首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987110000113   总被引:3,自引:0,他引:3  
<正>Against the current background of global climate change,the study of variations in the soil carbon pool and its controlling factors may aid in the evaluation of soil's role in the mitigation or enhancement of greenhouse gas.This paper studies spatial and temporal variation in the soil carbon pool and their controlling factors in the southern Song-nen Plain in Heilongjiang Province,using soil data collected over two distinct periods by the Multi-purpose Regional Geochemical Survey in 2005—2007, and another soil survey conducted in 1982—1990.The study area is a carbon source of 1479 t/km~2 and in the past 20 years,from the 1980s until 2005.the practical carbon emission from the soil was 0.12 Gt.Temperature,which has been found to be linearly correlated to soil organic carbon,is the dominant climatologic factor controlling soil organic carbon contents.Our study shows that in the relevant area and time period the potential loss of soil organic carbon caused by rising temperatures was 0.10 Gt,the potential soil carbon emission resulting from land-use change was 0.09 Gt,and the combined potential loss of soil carbon(0.19 Gt) caused by warming and land-use change is comparable to that of fossil fuel combustion(0.21 Gt).Due to the time delay in soil carbon pool variation,there is still 0.07 Gt in the potential emission caused by warming and land-use change that will be gradually released in the future.  相似文献   

2.
Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 × 10~6 km~2 in eastern China were investigated using a land use dataset from a recent soil geochemical survey.A map of soil carbon sources/sinks has been prepared based on a spatial analysis scheme with GIS.Spatial statistics showed that land use changes had caused 30.7 ± 13.64 Tg of surface soil organic carbon loss,which accounts for 0.33%of the total carbon storage of 9.22 Pg.The net effect of the carbon source was estimated to be ~ 71.49 Tg soil carbon decrease and ~40.80 Tg increase.Land use changes in Northeast China(NE) have the largest impact on soil organic carbon storage compared with other regions.Paddy fields,which were mainly transformed into dry farmland in NE,and constructed land in other regions,were the largest carbon sources among the land use types.Swamp land in NE was also another large soil carbon source when it was transformed into dry farmland or paddy fields.Dry farmland in the NE region formed the largest soil organic carbon sink,as some were transformed into paddy fields,forested land,and other land use types with high SOCD.  相似文献   

3.
Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO2 emission from the huge loess carbon pool.This study aims to determine the potential of loess CO2 emission induced by excavation.Soil CO2 were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO2 and SOC were used to identify their sources.The results showed that the soil CO2 concentrations ranged from 830μL·L-1 to 11190μL·L-1 with an annually reducing trend after excavation,indicating that the human excavation can induce CO2 production in loess profile.Theδ13 C of CO2 ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ13CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ13 C-CO2 in this study has a positive relationship with the reversed CO2 concentration,and it is calculated that 80.22%of the soil CO2 in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO2 to atmosphere.  相似文献   

4.
This study dealt with the distribution characteristics of soil organic carbon (SOC) and the variation of stable carbon isotopic composition (δ^13C values) with depth in six soil profiles, including two soil types and three vegetation forms in the karst areas of Southwest China. The δ^13C values of plant-dominant species, leaf litter and soils were measured using the sealed-tube high-temperature combustion method. Soil organic carbon contents of the limestone soil profiles are all above 11.4 g/kg, with the highest value of 71.1 g/kg in the surface soil. However, the contents vary between 2.9 g/kg and 46.0 g/kg in three yellow soil profiles. The difference between the maximum and minimum δ^13C values of soil organic matter (SOM) changes from 2.2‰ to 2.9‰ for the three yellow soil profiles. But it changes from 0.8‰ to 1.6‰ for the limestone soil profiles. The contrast research indicated that there existed significant difference in vertical pattems of organic carbon and δ^13C values of SOM between yellow soil and limestone soil. This difference may reflect site-specific factors, such as soil type, vegetation form, soil pH value, and clay content, etc., which control the contents of different organic components comprising SOM and soil carbon turnover rates in the profiles. The vertical variation patterns of stable carbon isotope in SOM have a distinct regional character in the karst areas.  相似文献   

5.
As the most important part of the global carbon cycle,soil carbon pool is the largest carbon pool in terrestrial ecosystems. Soil carbon pool in permafrost regions is the most sensitive carbon pool to climate change. Weak climate change will have a huge impact on the organic carbon production in the shallow soil,and then affect the regional landscape and ecology. As an indicator reflecting the antioxidant capacity of soil organic carbon,oxidation stability affects the quantity and quality of soil organic carbon,and its variation has a certain regularity in the alpine permafrost region under the influence of climatic factors. In order to explore the distribution characteristics of soil organic carbon and its oxidation stability in frozen soil,based on the experimental data and the climatic data from 2011 to 2019,the random forest model was used to conduct multi-factor digital mapping on soil organic carbon content,soil organic carbon components with different oxidation difficulty degrees,and soil organic carbon oxidation stability coefficient and environmental variables(average annual precipitation,average annual sunshine hours,average annual air temperature,and altitude)and analyze the controlling factors. The results showed that the model had an interpretation degree of more than 54% for the shallow soil organic carbon in frozen soil area of Three River Source Region,and the digital mapping could reflect the distribution of soil organic carbon well. Soil organic carbon was mainly affected by precipitation and sunshine duration,and temperature took second place. The spatial distribution of components with different oxidation difficulty is different,but the oxidation stability has the distribution characteristics of high in the north and low in the south. Cold and dry are conducive to improving the oxidation stability of organic carbon in shallow soil of frozen soil area. © 2022 Science Press (China).  相似文献   

6.
正1 Introduction Marsh-wetland,as an important type of wetlands,is a synthetic natural ecosystem with rich soil organic carbon.The largest area of marsh-wetland was located in Sanjiang Plain in the Northeast China and obvious land use changes have occurred during the last 50 years with large area of marsh-wetland cultivated to farmland which had a big impact on soil organic carbon stock.In this study,spatial distributions of 0-20cm soil organic carbon sources and sinks in Sanjiang Plain were investigated from 1980 to 2016.  相似文献   

7.
Carbonate rock outcrops cover 9%–16% of the continental area and are the principal source of the dissolved inorganic carbon (DIC) transferred by rivers to the oceans, a consequence their dissolution. Current estimations suggest that the flux falls between 0.1–0.6 PgC/a. Taking the intermediate value (0.3 PgC/a), it is equal to 18% of current estimates of the terrestrial vegetation net carbon sink and 38% of the soil carbon sink. In China, the carbon flux from carbonate rock dissolution is estimated to be 0.016 PgC/a, which accounts for 21%, 87.5%–150% and 2.3 times of the forest, shrub and grassland net carbon sinks respectively, as well as 23%–40% of the soil carbon sink flux. Carbonate dissolution is sensitive to environmental and climatic changes, the rate being closely correlated with precipitation, temperature, also with soil and vegetation cover. HCO3- in the water is affected by hydrophyte photosynthesis, resulting in part of the HCO3? being converted into DOC and POC, which may enhance the potential of carbon sequestration by carbonate rock dissolution. The possible turnover time of this carbon is roughly equal to that of the sea water cycle (2000a). The uptake of atmospheric/soil CO2 by carbonate rock dissolution thus plays an important role in the global carbon cycle, being one of the most important sinks. A major research need is to better evaluate the net effect of this sink in comparison to an oceanic source from carbonate mineral precipitation.  相似文献   

8.
Lead (Pb) is normally considered as a trace element in soils and sediments for geochemical study. However, the concentration of Pb in firing range soils is generally so high that it should be considered as a major element during the evaluation of the soil geochemical properties. Soil organic matter (SOM) has been reported as one of the major factors to expedite the corrosion of metallic lead (Pb) in acidic and organic-rich soils. The main impacts of SOM on the fate and transport of Pb in firing range soils lie in the following two aspects; (1) the complexation of organic matter with Pb, which has received lots of attention, and; (2) changes in soil redox potential due to the transformation of SOM and its subsequent impact on Pb speciation, which has rarely been investigated. Soils from 6 different firing ranges are selected for this study. These samples have been stored under a closed condition for more than 3 years. The soil moisture contents were well-retained, as all the samples were kept in closed plastic buckets. The analytical data showed that the summation of the soil total organic carbon content (TOC) and inorganic carbon contents (TIC) were consistent with soil total carbon contents (TC) measured in previous years, although the TOC and TIC contents have changed respectively after years of storage. In general, it is observed that the soil TOC decreased against an increase of TIC. The mass balance on such a transformation suggested a major conversion of organic carbon (Corg) to inorganic carbon (CO3^2-) in the stored soils.  相似文献   

9.
To predict the long-term behavior of arsenic(As) in soil profiles,the solid-solution partitioning of As was studied in four paddy soil profiles obtained from agricultural areas in Chengdu Plain,Southwest China.Paddy soil profile samples were collected and soil solution samples were extracted.Total As contents in soil solution and soil solid were analyzed,along with the soil solid phase properties.The As in soil solution was significantly higher in the upper layer(0—20 cm) and had a definite tendency to decrease towards 40 cm regardless of the sampling locations.When the concentration of arsenic in soil solution decreased,its content in solid phase increased.Field-based partition coefficient(K_d) for As was determined by calculating the ratio of the amount of As in the soil solid phase to the As concentration in the soil solution.K_d values varied widely in vertical samples and correlated well with soil pH,total organic carbon(TOC) and total As. The results of this study would be useful for evaluating the accumulation trends of arsenic in soil profiles and in improving the management of the agricultural soils.  相似文献   

10.
Soils contain about twice the amount of carbon presented in the atmosphere, so a small change in the soil carbon will influence atmospheric chemistry and heat balance. The soil carbon ultimately exchanged with the atmospheric CO2 as soil CO2, which mainly exists at the depth of 0-20 cm. The transport of soil CO2 is affected by the sources of soil CO2. Thus, separation of the contributions of sources of soil CO2 is a fundamental need to understand and predict implications of environmental change on soil carbon cycling and sequestration. It is a complicated task, so that a number of different methodological approaches such as component integration, root removal, and gap analyses have been developed. However, these methods could not avoid changing soil characteristics such as air-filled porosity, soil temperature and soil water contents. Consequently, fractional contributions of respiration of living root and decomposition of soil organic matter to the total soil CO2 cannot be estimated correctly. In this study, based on mass balance theory of both concentrations and δ^13C of soil CO2, a trenching method with a stable-isotope technique was used to determine both soil CO2 sources at the depth of 3-13 cm in a Japanese larch forest area during 30 May to 7 October 2005 and fractional contributions of these sources. Experimental results showed that the amount of atmospheric CO2 invaded the soil air was not significantly variable while its percent rate in the total soil CO2 had significantly temporal variations with the lower values between 5 August and 1 September. The litter-layer decomposition was very small. The soil CO2 derived from the respiration of living root and the decomposition of soil organic matter showed significantly temporal variations with increase from 30 May to 5 Aug. and decrease from 1 September to 7 October, 2005; and it accounted for 82%-98% of the total soil CO2 in which the respiration of living root was in the range from 32% to 62%.  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987111000193   总被引:2,自引:0,他引:2  
Geochemical subsoil data obtained from China and European laboratories have been compared in this study. 787 C horizon subsoil samples from FOREGS (Forum of European Geological Surveys) geochemical baselines mapping project were sent to China’s IGGE (Institute of Geophysical and Geochemical Exploration) laboratory and composited to 190 samples according to the 160 km 160 km GNT (Global Terrestrial Network) cells. In addition to the FOREGS elemental analysis package, Au, Pt, Pd, B, Ge, Br, Cl, Se, N, Li and F were also analyzed by using the IGGE’s 76 element analytical scheme. Geochemical data statistics, scatter plotting, and geochemical map compilation techniques have been employed to investigate differences between FOREGS and IGGE analytical results. The results of two datasets, the IGGE’s analysis data for composited samples, and the FOREGS average data of samples in each GNT cell, agree extremely well for about 23 elements, viz: SiO2, Sr, Al2O3, Zr, Ba, Fe2O3, Ti, Rb, Mn, Gd, CaO, Ga, MgO, P, Pb, Na2O, Y, Th, As, U Sc, Cr, and Co. There are slight differences between-laboratory biases shown as proportional errors between the datasets for Ni, K2O, Tb, Tl, Cu, S, Sm, La, Ce, Pr, Nd, Eu, Ho, Er, Tm, Yb, Lu, Ta, Nb, Hf, and Dy. For Cd, Cs, Be, Sb, In, Mo, I, Sn, and Te, the correlation of the two datasets and the similarity of the geochemical maps are fairly good, but obvious biases exist between the two datasets at values near detection limits. Sensitivities of FOREGS analytical methods for W, Bi, Sn, Te, Be, and I are insufficient to produce reportable values in at least 80% of the samples. Although the detection limits of Ag for both FOREGS and IGGE are sufficient to provide reportable values, a large bias was found between the two datasets. This study demonstrates that consistent analytical data for certain elements of global geochemical mapping samples can be achieved by different qualified laboratories, such as China’s IGGE laboratory and some European laboratories. For some elements, such as Ag, further research on the selection of the proper analytical methods and on the development of quality control methods should be undertakendwith final recommendations adhered to by all participants of the global geochemical mapping program.  相似文献   

12.
http://www.sciencedirect.com/science/article/pii/S1674987111000405   总被引:1,自引:0,他引:1  
This study has focused on the processes of soil degradation and chemical element concentration in tea-growing regions of Rwanda, Africa. Soil degradation accelerated by erosion is caused not only by topography but also by human activities. This soil degradation involves both the physical loss and reduction in the amount of topsoil associated with nutrient decline. Soil samples were collected from eleven tropical zones in Rwanda and from variable depth within each collecting site. Of these, Samples from three locations in each zone were analyzed in the laboratory, with the result that the pH of all soil samples is shown to be less than 5 (pH < 5) with a general average of 4.4. The elements such as iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) are present in high concentration levels. In contrast calcium (Ca) and sodium (Na) are present at low-level concentrations and carbon (C) was found in minimal concentrations. In addition, elements derived from fertilizers, such as nitrogen (N), phosphorous (P), and potassium (K) which is also from minerals such as feldspar, are also present in low-level concentrations. The results indicate that the soil in certain Rwandan tea plantations is acidic and that this level of pH may help explain, in addition to natural factors, the deficiency of some elements such as Ca, Mg, P and N. The use of chemical fertilizers, land use system and the location of fields relative to household plots are also considered to help explain why tea plantation soils are typically degraded.  相似文献   

13.
http://www.sciencedirect.com/science/article/pii/S1674987111001034   总被引:10,自引:0,他引:10  
A comprehensive methodology that integrates Revised Universal Soil Loss Equation(RUSLE) model and Geographic Information System(GIS) techniques was adopted to determine the soil erosion vulnerability of a forested mountainous sub-watershed in Kerala,India.The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method.GIS data layers including,rainfall erosivity(R),soil erodability(K),slope length and steepness(LS),cover management (C) and conservation practice(P) factors were computed to determine their effects on average annual soil loss in the area.The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y-1 with a close relation to grass land areas,degraded forests and deciduous forests on the steep side-slopes(with high LS ).The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas.  相似文献   

14.
This study presents promising variants of genetic programming (GP),namely linear genetic programming (LGP) and multi expression programming (MEP) to evaluate the liquefaction resistance of sandy soils....  相似文献   

15.
周琦  王砚耕  陈旭晖 《贵州地质》2020,37(3):225-226, 232
基于广义(C,α,ρ,d)K,θ-凸函数,广义(C,α,ρ,d)K,θ-伪凸函数和广义(C,α,ρ,d)K,θ-拟凸函数等,探讨了涉及这些新广义凸性的一类多目标半无限分式规划的Mond-Weir型对偶,得到了相关的弱对偶定理和强对偶定理,并进行了证明。  相似文献   

16.
杨振华 《云南地质》2011,30(2):183-187
扎沙地区土壤地球化学测量共圈定10个元素组合异常。Ⅰ类异常与地质构造吻合较好,应为致矿异常,可作为重要找矿标志,对缩小找矿靶区和找矿有较好的指导意义。  相似文献   

17.
Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic remediation technology to immobilize heavy metals in contaminated soils and sludges. In the present study, fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in artificially contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive X-ray (SEM–EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. The experimental results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of quicklime and fly ash to the contaminated soils effectively reduced heavy metal leachability well below the nonhazardous regulatory limits. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime–fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation. Overall, due to the presence of very high levels of heavy metal contamination along with sulfates in the solid matrices under study, the results presented herein can be applied to the management of incinerator and coal fly ash, boiler slag and flue gas desulfurization wastes.  相似文献   

18.
雷和健  刘若元 《湖南地质》2002,21(4):245-251
为国土整理工作提供的测绘保障,称之为“国土整理测量”,它主要由“面”的规划调查测量和“点”、“线”的实施工程测量组成。权属调查、行政区划调查是国土整理测量工作的重要组成部分,在某些情况下,还须进行人口与水资源调查。国土整理测量必须建立土地台帐,并达到综合利用土地台帐的目的。日本等经济发达国家在20纪50年代即巳开展了长期化、制度化的国土整理工作,而我国则刚刚起步,因此尚存在没有统一的技术标准、总体规划性不强、缺乏前瞻性和国土整理测量成果没有得到综合利用等问题。所以:依据我国国情,借鉴国外经验,探讨国土整理测量的特点、作业流程及实施方法,为即将到来的大规模国土整理测量提供必要的理论依据与技术标准、实施方法与手段,具有很强的必要性与迫切性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号