首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Site response in the Gujarat region is studied using local earthquake data recorded at 32 sites spread all over Gujarat region, India. Out of these 32 sites, 15 sites are located in Kachchh region, 8 in Saurashtra and 9 in mainland Gujarat region. These sites are underlain by different types of rocks/sediments of different ages. Out of 32 stations, 7 stations are on Quaternary deposits, 6 on Tertiary, 11 on Deccan, 3 on Jurassic, 3 on Cretaceous and 2 on Proterozoic rocks. The predominant frequencies at these sites depend strongly on the local geology. The average predominant frequencies of the sites on Quaternary sediments are 2.4?Hz, 5.3?Hz on Tertiary, 7.5?Hz on Jurassic, 7.2?Hz on Deccan, 4.6?Hz on Cretaceous and 7.5?Hz on Proterozoic formations. The average site amplification values at predominant frequencies are 3.7 for the sites of Quaternary deposits, 3.3 for Tertiary, 3.3 for Cretaceous rock, 4.2 for Deccan trap, 4.1 for Jurassic sites and 4.6 for Proterozoic. The damage to the houses during 2001 Bhuj earthquake is compared with the amplification at predominant frequencies at those sites. The spatial variation of predominant frequencies and the site amplifications at different frequencies corresponding to the natural frequencies of different storey buildings are studied, which will be useful in the evaluation of seismic hazard in the region.  相似文献   

2.
The Kachchh region is the second most seismically active region in India after the Himalaya. One of the disastrous Indian earthquakes of the millennium was the Bhuj earthquake of January 26, 2001, which caused about 14,000 casualties and huge property damage. The main reason for such devastation is due to lack of earthquake awareness and poor construction practices. Hence, an increase in the knowledge and awareness, based on improved seismic hazard assessment, is required to mitigate damage due to an earthquake. Natural predominant ground frequencies have been investigated in the Kachchh region of western India using ambient vibrations. The horizontal-to-vertical spectral ratio technique has been applied to estimate the predominant frequency at 126 sites. The ambient vibration measurements were conducted for about 1 h at each site in the continuous mode recording at 100 samples/s. We have validated the estimated predominant frequency with earthquake data recorded at six broadband stations in the region. It has been observed that geological time period has a significant effect on predominant frequency of the ground. The estimated predominant frequencies vary from 0.24 to 2.25 Hz for the Quaternary, 0.41–2.34 Hz for the Tertiary, 0.32–4.91 Hz for the Cretaceous, and 0.39–8.0 Hz for the Jurassic/Mesozoic. In the Deccan trap, it varies from 1.30 to 3.80 Hz. We found distinct variation of predominant frequencies of sites associated with hard rock and soft soil. The predominant frequencies were related to the thickness of the sediments, which are deduced by other geophysical and geological methods in the region. Our results suggest that frequencies of the region reveals the site characteristics that can be considered for studying the seismic risks to evolve a plan for disaster risk mitigation for the region.  相似文献   

3.
A major portion of the southern part of the Indian subcontinent is classified as a stable continental region. However, a few segments in this region are punctuated by rifts and shear zones that are seismically active. The Godavari rift that sutures the eastern Dharwar and the Bastar cratons is one such region, prone to seismic hazard. Estimation of the sedimentary thickness in these seismically active regions assumes importance since locales of thick and soft sediments are vulnerable to destruction due to surface waves generated by earthquakes. In the present study, data from five broadband seismological stations are utilized to estimate the average sedimentary thickness of the Godavari region using the difference in travel times of the direct S and converted Sp phases from local earthquakes. The thickness of sediments varies between 0.32 and 4.32 km. Also, the site-specific response in terms of the fundamental resonance frequency and the corresponding amplifications are estimated using the well-established Nakamura technique. The predominant frequencies are in the range of 1.3–4.61 Hz, and the amplifications are higher (>1.5) for the stations inside the Godavari basin. Both the thickness and amplification values clearly indicate that the sediments tend to get thicker toward the center of the basin, in good agreement with the geological distribution of the sedimentary units.  相似文献   

4.
The seismic events recorded at two accelerographs installed at Sellano (central Italy) during the 1997–1998 Umbria seismic sequence, one on detritic material, at the historical centre, and the other one on rock, about 200 m distant, were analysed in terms of spectral amplification of the historical centre site. Epicentres were mainly concentrated in the north and south-east directions of Sellano area. The SH wave component average amplifications were evaluated from the smoothed Fourier spectral ratios of the recordings on soil and rock sites, along the two main epicentral lines. Similar amplifications resulted, with two main peaks in the frequency range of 3–5 Hz, corresponding to the eigenfrequencies of the damaged buildings. Shear velocities of the shallowest 30 m of soils were obtained by FTAN measurements along refraction seismic spreadings, and utilized to compute spectral amplification of soil station to rock station along the geological cross sections. A good agreement was found between observed Fourier spectral ratios and the computed 2D amplification modelling, which explains the damage level of the historical buildings beside the degraded conditions of brick masonry.  相似文献   

5.
This paper presents a major extension of seismic vulnerability research project on the site of Trako??an Castle based on the initial horizontal-to-vertical-spectral-ratio (HVSR) results from Stanko et al. (2016). The estimated HVSR site frequencies and HV amplification at Trako??an Castle can only be used as an indication of the initial soil site frequency and amplification, so-called natural soil model, corresponding to the subsoil profile without the influence of an earthquake. The equivalent-linear (EQL) site response analysis has been carried out for different earthquake scenarios for a maximum input rock peak ground acceleration (PGAROCK) that corresponds to return periods of 95 (0.08 g), 475 (0.18 g) and 1000 years (0.31 g). The aim of the research is to evaluate structural seismic design responses and to determine type and degree of damage caused by local site effect, which is the result of an alluvial basin and topographic influences. The main objective of this research is the formation of local microseismic zones based on an EQL analysis: surface spectral acceleration and amplification maps at the predominant frequency. Based on the HVSR frequency response of the core structure of Trako??an Castle and the Tower itself (fundamental and higher frequency modes), maps of surface spectral acceleration and soil amplification at different frequencies (3, 5 and 10 Hz) are developed for different input PGAROCK levels (0.08, 0.18 and 0.31 g) to evaluate seismic response of the Castle. Observed amplifications are correlated with ground motion polarization and directionality of the ground motion from the alluvial basin to the hilltop. Shortening of predominant frequencies (lengthening of the period), particularly in the alluvial basin, has been observed with higher input PGAROCK in the EQL analysis. This effect is not manifested in the Trako??an hill, and predominant frequencies match HVSR frequencies. The use of certain geophysical survey methods at historical sites is a big problem, because terrain features (e.g. steep hills, mountains, ridges, slopes, cliffs) create lack of space and make it impossible to carry out geophysical investigation. Microtremor measurements at historical sites can overcome this limitation and provide local seismic response and vulnerability behaviour of historical monuments without destroying their authenticity. Also, computational modelling can greatly improve the results. The EQL site response analysis on the site of Trako??an Castle has confirmed and improved the results of seismic response and vulnerability based on HVSR method.  相似文献   

6.
The area of Serravalle, sited in the northern part of the town of Vittorio Veneto (TV), NE Italy, has been the target of a seismic microzonation campaign. 10 seismic stations have been deployed for a 7 months period to record in continuous mode. Three stations were installed on bedrock outcrops and seven on sedimentary sites with variable cover thickness. Spectral analyses have been performed on the collected data-set using the Generalized Inversion Technique (GIT, e.g. Andrews, 1986). In particular, spectral ratios have been calculated for each station relatively to the average of the three reference, bedrock sites. The spectral ratios provide quantitative estimates of the seismic motion amplifications which occur in each of the monitored sites. Two sites show high values of amplification, 5 times larger than signal amplitude at the reference sites, in correspondence of well discernible peak frequencies of 5 Hz. Results for the other stations show smaller amounts of site amplification spreading over a broad range of frequencies. Sites where the highest amplifications were recorded all lie on the left bank of the Meschio River and in areas farther away from its outlet into the plain correlating with the presence of thick layers of Quaternary deposits.  相似文献   

7.
The January 25, 2016, Mw 6.3 Alborán Sea earthquake shook the autonomous city of Melilla (Spain) with a macro-seismic intensity of VI (EMS-98). In spite of this low intensity, significant non-structural damages were reported, whose cost was estimated in more than 13 million euros. The damages were concentrated in the modernist district, which is considered the most important and valuable part of the city. This scenario is not new in Melilla, since historical and instrumental seismicity studies based on intensities felt in Melilla have revealed that earthquakes with intensities of V–VI have a return period of approximately 25 years. However, seismic microzonation studies have not been carried out so far. In this paper, we present a seismic microzonation study based on seismic noise measurements and the foreshock, mainshock and aftershock records of the January 25, 2016, earthquake. The seismic signals were processed using the horizontal-to-vertical spectral ratio (HVSR) technique. The frequency amplification results were correlated with geological formations, and after that they were correlated with the distribution of damages. The lagoon and the recent alluvial deposits show the maximum number of damaged buildings and maximum frequency amplifications of 2–8 between 2 and 7 Hz. In the coastal deposits, some amplification in the same frequency range has been observed, but other formations show a minimum number of damaged buildings and a flat spectral response ratio. Two important factors in this damage pattern are the high vulnerability of ornamental facades characteristics (non-structural elements) of the modern architecture buildings and their location on the lagoon and the recent alluvial deposits where maximum site amplification is reached.  相似文献   

8.

The January 25, 2016, Mw 6.3 Alborán Sea earthquake shook the autonomous city of Melilla (Spain) with a macro-seismic intensity of VI (EMS-98). In spite of this low intensity, significant non-structural damages were reported, whose cost was estimated in more than 13 million euros. The damages were concentrated in the modernist district, which is considered the most important and valuable part of the city. This scenario is not new in Melilla, since historical and instrumental seismicity studies based on intensities felt in Melilla have revealed that earthquakes with intensities of V–VI have a return period of approximately 25 years. However, seismic microzonation studies have not been carried out so far. In this paper, we present a seismic microzonation study based on seismic noise measurements and the foreshock, mainshock and aftershock records of the January 25, 2016, earthquake. The seismic signals were processed using the horizontal-to-vertical spectral ratio (HVSR) technique. The frequency amplification results were correlated with geological formations, and after that they were correlated with the distribution of damages. The lagoon and the recent alluvial deposits show the maximum number of damaged buildings and maximum frequency amplifications of 2–8 between 2 and 7 Hz. In the coastal deposits, some amplification in the same frequency range has been observed, but other formations show a minimum number of damaged buildings and a flat spectral response ratio. Two important factors in this damage pattern are the high vulnerability of ornamental facades characteristics (non-structural elements) of the modern architecture buildings and their location on the lagoon and the recent alluvial deposits where maximum site amplification is reached.

  相似文献   

9.
Fundamental frequency map of site amplification at different sites in Doon valley, Uttarakhand, India is prepared from microtremor (ground ambient noise) using Horizontal to Vertical Spectral Ratio (HVSR) technique. The fan deposited alluvium filled synclinal valley of Doon lies between Main Boundary Thrust (MFT) and Himalayan Frontal Thrust (HFT) in the Himalayan active seismic belt and experienced many earthquakes in the past. The HVSR at different sites in the Doon valley ranges between the predominant frequencies 0.13 and 12.77 Hz. The HVSR in lower frequencies indicates that the site has either thick sediment covers or less compact rocks with fractures. Based on information on fundamental frequency and soft soil thickness, site classification map is generated. Results indicate that degree of compactness of rock types and presences of sediments vary significantly, which may play a major role in seismic hazard. The use of microtremor, therefore, constitutes an effective and inexpensive approach to site response and soft soil thickness estimation for preliminary microzonation.  相似文献   

10.
The Surat City, which is the second most populated city in the state of Gujarat in western India, warrants site-specific seismic hazard assessment due to its rapid urbanization and proximity to major seismogenic zones. This study reports results of microtremor investigations at 72 single stations and 4 arrays in an area of 325 km2 spanning the city. The resonant frequencies, associated peak amplification values and liquefaction vulnerability indices were deduced from the horizontal to vertical spectral ratios. Ground amplification (AHVSR) in the range of 3.0–5.0 was observed in the 2.0–4.0-Hz frequency band at most of the sites. A secondary AHVSR between 2.0 and 3.0 is also observed in the 6.0–7.0-Hz frequency band at a few sites. Locales that are most susceptible to liquefaction are identified based on their vulnerability index (K g) exceeding the value of 10. The shear wave velocities (V s) ≥ 500 m/s inferred from array measurements occur at 38 m depth in the western part and ~16 m depth in the eastern part of city. The response spectra estimated from strong motion data recorded at an accelerograph site in Surat from three earthquakes of M w ≥ 3.2 that occurred in Kachchh, Saurashtra and Narmada regions are in accordance with our inferences of characteristic site frequencies and amplification. Our results, in agreement with the damage scenario during the 2001 Bhuj earthquake, provide valuable inputs for site-specific seismic hazard evaluation of the Surat City.  相似文献   

11.
Andrej Gosar 《Natural Hazards》2012,62(3):1059-1079
Site effects studies using microtremor free-field measurements were performed recently in five Slovenian towns characterized by increased seismic hazard to determine resonance frequency of soft sediments. In this study, microtremor investigations were extended to the measurements inside buildings to determine their fundamental frequencies and to assess the possible occurrence of soil-structure resonance. Measurements were performed in 66 buildings, and by spectral analysis, it was possible to determine reliably fundamental frequencies (longitudinal and transverse) for 58 buildings. Residential masonry houses with two or three floors prevail, but some buildings of up to six-floor height were also surveyed. Microtremor measurements have proved to be an effective tool for assessment of fundamental frequencies of buildings. Such experimental approach is very valuable, as analytical seismic evaluation of an existing building is usually very difficult. Statistical analysis of the fundamental frequency versus number of floors (height) was performed to generalize identification of potential soil-structure resonance. The difference in average fundamental frequency is very clear between buildings with two and three floors. The average value of both horizontal components for two-floor buildings is 9.11?±?1.94?Hz, and for three-floor buildings, 7.03?±?1.46?Hz. On the other hand, the difference in frequencies between three- and four-floor buildings (average for later is 6.52?±?0.80?Hz) is very small. The average fundamental frequencies for five- and six-floor buildings are lower, 4.62?±?0.64?Hz and 5.30?±?0.70?Hz, respectively, with no statistically significant difference between both types. Most Slovenian towns are located in shallow sedimentary basins where the free-field soft covers frequencies are in the range 2?C20?Hz. On the other hand, houses with two and three floors represent the large majority of the building stock. To assess the possible occurrence of soil-structure resonance in general, an average fundamental frequency?±?one standard deviation interval is obtained for these two building heights, which gives the range 5.6?C11.1?Hz. The free-field data show that this frequency range occupies from 22?% of the surveyed area in the Kobarid basin to up to 59?% in the Bovec basin and is in between for other three basins. This leads to the conclusion that the possible occurrence of soil-structure resonance is a serious issue for typical geological situations, in which towns are located.  相似文献   

12.
The characteristics of the strong ground motion accelerograms from the 1999 Kocaeli earthquake are investigated in detail in this study. The emphasis is on the comparison of the response spectra for the fault normal (FN) and fault parallel (FP) components of the ground motions. The results show that the near-fault records with directivity effects characterize themselves with increased base shear demands rather than increased displacement demands for both the FN and FP components and a narrower velocity sensitive region for the FN component. This study also shows that the effectiveness of base isolation may vary from site to site and for a given site, from component to component. The site effects in the Marmara region during the 1999 Kocaeli earthquake are examined. Site amplifications are predicted by the classical spectral ratio (CSR) and the receiver function (RF) methods. The CSR method gives higher estimates for the site amplifications compared to the RF method and is in better conformity with the observed damage during the Kocaeli earthquake. The districts of Istanbul that are especially susceptible to site amplification hazard are determined. It is apparent from the results that the site amplification hazard risk is the highest for Avcilar and Bakirkoy districts. This study also shows that for sites which have the risk of soil amplification for long-period structures, liquefaction may not be beneficial as a natural base isolator, and may result in shifting the eigenperiod of the low- and mid-rise structures to the critical periods with high site amplifications. This may be especially the case for Avcilar and Bakirkoy districts. In Fatih, Bakirkoy, and Cekmece districts, the predominant period of the ground motion is calculated to be very close to the eigenperiods of the typical residential buildings. Therefore, these three districts are expected to experience heavier damages in future earthquakes due to resonance effects.  相似文献   

13.
In this study, soil response was carried out for the Greater Delhi region. A folded Proterozoic formation was identified as Delhi ridge, passes through its central part along SSW–NNE direction, and appears to be a main geomorphic feature for the study area. The Delhi ridge is an exposed quartzite rock of about 10–100 m wide and ~25 km long with gentler dipping both toward east and west. We have considered the exposed part as an outcrop side near the ridge axis and the dipping area as rigid base away from the ridge axis for ground motion study during the occurrence of the 25 November 2007 earthquake with magnitude M L 4.3 (Richter scale) that occurred at Delhi–Haryana State boundary. The degree of shaking was very strong and reported major cracks in the buildings near the epicenter area. We have studied the soil response parameters at the surface level, considering horizontally stratified soil layers above rigid base. The equivalent linear method was used for soil response analysis at 25 sites in Greater Delhi area. The peak amplification factors vary from 3.2 to 5.9 and peak resonance frequency varies from 1.2 to 5.3 Hz. The correlation among the peak amplification factor (A) and frequency (f) was empirically established as A = 0.36f + 3.60. Increasing peak amplification factor was found at sites with increasingly thicker alluvium deposit with lower frequency contains ground motion and vice versa. Seismic zoning map was also reconstructed for peak amplification factors and predominant periods for the study area for the mitigation purposes of earthquake damage. The average shear wave velocity up to 30 m soil depth is also obtained for site classification. The average velocity to 30 m [ $ \overline{{V_{\text{s}} }} (30) $ ] is a widely used parameter for classifying sites for predicting their potentiality to amplify seismic shaking. A lower value [ $ \overline{{V_{\text{s}} }} (30) $ ] thus yields a more conservative estimate of ground motion, which generally increases as $ \overline{{V_{\text{s}} }} (30) $ decreases. Present estimate of $ \overline{{V_{\text{s}} }} (30) $ varies from 315 to 419 m/s. In this study, we have identified two site classes C and D, as per National Earthquake Hazard Reduction Program. The city planner or engineers can directly use these data for site-specific assessment during retrofitting of the existing structure, demolition of the old buildings and design a new structure to avoid major destruction of the buildings due to future earthquake.  相似文献   

14.
The degree of damage during earthquakes strongly depends on dynamic characteristics of buildings as well as amplification of seismic waves in soils. Among the other approaches, microtremor is, perhaps, the easiest and cheapest way to understand the dynamic characteristics of soil. Non-reference microtremor measurements have been carried out in 45 locations in and around the capital Dhaka city of Bangladesh. Subsoil investigations (Standard Penetration Test and Shear Wave Velocity) have also been executed in those locations. Soil model has been developed for those locations for site response analysis by means of the program SHAKE. Among those 45 locations, predominant frequency of microtremor observation varies from 0.48 to 3.65 Hz. Out of those 45, for 35 locations Transfer function obtained from the program SHAKE have higher frequency compared to microtremor H/V ratio and for one location it has lower predominant frequency. For six locations, frequencies obtained from two methods are identical. For three other locations, there are no similarities between predominant frequency obtained from microtremor and transfer function. The seismic Vulnerability Index (Kg) for 45 sites varies between 0.45 and 31.85. Ten sites have been identified as having moderate vulnerability of soil layers to deform.  相似文献   

15.
Site classification studies play a vital role in earthquake hazard assessment since in situ ground conditions substantially affect the characteristics of incoming seismic waves during earthquakes. Flat areas along the coast and rivers generally consist of thick layers of soft clay and sand. Such deposits amplify certain frequencies of ground motion, thereby attributing to an increase in the damage due to an earthquake. Hence, site classification studies have been carried out using shear-wave velocity, ground response, and corresponding amplification at 83 locations in Pondicherry, a coastal city in India. The present study is aimed at estimating the shear-wave velocity through multichannel analysis of surface waves and to compute the average shear-wave velocity (V S 30 ), stiffness, and N values using empirical relations. Further, site-response studies (horizontal-to-vertical spectral ratio) were conducted to estimate the ground-response frequencies and corresponding amplifications through Nakamura technique. From the results, the study area was classified into three types, i.e., C-class: with V S 30 in the range of 360–760 m/s, D-class: with V S 30 in the range of 180–360 m/s, and E-class: with V S 30  < 180 m/s following the National Earthquake Hazard Reduction Programme norms (BSSC in NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), part 1: provisions. Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, 2003). Finally, a site classification map for Pondicherry region has been prepared, which can be used in urban planning and strengthening of existing structures against future earthquakes.  相似文献   

16.
The evaluation of seismic site response in the urban area of Catania was tackled by selecting test areas having peculiar lithological and structural features, potentially favourable to large local amplifications of ground motion. The two selected areas are located in the historical downtown and in the northern part of Catania where the presence of a fault is evident. Site response was evaluated using spectral ratio technique taking the horizontal- to-vertical component ratio of ambient noise. Inferences from microtremor measurements are compared with results from synthetic accelerograms and response spectra computed at all drillings available for this area. Such method is particularly suitable in urban areas where the nature of the outcropping geological units is masked by city growth and anthropic intervention on the surface geology. The microtremor H/V spectral ratios evaluated at soft sites located within the downtown profile tend to be smaller than that usually reported in the literature for such soils. A tendency for amplifications to peaks near 2 Hz is observed only in some sites located on recent alluvial deposits. Evidences for amplifications of site effects (frequency range 4–8 Hz) were observed in the sampling sites located on the fault, with a rapid decrease of spectral amplitude just a few tenths of metres away from the discontinuity. Numerical simulations evidenced the importance of geolithological features at depth levels even greater than 20–30 m. Besides this, the results strongly confirm the importance of the subsurface geological conditions, in the estimate of seismic hazard at urban scale.  相似文献   

17.
朱新运 《地球科学》2016,41(12):2109-2117
华北盆地是中国大陆地震活跃区之一,通过地震波衰减及场地响应参数研究该区构造介质属性及台基属性对地震预测预报、灾害评估具有重要意义.基于Lg波谱比的联合反演方法是获得地震波衰减参数及场地响应的有效方法,通过随机重采样方法可以检验解的稳定性.使用华北盆地68个台站记录的2004—2008年的149次地震,震级ML为1.7~5.3的震中距为100~600 km,按信噪比大于2的标准挑选有效垂向记录1 000多条,地震射线较好地覆盖了华北盆地38°N~41°N、114°E~120°E区域.采用2.60~3.65 km/s的速度窗截取Lg波形并转化为频谱,研究频率范围为1~7 Hz,频率间隔0.2 Hz.计算得到的地震波衰减品质因子Q(f)与频率f的关系可表示为Q(f)=125±4.4f0.86±0.03,研究区为低Q0(对应频率1 Hz),高频率依赖性的构造活跃区.基岩台站对地震波没有表现出明显放大作用,黄土沉积台站低频端比高频端明显放大;场地响应波动较大台站其解的标准偏差也大,说明场地响应的不稳定性体现了台基属性的非稳定性特征.   相似文献   

18.
Site response in and around Delhi is studied using digital seismograms recorded by a thirteen-station VSAT-based 24-bit digital Delhi telemetry network of the India Meteorological Department. Nine local (M l ≥ 2.3) and nine regional (M l ≥ 3.9) earthquakes are selected for the estimation of site amplification factor using the classical standard spectral ratio for regional events (Ridge Delhi Observatory being the reference station), normalized standard spectral ratio for local events, horizontal-to-vertical spectral ratio or receiver function and the generalized inversion techniques in the frequency range of 0.5 to 7.5 Hz. Site response curves at all the thirteen stations exhibit station to station variation of the site amplification factor reflecting the changes in geologic/geotectonic/soil conditions. A comparison of the site response values obtained by the generalized inversion with those computed using receiver function technique shows a large scatter even though the pattern of the curves remain more or less similar. However, the site effects computed by generalized inversion and standard spectral ratio exhibit a good 1:1 correspondence. The peaks yielded by all the methods have been observed to occur at the same frequencies. It is evident that the softer fluvial deposits of the newer alluvium of the east Yamuna sector show steeper site amplification gradient at lower frequencies, while the greater Delhi experiences moderate site amplification. The variation of site response corroborates the abrupt changes in intensity from one location to another due to local site condition.  相似文献   

19.
Mumbai city, the economical capital of India, is located on the west coast of stable intra-plate continental region of Peninsular India which has an experience of significant historical earthquakes in the past. The city stood as the fourth most populous city in the world. Recent seismo-tectonic studies of this city highlighted the presence of active West coast fault and Chiplun fault beneath the Deccan basalt. In the present study, spatial variability of probabilistic seismic hazard for Mumbai region (latitudes of 18.85–19.35°N and longitudes of 72.80–73.15°E at a grid spacing of 0.05°) which includes Mumbai city, Suburban, part of Thane district and Navi Mumbai, in terms of ground motion parameters; peak horizontal acceleration and spectral acceleration at 1.0-s period for 2 and 10 % probability of exceedance in 50 years are generated. The epistemic uncertainty in hazard estimation is accounted by employing seven different ground motion prediction equations developed for worldwide shallow crustal intra-plate environments. Further, the seismic hazard results are deaggregated for Mumbai (latitude 18.94°N, longitude 72.84°E) to understand the relative contributions of earthquake sources in terms of magnitude and distance. The generated hazard maps are compared with the zoning specified by Indian seismic code (IS1893: Part 1 in Indian standard criteria for earthquake-resistant design of structures, Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi, India, 2002) for rocky site. Present results show an underestimation of potential seismic hazard in the entire study region by non-probabilistic zoning prescribed by IS1893: Part 1 with significantly higher seismic hazard values in the southern part of Navi Mumbai.  相似文献   

20.
The site amplification is estimated at five seismic stations of the Latur region using the horizontal to vertical spectral ratios of 33 aftershocks of the main Killari earthquake of September 29, 1993 (UTC). Spectral amplifications, ranging from a factor of 2–6 are found to vary with frequency at different places. Significant amplification is found at four sites within the Latur region, at Basavakalyan, Kasgi, Killari, and Mudgad Eakoji villages. Our results show a positive correlation between the site amplification and the damage pattern in area. The pattern and the nature of the site amplification estimated in the present study corroborates also with the analytical models and the borehole data indicating alternating layers of unconsolidated sediments and basaltic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号