samples at various degrees of saturation confirmed that the investigated deposit is at an equilibrium condition with respect to the swell-shrink phenomenon. The swelling properties at any initial saturation state were estimated using the free swelling test and the swell-shrink test data in conjunction. The swelling potential increased 12 times (from 2 to 24%) and the swelling pressure increased by two orders of magnitude (from 27 to 2500 kPa) with a change in the degree of saturation from 80% (at the plastic limit) to 60% (at the shrinkage limit).  相似文献   

17.
There is considerable discussion and uncertainty in the literature regarding the importance of fresh litter versus older soil organic matter as sources of soil dissolved organic carbon (DOC) in forest floor. In this study, the differences of organic carbon concentration and stable isotope composition were analyzed under different background conditions to identify the origins of DOC in forest soil. The data show that there is no significant difference in SOC content between these collected soil samples (P > 0.05), but the litter-rich surface soils have relatively higher DOC concentration than the litter-lacking (P < 0.01) ones, and the δ 13C values of DOC (δ 13CDOC) are closer to δ 13C of litter than δ 13C values of SOC (δ 13CSOC). In the litter-lacking surface soil samples, the range of δ 13CDOC is between δ 13CSOC and δ 13C of dominant plant leaves. These results suggest that DOC mainly derive from litter in the litter-rich surface soil with, and the main path of DOC sources may change with surrounding conditions. In addition, δ 13CSOC and δ 13CDOC become more positive, and the absolute values of Δ (δ 13CDOC − δ 13CSOC) decrease with depth in the soil profiles, which indicate that the percentage of DOC below 5 cm, derived from degradation of humus, may increase with soil depth.  相似文献   

18.
For determination of atrazine isotherms in agricultural soils of Fars Province, composite soil samples from 0 to 5 cm depth with textures of silty clay loam, clay loam and loam were collected. In order to form the atrazine isotherms, 10, 50 and 100 µg atrazine g?1 soil was added to the soil samples. Soluble atrazine in water:soil ratios of 10:1, 50:1 and 200:1 was measured after 3-h shaking. Finally, for each cases of applied atrazine, water extractable atrazine was determined and quantified using gas chromatography instrument. The results indicated that there was a linear relationship between the logarithms of water extractable atrazine and added atrazine for different water:soil ratios. A general equation of WEA = K(WS) α (AA) β is obtained experimentally between water extractable atrazine, µg g?1(WEA), and added atrazine, µg g?1 (AA), where K, α and β are absorption constants; WS is the water:soil ratio, g g?1. For the loam, silty clay loam and clay loam soil textures, the α were 0.49, 0.23 and 0.13, respectively, the β were 0.55, 0.806 and 0.21, respectively, and the K were 1.44, 0.78 and 25.38, respectively.  相似文献   

19.
We tested the accuracy of the chloroform fumigation–extraction method, which is commonly used to determine soil biomass C concentrations. Accurate and precise determination of total microbial biomass is important in order to characterize soil properties and to develop predictive metal transport models for soils. Two natural soils, and individual soil components, including silica sand, montmorillonite, kaolinite, a humic acid, and Bacillus subtilis bacterial cells, were fumigated for 24 h. Following the fumigation, C from fumigated and unfumigated samples was extracted using a 0.5 M K2SO4 solution. The difference between the C content in the fumigated and unfumigated samples ideally represents C due to biomass because the fumigation procedure should lyse cells and release biomass C. We observed increased C release upon fumigation for bacteria-only samples, confirming the ability of fumigation to lyse cells. There was no difference in extracted C concentration between fumigated and unfumigated samples of silica sand and of humic acid, confirming that the fumigation process does not introduce additional organic C to samples of these soil components. However, the fumigated clay samples both showed increased C release relative to the unfumigated controls, indicating that significant concentrations of the fumigant, chloroform, adsorbed onto the clay minerals studied here. Additionally, we found significant chloroform remaining in the extracts from two fumigated natural soils. Attempts to remove the chloroform from the soils or soil components prior to extraction by increasing the evacuation time, or to remove chloroform in the extracts by sparging them vigorously with nitrogen gas, both failed. This research reveals that chloroform gas may adsorb significantly to clays and the clay fraction of natural soils. Thus, the fumigation–extraction method must be corrected to account for the added chloroform C and accurately assess the concentration of biomass C in soils that contain significant concentrations of clays.  相似文献   

20.
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00–0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests (r = 0.655–0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号