首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The Mars Global Surveyor, Mars Exploration Rover, and Mars Express missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major recent mission findings are the presence of jarosite (a ferric sulfate salt), which requires formation from an acid-sulfate brine, and the occurrence of hematite and goethite on Mars. Recent ferric iron models have largely focused on 25 °C, which is a major limitation for models exploring the geochemical history of cold bodies such as Mars. Until recently, our work on low-temperature iron-bearing brines involved ferrous but not ferric iron, also obviously a limitation. The objectives of this work were to (1) add ferric iron chemistry to an existing ferrous iron model (FREZCHEM), (2) extend this ferrous/ferric iron geochemical model to lower temperatures (<0 °C), and (3) use the reformulated model to explore ferrous/ferric iron chemistries on Mars.The FREZCHEM model is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <−70 to 25 °C and the pressure range from 1 to 1000 bars. Ferric chloride and sulfate mineral parameterizations were based, in part, on experimental data. Ferric oxide/hydroxide mineral parameterizations were based exclusively on Gibbs free energy and enthalpy data. New iron parameterizations added 23 new ferrous/ferric minerals to the model for this Na-K-Mg-Ca-Fe(II)-Fe(III)-H-Cl-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-H2O system.The model was used to develop paragenetic sequences for Rio Tinto waters on Earth and a hypothetical Martian brine derived from acid weathering of basaltic minerals. In general, model simulations were in agreement with field evidence on Earth and Mars in predicting precipitation of stable iron minerals such as jarosites, goethite, and hematite. In addition, paragenetic simulations for Mars suggest that other iron minerals such as lepidocrocite, schwertmannite, ferricopiapite, copiapite, and bilinite may also be present on the surface of Mars. Evaporation or freezing of the Martian brine led to similar mineral precipitates. However, in freezing, compared to evaporation, the following key differences were found: (1) magnesium sulfates had higher hydration states; (2) there was greater total aqueous sulfate (SO4T = SO4 + HSO4) removal; and (3) there was a significantly higher aqueous Cl/SO4T ratio in the residual Na-Mg-Cl brine. Given the similarities of model results to observations, alternating dry/wet and freeze/thaw cycles and brine migration could have played major roles in vug formation, Cl stratification, and hematite concretion formation on Mars.  相似文献   

2.
The importance of the discovery of jarosite at the Meridiani Planum region of Mars is discussed. Terrestrial studies demonstrate that jarosite requires a unique environment for its formation, crystallizing from highly acidic (pH < 4) S-rich brines under highly oxidizing conditions. A likely scenario for jarosite formation on Mars is that degassing of shallow magmas likely released SO2 that reacted with aqueous solutions in shallow aquifers or on the martian surface. This interaction forms both H2SO4 and H2S. A martian oxidant must be identified to both oxidize H2S to produce the required acidity of the fluid, and to oxidize Fe2+ to Fe3+. We suggest that reactions involving both sulfur and the reduction of CO2 to CO may provide part of the answer. The jarosite crystal structure is truly remarkable in terms of its tolerance for the substitution of a large number of different cations with different ionic radii and charges. The structure accommodates hydrogen, oxygen, and sulfur, the stable isotope systematics of which are strong recorders of low-temperature fluid-rock-atmosphere interactions. Jarosite has been proven to be a robust chronometer for Ar-Ar and K-Ar dating techniques, and there is every reason to believe that U-Pb, Rb-Sr, and Nd-Sm techniques for older jarosite from Mars will also be robust. Although the discovery of jarosite on Mars alone, with no other analytical measurements on the phase, has given us insights to martian surficial processes, the true power of jarosite can not be exploited until jarosite is sampled and returned from Mars. Mars sample return is a long way off but, until then, we should be vigilant about examining martian meteorites for alteration assemblages that contain jarosite. A suite of jarosite samples representing a significant time span on Mars may hold the key to reading the record of martian atmospheric evolution.  相似文献   

3.
The discovery of layered, SO4-rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid–saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid–saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid–saline groundwaters typically have dissolved solids of 30–60 g/L and pH commonly <4.5. Many contain high concentrations of Fe and other metals, leached from local sediments. The combination of acidity and salinity also releases Ra. Around salt-lakes, these acidic waters often emerge at the surface in marginal spring zones where the low density (ρ ∼ 1.04) regional water flows out over the denser (ρ ∼ 1.16) lake brines. In the spring zones examined, large amounts of Fe are commonly precipitated. In a few places minerals of the alunite-jarosite family are formed which can trap many other metals, including Ra. The studied groundwater systems were discovered by U exploration programs following up radiometric anomalies related to this Ra. Evaporation concentrates the lesser soluble salts (gypsum and some halite) on the surface of the lakes. The lake brines contain most of the more soluble salts and form a column within the porous sediments which is held in place by hydrostatic forces around the salt-lake. These brines are near-neutral in pH.  相似文献   

4.
Geochemical processes occurring in cold environments on Earth, Mars, and Europa have elicited considerable interest in the application of geochemical models to subzero temperatures. Few existing geochemical models explicitly include acid chemistry and those that do are largely restricted to temperatures ≥0°C or rely on the mole-fraction scale rather than the more common molal scale. This paper describes (1) use of the Clegg mole-fraction acid models to develop a molal-based model for hydrochloric, nitric, and sulfuric acids at low temperatures; (2) incorporation of acid chemistry and nitrate minerals into the FREZCHEM model; (3) validation and limitations of the derived acid model; and (4) simulation of hypothetical acidic brines for Europa.The Clegg mole-fraction acid models were used to estimate activities of water and mean ionic activity coefficients that serve as the database for estimating molal Pitzer-equation parameters for HCl (188 to 298 K), HNO3 (228 to 298 K), and H2SO4 (208 to 298 K). Model eutectics for HNO3 and H2SO4 agree with experimental measurements to within ± 0.2°C. In agreement with previous work, the experimental freezing point depression (fpd) data for pure HCl at subzero temperatures were judged to be flawed and unreliable. Three alternatives are discussed for handling HCl chemistry at subzero temperatures. In addition to defining the solubility of solid-phase acids, this work also adds three new nitrate minerals and six new acid salts to the FREZCHEM model and refines equilibria among water ice, liquid water, and water vapor over the temperature range from 180 to 298 K. The final system is parameterized for Na-K-Mg-Ca-H-Cl-SO4-NO3-OH-HCO3-CO3-CO2-H2O.Simulations of hypothetical MgSO4-H2SO4-H2O and Na2SO4-MgSO4-H2SO4-H2O brines for Europa demonstrate how freezing can convert a predominantly salt solution into a predominantly acid solution at subzero temperatures. This result has consequences for the effects of salinity, acidity, and temperature as limiting factors for potential life on Europa. Strong acidity would limit life-forms to highly acidophilic organisms.  相似文献   

5.
Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 °C to 25 °C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars.Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2·4H2O, FeCl2·6H2O, FeSO4·H2O, FeSO4·7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4.We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification.What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused oxidation of iron [high O2(g)]. Surface acidification and/or sediment burial can account for the minor amounts of Martian surface carbonates. This model rests on a large number of assumptions and is therefore speculative. Nevertheless, the model is consistent with current understanding concerning surficial salts and minerals based on Martian meteorites, Mars lander data, and remotely-sensed spectral analyses.  相似文献   

6.
Perennial ice covers on many Antarctic lakes have resulted in high lake inorganic carbon contents. The objective of this paper was to evaluate and compare the brine and CO2 chemistries of Lake Vida (Victoria Valley) and West Lake Bonney (Taylor Valley), two lakes of the McMurdo Dry Valleys (East Antarctica), and their potential consequences during global warming. An existing geochemical model (FREZCHEM-15) was used to convert measured molarity into molality needed for the FREZCHEM model, and this model added a new algorithm that converts measured DIC into carbonate alkalinity needed for the FREZCHEM model. While quite extensive geochemical information exists for ice-covered Taylor Valley lakes, such as West Lake Bonney, only limited information exists for the recently sampled brine of >25 m ice-thick Lake Vida. Lake Vida brine had a model-calculated pCO2 = 0.60 bars at the field pH (6.20); West Lake Bonney had a model-calculated pCO2 = 5.23 bars at the field pH (5.46). Despite the high degree of atmospheric CO2 supersaturation in West Lake Bonney, it remains significantly undersaturated with the gas hydrate, CO2·6H2O, unless these gas hydrates are deep in the sediment layer or are metastable having formed under colder temperatures or greater pressures. Because of lower temperatures, Lake Vida could start forming CO2·6H2O at lower pCO2 values than West Lake Bonney; but both lakes are significantly undersaturated with the gas hydrate, CO2·6H2O. For both lakes, simulation of global warming from current subzero temperatures (?13.4 °C in Lake Vida and ?4.7 °C in West Lake Bonney) to 10 °C has shown that a major loss of solution-phase carbon as CO2 gases and carbonate minerals occurred when the temperatures rose above 0 °C and perennial ice covers would disappear. How important these Antarctic CO2 sources will be for future global warming remains to be seen. But a recent paper has shown that methane increased in atmospheric concentration due to deglaciation about 10,000 years ago. So, CO2 release from ice lakes might contribute to atmospheric gases in the future.  相似文献   

7.
Schwertmannite (ideal formula: Fe8O8(OH)6SO4) is typically found as a secondary iron mineral in pyrite oxidizing environments. In this study, geochemical constraints upon its formation are established and its role in the geochemical cycling of iron between reducing and oxidizing conditions are discussed. The composition of surface waters was analyzed and sediments characterized by X-ray diffraction, FTIR spectroscopy and determination of the Fe:S ratio in the oxalate extractable fraction from 18 acidic mining lakes. The lakes are exposed to a permanent supply of pyritegenous ferrous iron from adjacent ground water. In 3 of the lakes the suspended matter was fractionated using ultra filtration and analyzed with respect to their mineral composition. In addition, stability experiments with synthetic schwertmannite were performed. The examined lake surface waters were O2-saturated and have sulfate concentrations (10.3 ± 5.5 mM) and pH values (3.0 ± 0.6) that are characteristic for the stability window of schwertmannite. Geochemical modeling implied that i) the waters were saturated with respect to schwertmannite, which controlled the activity of Fe3+ and sulfate, and ii) a redox equilibrium exists between Fe2+ and schwertmannite. In the uppermost sediment layers (1 to 5 cm depth), schwertmannite was detectable in 16 lakes—in 5 of them by all three methods. FTIR spectroscopy also proved its occurrence in the colloidal fraction (1-10 kDa) in all of the 3 investigated lake surface waters. The stability of synthetic schwertmannite was examined as a function of pH (2-7) by a 1-yr experiment. The transformation rate into goethite increased with increasing pH. Our study suggests that schwertmannite is the first mineral formed after oxidation and hydrolysis of a slightly acidic (pH 5-6), Fe(II)-SO4 solution, a process that directly affects the pH of the receiving water. Its occurrence is transient and restricted to environments, such as acidic mining lakes, where the coordination chemistry of Fe3+ is controlled by the competition between sulfate and hydroxy ions (i.e. mildly acidic).  相似文献   

8.
Low-temperature aqueous processes have been implicated in the generation of jarosite and hematite on the martian surface, but little is known regarding the role that high-temperature magmatic fluids may have played in producing similar assemblages on Mars. We have identified jarosite and hematite in a clinopyroxene-hosted melt inclusion in martian meteorite MIL 03346 that shows evidence of having been hydrothermally precipitated. In addition to jarosite and hematite, the melt inclusion contains titanomagnetite, pyrrhotite, potassic-chlorohastingsite, an iron-rich silicate glass and possibly goethite. These phases were identified and characterized using scanning electron microscopy (SEM), con-focal Raman-spectroscopy and electron probe microanalysis (EPMA).Based on observed textural relationships and the compositions of the hosted phases, we report that the jarosite-bearing melt inclusion in MIL 03346 has recorded a fluid-rich history that began in the magmatic stage and continued to low-temperatures. This history begins at entrapment of a volatile-rich silicate melt that likely reached fluid-saturation after only minor crystallization within the melt inclusion. This fluid, rich in chlorine, reacted with surrounding silicate material to produce the potassic-chlorohastingsite. As cooling proceeded, the liquid phase eventually became more oxidized and reacted with the pyrrhotite. Sulfide oxidation resulted in SO42− formation and concomitant acid production, setting the stage for jarosite formation once the fluid cooled beyond the upper thermal stability of jarosite (∼200 °C). As the fluid cooled below 200 °C, jarosite continued to precipitate with hematite and/or goethite until equilibrium was established or reactions became kinetically unfavorable.This work suggests an additional jarosite-hematite formation pathway on Mars; one that may be important wherever magmatic-hydrothermal fluids come into contact with primary sulfide grains at the martian surface or subsurface. Moreover, hydrothermal fluids rich in chlorine, sulfur, and iron are important for ore-forming processes on Earth, and their indirect identification on Mars may have important implications for ore-formation on Mars.  相似文献   

9.
Jarosite [KFe3(SO4)2(OH)6] is a mineral that is common in acidic, sulphate-rich environments, such as acid sulphate soils derived from pyrite-bearing sediments, weathering zones of sulphide ore deposits and acid mine or acid rock drainage (ARD/AMD) sites. The structure of jarosite is based on linear tetrahedral-octahedral-tetrahedral (T-O-T) sheets, made up from slightly distorted FeO6 octahedra and SO4 tetrahedra. Batch dissolution experiments carried out on synthetic jarosite at pH 2, to mimic environments affected by ARD/AMD, and at pH 8, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2), suggest first order dissolution kinetics. Both dissolution reactions are incongruent, as revealed by non-ideal dissolution of the parent solids and, in the case of the pH 8 dissolution, because a secondary goethite precipitate forms on the surface of the dissolving jarosite grains. The pH 2 dissolution yields only aqueous K, Fe, and SO4. Aqueous, residual solid, and computational modelling of the jarosite structure and surfaces using the GULP and MARVIN codes, respectively, show for the first time that there is selective dissolution of the A- and T-sites, which contain K and SO4, respectively, relative to Fe, which is located deep within the T-O-T jarosite structure. These results have implications for the chemistry of ARD/AMD waters, and for understanding reaction pathways of ARD/AMD mineral dissolution.  相似文献   

10.
Jarosite is an important mineral on Earth, and possibly on Mars, where it controls the mobility of iron, sulfate and potentially toxic metals. Atomistic simulations have been used to study the incorporation of Al3+, and the M2+ impurities Cd, Cu and Zn, in the (0 1 2) and (0 0 1) surfaces of jarosite. The calculations show that the incorporation of Al on an Fe site is favorable on all surfaces in which terminal Fe ions are exposed, and especially on the (0 0 1) [Fe3(OH)3]6+ surface. Incorporation of Cd, Cu or Zn on a K site balanced by a K vacancy is predicted to stabilize the surfaces, but calculated endothermic solution energies and the high degree of distortion of the surfaces following incorporation suggest that these substitutions will be limited. The calculations also suggest that incorporation of Cd, Cu and Zn on an Fe site balanced by an OH vacancy, or by coupled substitution on both K and Fe sites, is unfavorable, although this might be compensated for by growth of a new layer of jarosite or goethite, as predicted for bulk jarosite. The results of the simulations show that surface structure will exert an influence on uptake of impurities in the order Cu > Cd > Zn, with the most favorable surfaces for incorporation being (0 1 2) [KFe(OH)4]0 and (0 0 1) [Fe3(OH)3]6+.  相似文献   

11.
12.
In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved ions in modern surface water, groundwater, and precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ34S of 10.9-14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35-50% of the sulfates and led to deposition of gypsum with δ34S values of −1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3-18% of sulfates from an inorganic groundwater pool (δ34S of 12.6-13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ34S values (−42.3‰ to −20.3‰) compared to co-existing gypsum (−3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ34S value of the gypsiferous sediments most likely because of higher annual temperatures (15-33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5-28 °C; median 0.46% of organic carbon).The White Sands region of the Tularosa Basin is frequently posited as a hydrothermal analogue for Mars. High temperatures of groundwater (33.3 °C) and high δ18O(H2O) values (1.1‰) in White Sands, however, are controlled predominantly by seasonal evaporation rather than the modern influx of hydrothermal fluids. Nevertheless, it is possible that some of the geochemical processes in White Sands, such as sulfide weathering during climate oscillations and upwelling of highly mineralized waters, might be considered as valid terrestrial analogues for the sulfate cycle in places such as Meridiani Planum on Mars.  相似文献   

13.
Major, trace and rare earth element concentrations were measured in porewater, surface water and sediments at an acid sulfate soil site. The concentrations of La and Ce in porewater are up to 1-3 ppm. There is a strong correlation between REE concentration and acidity, except that the maximum concentrations were consistently found below the horizon of maximum acidity, associated with an increase in pH (to ca. 4) and change in mineralogy from jarosite-dominated to goethite-dominated mottles. Jarosite replacement by goethite is as expected with the rise in pH, which in turn is due to the occurrence of a fossil shell bed just below. The rare earth element patterns in the porewaters are enriched in the MREE with respect to Post-Archaean Australian Shale (PAAS). Measurements and calculations show that this is in accord with experiments on low-degree partial dissolution of jarosite, even when the jarosite itself is highly enriched in LREE. There is a clear fractionation in the patterns between the clay-rich soil matrix, which is slightly depleted in the LREE when normalized to PAAS (La/YbPAAS ∼0.5), and the secondary mineral phase jarosite, which is enriched in the LREE (La/YbPAAS = 15-50). The REE pattern in the porewater changes with the transition from jarosite- to goethite-rich mottles, becoming relatively more enriched in the LREE compared to the HREE, which is consistent with the incongruent dissolution of jarosite to form goethite and the release of greater amounts of jarosite REE to solution, including proportionately more of the jarosite-compatible LREE.Maximum surface water REE concentrations in acidic water were 100-200 ppb La and Ce. REE patterns in surface water were very similar to the porewater transition zone, enriched in the MREE, but asymmetric, relatively enriched in the LREE compared to the HREE.  相似文献   

14.
The mineral solubility model of Harvie and Weare (1980) is extended to the eight component system, Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O at 25°C to high concentrations. The model is based on the semi-empirical equations of Pitzer (1973) and co-workers for the thermodynamics of aqueous electrolyte solutions. The model is parameterized using many of the available isopiestic, electromotive force, and solubility data available for many of the subsystems. The predictive abilities of the model are demonstrated by comparison to experimental data in systems more complex than those used in parameterization. The essential features of a chemical model for aqueous electrolyte solutions and the relationship between pH and the equilibrium properties of a solution are discussed.  相似文献   

15.
The Rangan area is part of Cenozoic magmatic belt of central Iran. Eocene volcanic flows and pyroclastic rocks are intruded by a Neogene rhyolitic dome along the major Qom–Zefreh fault. The dome is pervasively hydrothermally altered. The main mineral assemblage is jarosite+barite+pyrite+quartz+sericite. This assemblage indicates acid sulphate or advanced argillic alteration. Sulfur and oxygen isotope data (δ34S & δ18O (SO4)) obtained from jarosite and barite indicate a mixing episode during the evolution of hydrothermal system and reflect the overlapping of two distinct sources of acid sulphate alteration in Rangan, i.e., a magmatic–hydrothermal fluid reacting with steam-heated meteoric water. Considering the position of brittle–ductile transition and major fault movements, jarosite and barite seemingly precipitated from rapid injection of magmatic–hydrothermal fluids into the upper portions of a steam-heated environment.  相似文献   

16.
Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C.  相似文献   

17.
Ferrihydrite (2.5 Fe2O2-4.5 H2O) is an unstable colloidal mineral. It dissolves in highly alkaline solutions and is precipitated from them in the form of goethite. Jarosite is stable at very low pH but is decomposed at higher values of pH with separation of iron oxides. Experiments show that in rapid decomposition of jarosite a protohematite substance, ferrihydrite, is formed. This transformation occurs at moderate pH values when solutions percolate through the aggregates of jarosite. Ferrihydrite, an unstable colloidal hydrated oxide of ferric iron, changes spontaneously to stable hematite with time. Very slow decomposition of jarosite results in its replacement by iron hydroxide, goethite. Under laboratory conditions in alkaline solutions lepidocrocite may be obtained from jarosite. The synthesis of this iron hydroxide passes through a stage of intermediate products: ferrihydrite and hydrated ferric oxide - ferriprotolepidocrocite, formed by solution of ferrihydrite in strongly alkaline solutions. The transformation of ferriprotolepidocrocite into lepidocrocite may be regarded as a topotactic reaction. —Authors.  相似文献   

18.
Current research on bioremediation of uranium-contaminated groundwater focuses on supplying indigenous metal-reducing bacteria with the appropriate metabolic requirements to induce microbiological reduction of soluble uranium(VI) to poorly soluble uranium(IV). Recent studies of uranium(VI) bioreduction in the presence of environmentally relevant levels of calcium revealed limited and slowed uranium(VI) reduction and the formation of a Ca-UO2-CO3 complex. However, the stoichiometry of the complex is poorly defined and may be complicated by the presence of a Na-UO2-CO3 complex. Such a complex might exist even at high calcium concentrations, as some UO2-CO3 complexes will still be present. The number of calcium and/or sodium atoms coordinated to a uranyl carbonate complex will determine the net charge of the complex. Such a change in aqueous speciation of uranium(VI) in calcareous groundwater may affect the fate and transport properties of uranium. In this paper, we present the results from X-ray absorption fine structure (XAFS) measurements of a series of solutions containing 50 μM uranium(VI) and 30 mM sodium bicarbonate, with various calcium concentrations of 0-5 mM. Use of the data series reduces the uncertainty in the number of calcium atoms bound to the UO2-CO3 complex to approximately 0.6 and enables spectroscopic identification of the Na-UO2-CO3 complex. At nearly neutral pH values, the numbers of sodium and calcium atoms bound to the uranyl triscarbonate species are found to depend on the calcium concentration, as predicted by speciation calculations.  相似文献   

19.
We examine the possibility that crystalline hematite (α-Fe2O3) deposits on Mars were derived from the precursor iron oxyhydroxide minerals akaganéite (β-FeOOH) or lepidocrocite (γ-FeOOH) and compare them to an earlier study of goethite (α-FeOOH) and magnetite (Fe3O4) precursors. Both the mid-infrared and visible/near infrared spectra of hematite are dependent upon the hematite precursor mineral and the temperature of transformation. Laboratory spectra are compared to spectra from the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) and the Mars Exploration Rover (MER) Opportunity Mini-TES and Pancam experiments, allowing us to infer the formation environment of Martian crystalline hematite deposits. Akaganéite and lepidocrocite readily transform to hematite at temperatures of 300 and 500°C, respectively. The visible/near-infrared and mid-infrared spectra of akaganéite-derived hematite are poor matches to data returned from TES, Mini-TES, and Pancam. The spectra of lepidocrocite-derived hematite are slightly better fits, but previously published spectra of goethite-derived hematite still represent the best match to MGS and MER spectral data. The experiments demonstrate that hematite precursor mineralogy, temperature of formation, and crystal shape exert a strong control on the hematite spectra.  相似文献   

20.
In the Sesia Zone of the Western Alps, Italy, early Alpine blueschist to eclogite facies metamorphism of rocks of quartzofeldspathic composition has produced the same high-pressure assemblage of; quartz, Na-pyroxene, Na-amphibole, paragonite, phengite, zoisite, garnet, magnetite, sphene and Fe-sulphide (=the QFS assemblage) over an area (> 150 km2. Relative gradients in pressure and temperature over this region are reflected in the variations in mineral chemistries of the individual phases of the quartzofeldspathic assemblage through continuous reactions. Mineralogical discontinuities do not occur in the QFS assemblage of this region. Increases in the Jadeite content of the pyroxenes (X Jd 0.48 to X Jd 0.93) and in the glaucophane content of the amphiboles (X Gl 0.89 to X Gl 0.96) occur from the southwest to the northeast of the region studied. Analysis of coexisting garnets and pyroxenes indicate that the compositional variation of amphiboles and pyroxenes is associated with a decrease in the grossular component of the coexisting garnet. Zoned pyroxenes and garnets, together with the regional trends in mineral chemistries suggest that the evolution of the QFS assemblage with increasing pressure may be modelled by pressure-sensitive continuous reactions in which amphibole, zoisite and the more jadeitic pyroxene constitute the high-pressure assemblage. Chemographic constraints permit the positioning in pressure/temperature space of the compositional isopleths of those model continuous reactions involving these phases which meet the textural and chemical criteria observed in the natural assemblages. The low dP/dT slope (–20 bars/° C) of these isopleths causes the continuous reactions to be useful for geobarometric calculations at pressures above the absolute breakdown of albite to jadeite plus quartz. In addition the pseudobinary loops for the other continuous reactions which are potentially useful geobarometers and involve either the NaAlCa–1Mg–1 exchange or the MgCa–1 exchange are calculated. Comparison of mineral chemistries with the isopleths yields a relative barometric scheme for the localities studied. With these barometric observations, it is possible to show that the P-T path which the Sesia body travelled towards the final recorded state was one of increasing pressure. Other blueschist and eclogite occurrences from Syros and Sifnos which contain rocks of quartzofeldspathic composition are also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号