首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of prolonged contact time (up to 130 days) on the immobilization of Cd by sorption to calcium exchanged zeolite-X (CaX), under environmentally relevant conditions, was studied using both isotopic exchange and extended X-ray absorption fine structure spectroscopy (EXAFS). Sorption and isotopic exchange measurements revealed time-dependent Cd sorption and indicated the movement of Cd2+ ions into less accessible sites due to ageing. EXAFS suggested progressive fixation of Cd in the double six-ring (D6R) unit of the CaX structure. Proportional allocation of the apparent Cd-Si bond distance to two ‘end-members’, across all contact times, indicated that the bond distance for labile Cd was 3.41 Å and for non-labile (or fixed) Cd was 3.47 Å.  相似文献   

2.
Strontium-90 is a beta emitting radionuclide produced during nuclear fission, and is a problem contaminant at many nuclear facilities. Transport of 90Sr in groundwaters is primarily controlled by sorption reactions with aquifer sediments. The extent of sorption is controlled by the geochemistry of the groundwater and sediment mineralogy. Here, batch sorption experiments were used to examine the sorption behaviour of 90Sr in sediment–water systems representative of the UK Sellafield nuclear site based on groundwater and contaminant fluid compositions. In experiments with low ionic strength groundwaters (<0.01 mol L−1), pH variation is the main control on sorption. The sorption edge for 90Sr was observed between pH 4 and 6 with maximum sorption occurring (Kd ∼ 103 L kg−1) at pH 6–8. At ionic strengths above 10 mmol L−1, and at pH values between 6 and 8, cation exchange processes reduced 90Sr uptake to the sediment. This exchange process explains the lower 90Sr sorption (Kd ∼ 40 L kg−1) in the presence of artificial Magnox tank liquor (IS = 29 mmol L−1). Strontium K-edge EXAFS spectra collected from sediments incubated with Sr2+ in either HCO3-buffered groundwater or artificial Magnox tank liquor, revealed a coordination environment of ∼9 O atoms at 2.58–2.61 Å after 10 days. This is equivalent to the Sr2+ hydration sphere for the aqueous ion and indicates that Sr occurs primarily in outer sphere sorption complexes. No change was observed in the Sr sorption environment with EXAFS analysis after 365 days incubation. Sequential extractions performed on sediments after 365 days also found that ∼80% of solid associated 90Sr was exchangeable with 1 M MgCl2 in all experiments. These results suggest that over long periods, 90Sr in contaminated sediments will remain primarily in weakly bound surface complexes. Therefore, if groundwater ionic strength increases (e.g. by saline intrusion related to sea level rise or by design during site remediation) then substantial remobilisation of 90Sr is to be expected.  相似文献   

3.
The dissolution of well crystallized gibbsite far at from equilibrium was studied in batch and mixed flow through reactors. The dissolution experiments were carried out between pH 2 and 6 in the presence of 10 mmol L−1 citrate, at pH 2 and 3 in the presence of 10 mmol L−1 chloride, nitrate, and sulfate, and at pH 2 and 3 in the presence of 1.5 mmol L−1 silica at 20°C. The dissolution rate of gibbsite, RAl (mol m−2 s−1), increases in the order of chloride ≈ nitrate < silica < sulfate ≈ citrate. In presence of silica, sulphate, and citrate dissolution is catalysed by the formation of aluminium complexes at the gibbsite surface (pH 2 and 3). From pH 2 to 3 no effect of RAl on hydrogen activity is predicted as singly coordinated surface sites at the edges of the platy gibbsite crystals, [≡AlOH2+0.5] ≈ [≡AlOH], are almost saturated with protons. However at pH >3 dissolution is slowed by a decrease of [≡AlOH2+0.5].Gibbsite dissolution rates measured in closed and open systems were identical within the experimental and analytical uncertainty. This observation indicates that gibbsite dissolution is a surface controlled process. If dissolution of gibbsite occurs close to equilibrium RAl values may be predicted by an approximately linear function of ΔGr.  相似文献   

4.
The surface reactivity of biogenic, nanoparticulate UO2 with respect to sorption of aqueous Zn(II) and particle annealing is different from that of bulk uraninite because of the presence of surface-associated organic matter on the biogenic UO2. Synthesis of biogenic UO2 was accomplished by reduction of aqueous uranyl ions, by Shewanella putrefaciens CN32, and the resulting nanoparticles were washed using one of two protocols: (1) to remove surface-associated organic matter and soluble uranyl species (NAUO2), or (2) to remove only soluble uranyl species (BIUO2). A suite of bulk and surface characterization techniques was used to examine bulk and biogenic, nanoparticulate UO2 as a function of particle size and surface-associated organic matter. The N2-BET surface areas of the two biogenic UO2 samples following the washing procedures are 128.63 m2 g−1 (NAUO2) and 92.56 m2 g−1 (BIUO2), and the average particle sizes range from 5-10 nm based on TEM imaging. Electrophoretic mobility measurements indicate that the surface charge behavior of biogenic, nanoparticulate UO2 (both NAUO2 and BIUO2) over the pH range 3-9 is the same as that of bulk. The U LIII-edge EXAFS spectra for biogenic UO2 (both NAUO2 and BIUO2) were best fit with half the number of second-shell uranium neighbors compared to bulk uraninite, and no oxygen neighbors were detected beyond the first shell around U(IV) in the biogenic UO2. At pH 7, sorption of Zn(II) onto both bulk uraninite and biogenic, nanoparticulate UO2 is independent of electrolyte concentration, suggesting that Zn(II) sorption complexes are dominantly inner-sphere. The maximum surface area-normalized Zn(II) sorption loadings for the three substrates were 3.00 ± 0.20 μmol m−2 UO2 (bulk uraninite), 2.34 ± 0.12 μmol m−2 UO2 (NAUO2), and 2.57 ± 0.10 μmol m−2 UO2 (BIUO2). Fits of Zn K-edge EXAFS spectra for biogenic, nanoparticulate UO2 indicate that Zn(II) sorption is dependent on the washing protocol. Zn-U pair correlations were observed at 2.8 ± 0.1 Å for NAUO2 and bulk uraninite; however, they were not observed for sample BIUO2. The derived Zn-U distance, coupled with an average Zn-O distance of 2.09 ± 0.02 Å, indicates that Zn(O,OH)6 sorbs as bidentate, edge-sharing complexes to UO8 polyhedra at the surface of NAUO2 nanoparticles and bulk uraninite, which is consistent with a Pauling bond-valence analysis. The absence of Zn-U pair correlations in sample BIUO2 suggests that Zn(II) binds preferentially to the organic matter coating rather than the UO2 surface. Surface-associated organic matter on the biogenic UO2 particles also inhibited particle annealing at 90 °C under anaerobic conditions. These results suggest that surface-associated organic matter decreases the reactivity of biogenic, nanoparticulate UO2 surfaces relative to aqueous Zn(II) and possibly other environmental contaminants.  相似文献   

5.
Sorption of U(VI) to goethite is a fundamental control on the mobility of uranium in soil and groundwater. Here, we investigated the sorption of U on goethite using EXAFS spectroscopy, batch sorption experiments and DFT calculations of the energetics and structures of possible surface complexes. Based on EXAFS spectra, it has previously been proposed that U(VI), as the uranyl cation , sorbs to Fe oxide hydroxide phases by forming a bidentate edge-sharing (E2) surface complex, >Fe(OH)2UO2(H2O)n. Here, we argue that this complex alone cannot account for the sorption capacity of goethite (α-FeOOH). Moreover, we show that all of the EXAFS signal attributed to the E2 complex can be accounted for by multiple scattering. We propose that the dominant surface complex in CO2-free systems is a bidentate corner-sharing (C2) complex, (>FeOH)2UO2(H2O)3 which can form on the dominant {101} surface. However, in the presence of CO2, we find an enhancement of UO2 sorption at low pH and attribute this to a (>FeO)CO2UO2 ternary complex. With increasing pH, U(VI) desorbs by the formation of aqueous carbonate and hydroxyl complexes. However, this desorption is preceded by the formation of a second ternary surface complex (>FeOH)2UO2CO3. The three proposed surface complexes, (>FeOH)2UO2(H2O)3, >FeOCO2UO2, and (>FeOH)2UO2CO3 are consistent with EXAFS spectra. Using these complexes, we developed a surface complexation model for U on goethite with a 1-pK model for surface protonation, an extended Stern model for surface electrostatics and inclusion of all known UO2-OH-CO3 aqueous complexes in the current thermodynamic database. The model gives an excellent fit to our sorption experiments done in both ambient and reduced CO2 environments at surface loadings of 0.02-2.0 wt% U.  相似文献   

6.
The sorption capacity of montmorillonite clay minerals for small cations, such as Ni2+, can be greatly enhanced by modifying the clay mineral with Al(III). In this study, the mechanisms of Ni uptake by Al-modified montmorillonite were studied using extended x-ray absorption fine structure (EXAFS) spectroscopy of powders and polarized EXAFS spectroscopy of self-supporting clay films to delineate the binding structure of Ni formed as a function of the reaction conditions. Analysis of powder EXAFS spectra of wet pastes, collected from Ni-treated Al-modified montmorillonites reacted at pH 5-8, 25°C or 80°C (to accelerate the reaction process), and reaction times ranging from 1 month to 9 yrs, showed that Ni was surrounded on average by 6 O atoms at a distance of 2.05 Å and 6 Al atoms at 3.01 Å, suggesting the incorporation of Ni into a gibbsite-like structure. Only at pH 8, Ni-containing precipitates were congruently formed. Polarized EXAFS spectroscopy of self-supporting Ni-reacted Al-modified montmorillonite clay films showed a pronounced angular dependency of the spectra of the Ni-doped gibbsite, indicating that the orientation of this Ni-doped gibbsite coincided with the layering of the montmorillonite. Data analysis suggested that Ni is included slightly above and below the vacant octahedral sites of the postulated interstitial gibbsite monolayer. This newly identified mechanism of metal uptake by Al-modified montmorillonite provides a large metal sorption capacity and, because the metal is included in a monolayer gibbsite or gibbsite “islands” formed in the interstitial space of the clay mineral, it potentially leads to a permanent sequestration of the metal from the environment.  相似文献   

7.
Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO2 = 10−3.5 atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 μM. Maximum distribution coefficient values (Kd), derived from a best fit to a Langmuir model, are ∼190 L kg−1.Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on surfaces at low As(V) concentrations (?5 μM), but habit modification is evident at As(V) concentrations ?30 μM in the form of macrostep development preferentially on the − vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of surfaces shows preferential incorporation of As in the − vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems.  相似文献   

8.
A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (Rp) to the gross forward precipitation rate (Rf), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of Rp has been experimentally measured under varying conditions, but the magnitude of Rf is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, Rf can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (Rb or kb), since at equilibrium Rf = Rb, and Rp = 0. Hence it can be inferred that Rf ≈ Rp + Rb. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when Rp (=Rf − Rb) ? Rb. For precipitation rates high enough that Rp ? Rb, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near Rp ≈ Rb for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate Rf for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence Rp. Allowing Rb to vary as , consistent with available precipitation rate studies, produces a better fit to some trace element and isotopic data than a model where Rb is constant. This model can account for most of the experimental data in the literature on the dependence of 44Ca/40Ca and metal/Ca fractionation in calcite as a function of precipitation rate and temperature, and also accounts for 18O/16O variations with some assumptions. The apparent temperature dependence of Ca isotope fractionation in calcite may stem from the dependence of Rb on temperature; there should be analogous pH dependence at pH < 6. The proposed model may be valuable for predicting the behavior of isotopic and trace element fractionation for a range of elements of interest in low-temperature aqueous geochemistry. The theory presented is based on measureable thermo-kinetic parameters in contrast to models that require hyper-fast diffusivity in near-surface layers of the solid.  相似文献   

9.
The Sb speciation in soil samples from Swiss shooting ranges was determined using Sb K-edge X-ray absorption spectroscopy (XAS) and advanced statistical data analysis methods (iterative transformation factor analysis, ITFA). The XAS analysis was supported by a spectral data set of 13 Sb minerals and 4 sorption complexes. In spite of a high variability in geology, soil pH (3.1-7.5), Sb concentrations (1000-17,000 mg/kg) and shooting-range history, only two Sb species were identified. In the first species, Sb is surrounded solely by other Sb atoms at radial distances of 2.90, 3.35, 4.30 and 4.51 Å, indicative of metallic Sb(0). While part of this Sb(0) may be hosted by unweathered bullet fragments consisting of PbSb alloy, Pb LIII-edge XAS of the soil with the highest fraction (0.75) of Sb(0) showed no metallic Pb, but only Pb2+ bound to soil organic matter. This suggests a preferential oxidation of Pb in the alloy, driven by the higher standard reduction potential of Sb. In the second species, Sb is coordinated to 6 O-atoms at a distance of 1.98 Å, indicative of Sb(V). This oxidation state is further supported by an edge energy of 30,496-30,497 eV for the soil samples with <10% Sb(0). Iron atoms at radial distances of 3.10 and 3.56 Å from Sb atoms are in line with edge-sharing and bidentate corner-sharing linkages between Sb(O,OH)6 and Fe(O,OH)6 octahedra. While similar structural units exist in tripuhyite, the absence of Sb neighbors contradicts formation of this Fe antimonate. Hence the second species most likely consists of inner-sphere sorption complexes on Fe oxides, with edge and corner-sharing configuration occurring simultaneously. This pentavalent Sb species was present in all samples, suggesting that it is the prevailing species after weathering of metallic Sb(0) in oxic soils. No indication of Sb(III) was found.  相似文献   

10.
Zinc uptake in suspensions (?3.7 g L−1) of MX80 montmorillonite was investigated at pH 4.0 and 7.3, a total Zn concentration ([Zn]total) of 500 μM, and dissolved Si concentrations ([Si]aq) of ∼70 and ∼500 μM in 0.5 M NaCl, by kinetics experiments and polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Differential thermogravimetric analysis verified the cis-vacant character of the montmorillonite. No Zn uptake occurred at pH 4.0, confirming that cation exchange was hampered by the high ionic strength of the suspension. At pH 7.3 and low [Si]aq (∼70 μM), Zn uptake occurred rapidly during the first hour of reaction, and then leveled off to 50 μmol/g montmorillonite at 168 h. The uptake rate is consistent with Zn sorption on pH-dependent edge sites. At pH 7.3 and high [Si]aq (∼500 μM), the initial sorption rate was similar, but Zn sorption continued, reaching 130 μmol/g at 168 h, and was paralleled by Si uptake with a Si/Zn uptake ratio of 1.51(10), suggesting formation of a Zn (hydrous) silicate. P-EXAFS data indicated that the first oxygen coordination shell of sorbed Zn is split into two subshells at 1.97(2) and 2.08(3)-2.12(2) Å for all EXAFS samples. These two distances are assigned to a mixture of tetrahedral (IVZn) and octahedral (VIZn) Zn complexes. The proportion of IVZn was lower in the high [Si]aq samples and decreased with reaction time. Al low [Si]aq and 216 h of reaction, nearest cationic shells of 0.6(4) Al in the film plane and 0.5(4) Si out of the film plane were detected at 3.00(2) and 3.21(2) Å, respectively, and were interpreted as the formation of IVZn and VIZn mononuclear complexes at the edges of montmorillonite platelets, in structural continuity to the (Al, Mg) octahedral sheets. At high [Si]aq, in-plane Zn and Al and out-of-plane Si neighbors were detected at 4 h, indicating the formation of Zn phyllosilicate nuclei at the layer edges. At 313 h, Zn-Al pairs were no longer detected, and Zn atoms were surrounded on average by 3.4(5) in-plane Zn at 3.10(1) Å and 1.7(9) out-of-plane Si at 3.30(2) Å, supporting the precipitation of a Zn phyllosilicate. Thus, dioctahedral Al phyllosilicate may act as a nucleating surface for the heterogeneous formation of trioctahedral Zn phyllosilicate at [Si]aq relevant to natural systems.  相似文献   

11.
Adsorption of germanium on goethite was studied at 25 °C in batch reactors as a function of pH (1-12), germanium concentration in solution (10−7 to 0.002 M) and solid/solution ratio (1.8-17 g/L). The maximal surface site density determined via Ge adsorption experiments at pH from 6 to 10 is equal to 2.5 ± 0.1 μmol/m2. The percentage of adsorbed Ge increases with pH at pH < 9, reaches a maximum at pH ∼ 9 and slightly decreases when pH is further increased to 11. These results allowed generation of a 2-pK Surface Complexation Model (SCM) which implies a constant capacitance of the electric double layer and postulates the presence of two Ge complexes, and , at the goethite-solution interface. Coprecipitation of Ge with iron oxy(hydr)oxides formed during Fe(II) oxidation by atmospheric oxygen or by Fe(III) hydrolysis in neutral solutions led to high Ge incorporations in solid with maximal Ge/Fe molar ratio close to 0.5. The molar Ge/Fe ratio in precipitated solid is proportional to that in the initial solution according to the equation (Ge/Fe)solid = k × (Ge/Fe)solution with 0.7 ? k ? 1.0. The structure of adsorbed and coprecipitated Ge complexes was further characterized using XAFS spectroscopy. In agreement with previous data on oxyanions adsorption on goethite, bi-dentate bi-nuclear surface complexes composed of tetrahedrally coordinated Ge attached to the corners of two adjacent Fe octahedra represent the dominant contribution to the EXAFS signal. Coprecipitated samples with Ge/Fe molar ratios >0.1, and samples not aged in solution (<1 day) having intermediate Ge/Fe ratios (0.01-0.1) show 4 ± 0.3 oxygen atoms at 1.76 ± 0.01 Å around Ge. Samples less concentrated in Ge (0.001 < Ge/Fe < 0.10) and aged longer times in solution (up to 280 days) exhibit a splitting of the first atomic shell with Ge in both tetrahedral (R = 1.77 ± 0.02 Å) and octahedral (R = 1.92 ± 0.03 Å) coordination with oxygen. In these samples, octahedrally coordinated Ge accounts for up to ∼20% of the total Ge. For the least concentrated samples (Ge/Fe < 0.001-0.0001) containing lepidocrocite, 30-50% of total co-precipitated germanium substitutes for Fe in octahedral sites with the next-nearest environment dominated by edge-sharing GeO6-FeO6 linkages (RGe-Fe ∼ 3.06 Å). It follows from the results of our study that the largest structural change of Ge (from tetrahedral to octahedral environment) occurs during its coprecipitation with Fe hydroxide at Ge/Fe molar ratio ?0.0001. These conditions are likely to be met in many superficial aquatic environments at the contact of anoxic groundwaters with surficial oxygenated solutions. Adsorption and coprecipitation of Ge with solid Fe oxy(hydr)oxides and organo-mineral colloids and its consequence for Ge/Si fractionation and Ge geochemical cycle are discussed.  相似文献   

12.
Pb(II) sorption experiments with calcite powders were conducted in suspensions equilibrated at atmospheric PCO2(g) and ambient temperature at pH 7.3, 8.2 and 9.4. Pb fractional sorption was low at pH 7.3 and 9.4 relative to pH 8.2, and correlated well with PbCO30(aq) speciation. Desorption experiments conducted for initial sorption times ranging from 0.5 h to 12 d reveal an almost completely reversible process at pH 8.2, attributed to the dominance of an adsorption mechanism, with slight and pronounced irreversibility at pH 7.3 and 9.4 respectively. Similarities in X-ray absorption near edge spectra (XANES) for 24 h and 12 d pH 7.3 and 9.4 sorption samples indicate no effect of initial sorption time. Results from linear combination (LC) fits of XANES spectra for samples sorbed at pH 9.4 confirm ∼75% adsorbed and ∼25% coprecipitated components. The coprecipitated fraction was attributed to the non-exchangeable metal observed in desorption experiments. At pH 7.3, ∼95% adsorbed and ∼5% coprecipitated components were obtained. A comparison of results from desorption experiments and LC-XANES alludes to an irreversibly bound adsorbed component for the pH 9.4 12 d sorption sample. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis of pH 7.3 and 9.4 12 d sorption samples confirms the presence of both adsorbed and coprecipitated metal. At pH 7.3 a first-shell Pb-O bond length of 2.38 Å is intermediate between that of adsorbed (2.34 Å) and coprecipitated (2.51 Å) Pb. At pH 9.4, two first-shell Pb-O distances at 2.35 Å and 2.51 Å were obtained, indicative of the occurrence of both adsorption and coprecipitation and a larger coprecipitated fraction relative to that at pH 7.3, consistent with LC-XANES results. We propose that the disparity in the fraction of coprecipitated metal with pH may be linked to the ability of sorbed Pb to inhibit near-surface dynamic exchange of Ca and CO3 species, which dictates step advance and retreat. Less effective inhibition of step motion at pH 9.4, due to lower fractional sorption, combined with highest rates of dynamic exchange results in a significant fraction of coprecipitated Pb at this pH. At low pH, though fractional sorption is also low, lower rates of exchange prohibit significant coprecipitation. At pH 8.2, effective inhibition of surface processes due to higher fractional sorption and lower rates of exchange compared to pH 7.3 and 9.4 preclude detectable coprecipitation. Other factors such as changes in surface speciation and solubility of the Pb-Ca solid solution with pH may also come into play. Overall, this study presents evidence for the influence of pH on Pb sorption mechanisms, and addresses the efficiency of Pb immobilization in calcitic systems.  相似文献   

13.
A synergistic experimental-computational approach was used to study the molecular-scale mechanisms of Ni sorption at varying loadings and at pH 6-8 on the biogenic hexagonal birnessite produced by Pseudomonas putida GB-1. We found that Ni is scavenged effectively by bacterial biomass-birnessite assemblages. At surface excess values below 0.18 mol Ni kg−1 sorbent (0.13 mol Ni mol−1 Mn), the biomass component of the sorbent did not interfere with Ni sorption on mineral sites. Extended X-ray absorption fine structure (EXAFS) spectra showed two dominant coordination environments: Ni bound as a triple-corner-sharing (Ni-TCS) complex at vacancy sites and Ni incorporated (Ni-inc) into the MnO2 sheet, with the latter form of Ni favored at high sorptive concentrations and decreased proton activity. In parallel to our spectral analysis, first-principles geometry optimizations based on density functional theory (DFT) were performed to investigate the structure of Ni surface complexes at vacancy sites. Excellent agreement was achieved between EXAFS- and DFT-derived structural parameters for Ni-TCS and Ni-inc. Reaction-path calculations revealed a pH-dependent energy barrier associated with the transition from Ni-TCS to Ni-inc. Our results are consistent with the rate-limited incorporation of Ni at vacancy sites in our sorption samples, but near-equilibrium state of Ni in birnessite phases found in nodule samples. This study thus provides direct and quantitative evidence of the factors governing the occurrence of Ni adsorption versus Ni incorporation in biogenic hexagonal birnessite, a key mineral in the terrestrial manganese cycle.  相似文献   

14.
Combining analytical data from hot spring samples with thermodynamic calculations permits a quantitative assessment of the availability and ranking of various potential sources of inorganic chemical energy that may support microbial life in hydrothermal ecosystems. Yellowstone hot springs of diverse geochemical composition, ranging in pH from <2 to >9 were chosen for this study, and dozens of samples were collected during three field seasons. Field measurements of dissolved oxygen, nitrate, nitrite, total ammonia, total sulfide, alkalinity, and ferrous iron were combined with laboratory analyses of sulfate and other major ions from water samples, and carbon dioxide, hydrogen, methane, and carbon monoxide in gas samples to evaluate activity products for ∼300 coupled oxidation-reduction reactions. Comparison of activity products and independently calculated equilibrium constants leads to values of the chemical affinity for each of the reactions, which quantifies how far each reaction is from equilibrium. Affinities, in turn, show systematic behavior that is independent of temperature but can be correlated with pH of the hot springs as a proxy for the full spectrum of geochemical variability. Many affinities are slightly to somewhat dependent on pH, while others are dramatically influenced by changes in chemical composition. All reactions involving dissolved oxygen as the electron acceptor are potential energy sources in all hot spring samples collected, but the ranking of dominant electron donors changes from ferrous iron, and sulfur at high pH to carbon monoxide, hydrogen, and magnetite as pH decreases. There is a general trend of decreasing energy yields depending on electron acceptors that follows the sequence: O2(aq) > NO3 ≈ NO2 ≈ S > pyrite ≈ SO4−2 ≈ CO(g) ≈ CO2(g) at high pH, and O2(aq) ≈ magnetite > hematite ≈ goethite > NO3 ≈ NO2 ≈ S ≈ pyrite ≈ SO4−2 at low pH. Many reactions that are favorable sources of chemical energy at one set of geochemical conditions fail to provide energy at other conditions, and vice versa. This results in energy profiles supplied by geochemical processes that provide fundamentally different foundations for chemotrophic microbial communities as composition changes.  相似文献   

15.
Hexagonal birnessite (δ-MnO2) is a close analogue to the dominant phase in hydrogenetic marine ferromanganese crusts and nodules. These deposits contain ∼0.25 wt.% Cu which is believed to be scavenged from the overlying water column where Cu concentrations are near 0.1 μg/L. Here, we measured the sorption of Cu on δ-MnO2 as a function of pH and surface loading. We characterized the nature of the Cu sorption complex at pH 4 and 8 using EXAFS spectroscopy and find that, at pH 4, Cu sorbs to birnessite by inner-sphere complexation on the {0 0 1} surface at sites above Mn vacancies to give a three to fourfold coordinated complex with 6 Mn neighbors at ∼3.4 Å. At pH 8, however, we find that some Cu has become structurally incorporated into the MnO2 layer by occupying the vacancy sites to give 6 Mn neighbors at ∼2.91 Å. Density functional calculations on and clusters predict a threefold coordinated surface complex and show that the change from surface complexation to structural incorporation is a response to protonation of oxygens surrounding the vacancy site. Consequently, we propose that the transformation between sorption via surface complex and vacancy site occupancy should be reversible. By fitting the Cu sorption as a function of surface loading and pH to the formation of the observed and predicted surface complex, we developed a surface complexation model (in the basic Stern approximation) for the sorption of Cu onto birnessite. Using this model, we demonstrate that the concentration of inorganic Cu in the deep ocean should be several orders of magnitude lower than the observed total dissolved Cu. We propose that the observed total dissolved Cu concentration in the oceans reflects solubilization of Cu by microbially generated ligands.  相似文献   

16.
Aqueous Co(II) chloride complexes play a crucial role in cobalt transport and deposition in ore-forming hydrothermal systems, ore processing plants, and in the corrosion of special Co-bearing alloys. Reactive transport modelling of cobalt in hydrothermal fluids relies on the availability of thermodynamic properties for Co complexes over a wide range of temperature, pressure and salinity. Synchrotron X-ray absorption spectroscopy was used to determine the speciation of cobalt(II) in 0-6 m chloride solutions at temperatures between 35 and 440 °C at a constant pressure of 600 bar. Qualitative analysis of XANES spectra shows that octahedral species predominate in solution at 35 °C, while tetrahedral species become increasingly important with increasing temperature. Ab initio XANES calculations and EXAFS analyses suggest that in high temperature solutions the main species at high salinity (Cl:Co >> 2) is CoCl42−, while a lower order tetrahedral complex, most likely CoCl2(H2O)2(aq), predominates at low salinity (Cl:Co ratios ∼2). EXAFS analyses further revealed the bonding distances for the octahedral Co(H2O)62+ (octCo-O = 2.075(19) Å), tetrahedral CoCl42− (tetCo-Cl = 2.252(19) Å) and tetrahedral CoCl2(H2O)2(aq) (tetCo-O = 2.038(54) Å and tetCo-Cl = 2.210(56) Å). An analysis of the Co(II) speciation in sodium bromide solutions shows a similar trend, with tetrahedral bromide complexes becoming predominant at higher temperature/salinity than in the chloride system. EXAFS analysis confirms that the limiting complex at high bromide concentration at high temperature is CoBr42−. Finally, XANES spectra were used to derive the thermodynamic properties for the CoCl42− and CoCl2(H2O)2(aq) complexes, enabling thermodynamic modelling of cobalt transport in hydrothermal fluids. Solubility calculations show that tetrahedral CoCl42− is responsible for transport of cobalt in hydrothermal solutions with moderate chloride concentration (∼2 m NaCl) at temperatures of 250 °C and higher, and both cooling and dilution processes can cause deposition of cobalt from hydrothermal fluids.  相似文献   

17.
Arsenic(V), as the arsenate (AsO4)3− ion and its conjugate acids, is strongly sorbed to iron(III) oxides (α-Fe2O3), oxide hydroxides (α-,γ-FeOOH) and poorly crystalline ferrihydrite (hydrous ferric oxide). The mechanism by which arsenate complexes with iron oxide hydroxide surfaces is not fully understood. There is clear evidence for inner sphere complexation but the nature of the surface complexes is controversial. Possible surface complexes between AsO4 tetrahedra and surface FeO6 polyhedra include bidentate corner-sharing (2C), bidentate edge-sharing (2E) and monodentate corner-sharing (1V). We predicted the relative energies and geometries of AsO4-FeOOH surface complexes using density functional theory calculations on analogue Fe2(OH)2(H2O)nAsO2(OH)23+ and Fe2(OH)2(H2O)nAsO4+ clusters. The bidentate corner-sharing complex is predicted to be substantially (55 kJ/mole) more favored energetically over the hypothetical edge-sharing bidentate complex. The monodentate corner-sharing (1V) complex is very unstable. We measured EXAFS spectra of 0.3 wt. % (AsO4)3− sorbed to hematite (α-Fe2O3), goethite(α-FeOOH), lepidocrocite(γ-FeOOH) and ferrihydrite and fit the EXAFS directly with multiple scattering. The phase-shift-corrected Fourier transforms of the EXAFS spectra show peaks near 2.85 and 3.26 Å that have been attributed by previous investigators to result from 2E and 2C complexes. However, we show that the peak near 2.85 Å appears to result from As-O-O-As multiple scattering and not from As-Fe backscatter. The observed 3.26 Å As-Fe distance agrees with that predicted for the bidentate corner-sharing surface (2C) complex. We find no evidence for monodentate (1V) complexes; this agrees with the predicted high energies of such complexes.  相似文献   

18.
The soluble and insoluble hydrolysis products of palladium were investigated in aqueous solutions of 0.6 mol kg−1 NaCl at 298.2 K. Potentiometric titrations of millimolal palladium(II) solutions were used to monitor hydrolysis reactions of the mononuclear PdCl3OH2− and species. Spectrophotometric titrations were also used to corroborate the speciation change and to extract the correlative molar absorption coefficients for the PdCl3OH2− species in the 210-320 nm range. Longer-term potentiometric titrations systematically yielded precipitates which matured over a period of 6 weeks and resulted in a more extensive release of protons to the solution. Precipitation experiments in the 3-11 pH range showed the dominant precipitating phase to be Pd(OH)1.72Cl0.28. EXAFS measurements yielded an average of 3.50 O and 0.50 Cl atoms per Pd atom with a Pd-O distance of 2.012 Å and a Pd-Cl distance of 2.185 Å. Speciation modeling of proton and palladium mass balance data of experiments for palladium concentrations ranging from 0.047 to 10.0  mmol kg−1 required the presence of polynuclear complexes containing 3-9 palladium atoms. The existence of such complexes is moreover supported by previous investigations of palladium hydroxide chains of the type [Pd(OH)1.72Cl0.28]n, that are coiled and/or aggregated into nanometer-sized (15-40 Å) spheroids.  相似文献   

19.
The interaction of aqueous As(III) with magnetite during its precipitation from aqueous solution at neutral pH has been studied as a function of initial As/Fe ratio. Arsenite is sequestered via surface adsorption and surface precipitation reactions, which in turn influence the crystal growth of magnetite. Sorption samples were characterized using EXAFS spectroscopy at the As K-edge in combination with HRTEM observations, energy dispersive X-ray analysis at the nanoscale, electron energy loss spectroscopy at the Fe L3-edge, and XRD-Rietveld analyses of reaction products. Our results show that As(III) forms predominantly tridentate hexanuclear As(III)O3 complexes (3C), where the As(III)O3 pyramids occupy vacant tetrahedral sites on {1 1 1} surfaces of magnetite particles. This is the first time such a tridentate surface complex has been observed for arsenic. This complex, with a dominant As-Fe distance of 3.53 ± 0.02 Å, occurs in all samples examined except the one with the highest As/Fe ratio (0.33). In addition, at the two highest As/Fe ratios (0.133 and 0.333) arsenite tends to form mononuclear edge-sharing As(III)O3 species (2E) within a highly soluble amorphous As(III)-Fe(III,II)-containing precipitate. At the two lowest As/Fe ratios (0.007 and 0.033), our results indicate the presence of additional As(III) species with a dominant As-Fe distance of 3.30 ± 0.02 Å, for which a possible structural model is proposed. The tridentate 3C As(III)O3 complexes on the {1 1 1} magnetite surface, together with this additional As(III) species, dramatically lower the solubility of arsenite in the anoxic model systems studied. They may thus play an important role in lowering arsenite solubility in putative magnetite-based water treatment processes, as well as in natural iron-rich anoxic media, especially during the reductive dissolution-precipitation of iron minerals in anoxic environments.  相似文献   

20.
A combination of high-energy X-ray scattering (HEXS) and X-ray diffraction (XRD) is used to structurally and chemically characterize uranyl-silicate solutions and precipitates. Starting with a U to Si ratio of 1:2, solutions prepared at room temperature from pH 2.2 to 9.0 and at 150 °C from pH 5.1 to 9.1 showed U-U correlations out to distances of 10 Å or longer in both final solutions and precipitates. With one exception, all of the precipitates were amorphous, with no evidence of Bragg diffraction in the XRD data. The room temperature samples above pH 3.1 all had similar Fourier transforms of their HEXS data, which were obtained from suspended slurries or precipitates. In contrast, the hydrothermal sample precipitates showed considerable variation in their HEXS correlations at longer distances. The XRD pattern of the hydrothermal sample with a pH of 5.1 exhibited Bragg reflections indexable as soddyite. While showing no evidence of crystallinity using XRD, the hydrothermal sample at pH 6 showed similar HEXS correlations, which evolved in samples at increasing pH into correlations more consistent with sodium boltwoodite. These findings are supported by thermodynamic modeling. The structural correlations seen in the HEXS data to distances of about 4 Å are similar in all samples prepared at pH 4 or higher. This similarity of structure is used to propose a model for solid formation that includes a uranyl silicate building block, or synthon, which preorganizes in solution. Varying the pH changes how these synthons link into larger structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号