首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a weathering mass balance of the presently glaciated Rhône and Oberaar catchments, located within the crystalline Aar massif (central Switzerland). Annual chemical and physical weathering fluxes are calculated from the monthly weighted means of meltwater samples taken from July, 1999 to May, 2001 and are corrected for precipitation inputs. The meltwater composition issuing from the Oberaar and Rhône catchments is dominated by calcium, which represents 81% and 55% of the total cation flux respectively (i.e. 555 and 82-96 keq km−2 yr−1). The six to seven times higher Ca2+ denudation flux from the Oberaar catchment is attributed to the presence of a strongly foliated gneissic zone. The gneissic zone has an elevated calcite content (as reflected by the 4.6 times higher calcite content of the suspended sediments from Oberaar compared to Rhône) and a higher mechanical erosion rate (resulting in a higher flux of suspended sediment). The mean flux of suspended calcite of the Oberaar meltwaters during the ablation period is 7 times greater than that of the Rhône meltwaters. Taking the suspended calcite as a proxy for the total (including sub-glacial sediments) weathering calcite surface area, it appears that the available surface area is an important factor in controlling weathering rates. However, we also observe an increased supply of protons for carbonate dissolution in the Oberaar catchment, where the sulphate denudation flux is six times greater. Carbonic acid is the second important source of protons, and we calculate that three times as much atmospheric CO2 is drawn down (short term) in the Oberaar catchment. Silica fluxes from the two catchments are comparable with each other, but are 100 kmol km2 yr−1 lower than fluxes from physically comparable, non-glaciated basins.  相似文献   

2.
The Yarlung Tsangpo-Brahmaputra river drains a large portion of the Himalaya and southern Tibetan plateau, including the eastern Himalayan syntaxis, one of the most tectonically active regions on the globe. We measured the solute chemistry of 161 streams and major tributaries of the Tsangpo-Brahmaputra to examine the effect of tectonic, climatic, and geologic factors on chemical weathering rates. Specifically, we quantify chemical weathering fluxes and CO2 consumption by silicate weathering in southern Tibet and the eastern syntaxis of the Himalaya, examine the major chemical weathering reactions in the tributaries of the Tsangpo-Brahmaputra, and determine the total weathering flux from carbonate and silicate weathering processes in this region. We show that high precipitation, rapid tectonic uplift, steep channel slopes, and high stream power generate high rates of chemical weathering in the eastern syntaxis. The total dissolved solids (TDS) flux from the this area is greater than 520 tons km−2 yr−1 and the silicate cation flux more than 34 tons km−2 yr−1. In total, chemical weathering in this area consumes 15.2 × 105 mol CO2 km−2 yr−1, which is twice the Brahmaputra average. These data show that 15-20% of the total CO2 consumption by silicate weathering in the Brahmaputra catchment is derived from only 4% of the total land area of the basin. Hot springs and evaporite weathering provide significant contributions to dissolved Na+ and Cl fluxes throughout southern Tibet, comprising more than 50% of all Na+ in some stream systems. Carbonate weathering generates 80-90% of all dissolved Ca2+ and Mg2+ cations in much of the Yarlung Tsangpo catchment.  相似文献   

3.
Numerous studies of weathering fluxes have been carried out on major world rivers during the last decade, to estimate CO2 consumption rates, landscape evolution and global erosion rates. For obvious logistical reasons, most of these studies were based on large scale investigations carried out on short timescales. By comparison, much less effort has been devoted to long term monitoring, as a means to verify the temporal variability of the average characteristics, their trends, and the representativeness of short-term investigations. Here we report the results of a three-year survey (November 2000 to December 2003) of the major and trace element composition of dissolved and suspended matter in the lower Rhone River (France), the largest river of the Mediterranean area. Subsurface water samples were collected in Arles, about 48 km upstream of the estuary, twice a month routinely, and at higher frequency during flood events.During each flood event, the suspended particulate matter (SPM) show the usual trend of clockwise hysteresis with higher SPM concentrations on the rising limb of the flood than at the same discharge on the falling limb. We show that the annual average SPM flux of the Rhone River to the Mediterranean Sea (7.3 ± 0.6 × 106 tons yr−1) was largely controlled by the flood events (83% of the solid discharge occurred in less than 12% of the time), and that the precision on the total output flux depends strongly on the precise monitoring of SPM variations during the floods.The chemical composition of water and SPM are characterized by the predominance of Ca2+ due to the abundance of carbonate rocks in the Rhone watershed. Chemical budgets have been calculated to derive the contributions of atmospheric deposition, carbonate, silicate and evaporite weathering, and anthropogenic inputs. The chemical weathering rate of carbonates is estimated to be 89 ± 5 t km−2 yr−1 compared to 14.4 ± 3 t km−2 yr−1 from silicates. By contrast, the physical erosion rate of silicates is about 51 t km−2 yr−1 against 19 t km−2 yr−1 for carbonates.The steady-state model of Gaillardet et al. (1995) has been applied to the chemical composition of dissolved and solid products. The results show that the Rhone River currently exports much less material than produced at steady-state by weathering in its watershed. The sediment flux inferred from the steady-state calculation (21-56 × 106 t yr−1) is on the same order as that estimated in literature for the 19th and the beginning of the 20th centuries. This imbalance may suggest that the Rhone is under a transient erosion regime following climate change (i.e. significant decrease of the flooding frequency since the beginning of the 19th century). On the other hand, the imbalance may also be due to the trapping of alluvion by the numerous dams on the river and its tributaries.Our data corroborate with previous studies that suggest a strong coupling between chemical and physical erosion fluxes, during the hydrological seasonal cycle of the Rhone River. The correlation between physical and chemical transport rates is, however, clearly different from that reported for global annual averages in large world rivers.  相似文献   

4.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

5.
Geochemical methods (major elements and Sr, Nd isotopes) have been used to (1) characterize Lake Le Bourget sediments in the French Alps, (2) identify the current sources of the clastic sediments and estimate the source variability over the last 600 years. Major element results indicate that Lake Le Bourget sediments consist of 45% clastic component and 55% endogenic calcite. In addition, several individual flood levels have been identified during the Little Ice Age (LIA) on the basis of their higher clastic content (> 70%).Potential sources of Lake Le Bourget clastic sediments have been investigated from Sr and Nd isotope compositions. The sediments from the Sierroz River and Leysse River which are mainly derived from the Mesozoic Calcareous Massifs are characterised by lower 87Sr/86Sr ratios and slightly lower ?Nd(0) ratios than the Arve River sediments which are derived from the Palaeozoic Mont-Blanc External Crystalline Massifs. The Rhône River appears to have been the main source of clastic sediments into the lake for the last 600 years, as evidenced by a similar Sr and Nd isotopic compositions analyzed in core B16 sediments (87Sr/86Sr = 0.719, ?Nd(0) = − 10) and in the sediments of the Rhône River (87Sr/86Sr = 0.719, ?Nd(0) = − 9.6).The isotopic signatures of flood events and background samples from core B16 in Lake Le Bourget are also similar. This indicates that prior to ∼ 1800, the inputs into the lake have remained relatively homogeneous with the proportion of clastic component mainly being a function of the palaeohydrology of the Rhone River. Early human modification (deforestation and agriculture) of the lake catchment before the 1800s appears to have had little influence on the source of clastic sediments.  相似文献   

6.
The Pb, Sr and Nd isotopic compositions of biomonitors (lichen, moss, bark) and soil litter from different regions in the Rhine valley, as well as of <0.45 μm particles separated out of ice of the Rhône and Oberaar glaciers and lichens from the Swiss Central Alps, have been determined in order to deduce the natural baseline of the atmospheric isotopic compositions of these regions, which are suggested to be close to the isotopic compositions of the corresponding basement rocks or soils at the same sites. 206Pb/207Pb and 87Sr/86Sr isotope ratios are positively correlated. Most polluted samples from traffic-rich urban environments have the least radiogenic Pb and Sr isotopic compositions with 206Pb/207Pb and 87Sr/86Sr ratios of 1.11 and 0.7094, respectively. These ratios are very different from those of the atmospheric baseline for the Vosges mountains and the Rhine valley (206Pb/207Pb: 1.158–1.167; 87Sr/86Sr: 0.719–0.725; εNd: −7.5 to −10.1). However, this study indicates that the baseline of the atmospheric natural Pb and Sr isotopic compositions is affected by anthropogenic (traffic, industrial and urban) emissions even in remote areas. Lichen samples from below the Rhône and Oberaar glaciers reflect the baseline composition close to the Grimsel pass in the Central Swiss Alps (87Sr/86Sr: 0.714 − 0.716; εNd: −3.6 to −8.1). The 143Nd/144Nd isotope ratios are highly variable (8ε units) and it is suggested that the variation of the 143Nd/144Nd is controlled by wet deposition and aerosols originating from the regional natural and industrial urban environments and from more distant regions like the Sahara in North Africa. The least anthropogenetically affected samples collected in remote areas have isotopic compositions closest to those of the corresponding granitoid basement rocks.  相似文献   

7.
Estimates of glacial sediment delivery to the oceans have been derived from fluxes of meltwater runoff and iceberg calving, and their sediment loads. The combined total (2900 Tg yr−1) of the suspended sediment load in meltwaters (1400 Tg yr−1) and the sediment delivered by icebergs (1500 Tg yr−1) are within the range of earlier estimates. High-resolution microscopic observations show that suspended sediments from glacial meltwaters, supraglacial, and proglacial sediments, and sediments in basal ice, from Arctic, Alpine, and Antarctic locations all contain iron (oxyhydr)oxide nanoparticles, which are poorly crystalline, typically ∼5 nm in diameter, and which occur as single grains or aggregates that may be isolated or attached to sediment grains. Nanoparticles with these characteristics are potentially bioavailable. A global model comparing the sources and sinks of iron present as (oxyhydr)oxides indicates that sediment delivered by icebergs is a significant source of iron to the open oceans, beyond the continental shelf. Iceberg delivery of sediment containing iron as (oxyhydr)oxides during the Last Glacial Maximum may have been sufficient to fertilise the increase in oceanic productivity required to drawdown atmospheric CO2 to the levels observed in ice cores.  相似文献   

8.
The watershed in the southern Jiangxi Province (Jiangxi Province is called simply Gan) (SGW) and the watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) are two subtropical watersheds of the Yangtze River in China. Both watersheds have similar latitudes and climate, but distinct differences in basin lithology. These similarities and differences provide a good natural laboratory in which to investigate weathering processes and Sr end-members in river waters. This work aims to identify and contrast the sources, fluxes and controls on Sr isotopic composition in the river waters of these two areas. Results showed that the 87Sr/86Sr in the SGW waters ranged from 0.716501 to 0.724931, with dissolved Sr averaging 27 μg l− 1. Rhyolites and granites are two major sources for the dissolved Sr. The SGW waters receive 42% of their Sr from silicates weathering, 32% from carbonates and 3.2% from evaporites. 87Sr/86Sr in the CQW waters has a lesser variation from 0.707694 to 0.710039, but higher Sr contents (average of 208 μg l− 1). Dolomite, limestone and dolomitic limestone are major sources of Sr in the waters. The CQW waters receive 69% of their Sr from carbonates, 1.7% from silicates and 0.9% from evaporites. The chemical erosion rate and Sr flux in the CQW are 122 t km− 2 a− 1 and 0.079 t km− 2 a− 1, respectively, which are higher than those of the SGW (56 t km− 2 a− 1 and 0.021 t km− 2 a− 1, respectively). These data suggest that the intensive carbonates weathering occurred in the karstic area in the upper-reach of the Yangtze River exert great influence on the high Sr concentration and low Sr isotopic ratios in the River.  相似文献   

9.
Sediment fluxes from high standing oceanic islands (HSIs) such as New Zealand are some of the highest known [Milliman J. D. and Syvitski J. P. M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol.100, 525-544]. Recent geochemical work has suggested that along with their extremely high physical weathering yields, many New Zealand watersheds also have very high chemical weathering yields. In New Zealand, the magnitude of both the physical and chemical weathering yields is related to the lithology of the watershed. Most of the previous work on this topic has been undertaken in Southern Alps watersheds of schist and greywacke and in East Cape watersheds of semi-consolidated marine sediments and greywacke. We recently sampled North Island watersheds in the Taranaki and Manawatu-Wanganui regions which have been subjected to volcanism since the Miocene. We sampled watersheds that contain both volcanic and sedimentary rocks. A series of water and sediment samples was collected and analyzed for major, minor and trace elements. This was done to quantify the weathering intensities in the watersheds and to establish the relationship between physical and chemical weathering yields in volcanic lithologies. Our results reveal distinct chemical signatures for the different regions. Waters draining the Taranaki region volcanics are significantly enriched in K+, and depleted in Ca2+ and Sr2+ compared to waters draining the Manawatu-Wanganui region volcanics, which also traverse expanses of sedimentary siltstones and mudstones. The Ca2+ and Sr2+ depletions may reflect the relative absence of CaCO3 in the Taranaki region watersheds. In addition, sediment samples from the Taranaki region show significant enrichment in Ti, Al, Ca, Fe, Mn, Mg, Ca, and P and depletion in Si and Rb compared to those of the Manawatu-Wanganui region. From total dissolved solids concentrations and mean annual water discharge, we calculate chemical weathering yields of 60-240 tons km−2 a−1. These weathering yields fall within the middle to upper range of those previously documented for the Southern Alps (93-480 tons km−2 a−1) and East Cape (62-400 tons km−2 a−1). Calculated silicate weathering yields of 12-33.6 tons km−2 a−1 and CO2 consumption of 852-2390 × 103 mol km−2 a−1 for the rivers draining the Taranaki volcanic region are higher than those previously reported for watersheds hosted in sedimentary and metamorphosed rock terrains on HSIs. CO2 consumption is found to be within the range previously measured for the basaltic terrains of the Deccan Traps (580-2450 × 103 mol km−2 a−1) and Réunion Island(1300-4400 × 103 mol km−2 a−1). Our calculated chemical weathering yields demonstrate the importance of HSIs, particularly those with volcanic terrains, when considering global geochemical fluxes.  相似文献   

10.
Silicate weathering of soil-mantled slopes in an active Alpine landscape   总被引:1,自引:0,他引:1  
Despite being located on high, steep, actively uplifting, and formerly glaciated slopes of the Swiss Central Alps, soils in the upper Rhone Valley are depleted by up to 50% in cations relative to their parent bedrock. This depletion was determined by a mass loss balance based on Zr as a refractory element. Both Holocene weathering rates and physical erosion rates of these slopes are unexpectedly low, as measured by cosmogenic 10Be-derived denudation rates. Chemical depletion fractions, CDF, range from 0.12 to 0.48, while the average soil chemical weathering rate is 33 ± 15 t km−2 yr−1. Both the cosmogenic nuclide-derived denudation rates and model calculations suggest that these soils have reached a weathering steady-state since deglaciation 15 ky ago. The weathering signal varies with elevation and hillslope morphology. In addition, the chemical weathering rates decrease with elevation indicating that temperature may be a dominant controlling factor on weathering in these high Alpine basins. Model calculations suggest that chemical weathering rates are limited by reaction kinetics and not the supply rate of fresh material. We compare hillslope and catchment-wide weathering fluxes with modern stream cation flux, and show that high relief, bare-rock slopes exhibit much lower chemical weathering rates despite higher physical erosion rates. The low weathering fluxes from rocky, rapidly eroding slopes allow for the broader implication that mountain building, while elevating overall denudation rates, may not cause increased chemical weathering rates on hillslopes. In order for this sediment to be weathered, intermediate storage, for instance in floodplains, is required.  相似文献   

11.
Recent studies of chemical weathering of andesitic-dacitic material on high-standing islands (HSIs) have shown these terrains have some of the highest observed rates of chemical weathering and associated CO2 consumption yet reported. However, the paucity of stream gauge data in many of these terrains has limited determination of chemical weathering product fluxes. In July 2006 and March 2008, stream water samples were collected and manual stream gauging was performed in watersheds throughout the volcanic island of Dominica in the Lesser Antilles. Distinct wet and dry season solute concentrations reveal the importance of seasonal variations on the weathering signal. A cluster analysis of the stream geochemical data shows the importance of parent material age on the overall delivery of solutes. Observed Ca:Na, HCO3:Na and Mg:Na ratios suggest crystallinity of the parent material may also play an important role in determining weathering fluxes. From total dissolved solids concentrations and mean annual discharge calculations we calculate chemical weathering yields of (6-106 t km−2 a−1), which are similar to those previously determined for basalt terrains. Silicate fluxes (3.1-55.4 t km−2 a−1) and associated CO2 consumption (190-1575 × 103 mol km−2 a−1) determined from our study are among the highest determined to date. The calculated chemical fluxes from our study confirm the weathering potential of andesitic-dacitic terrains and that additional studies of these terrains are warranted.  相似文献   

12.
Lake Constance is one of Europe’s largest oligotrophic lakes and provides a water source for more than 4.5 million people in Germany and Switzerland. We present here a 12 month study on iodine concentrations, speciation and fluxes to and from the lake to gain a quantitative understanding of the limnic iodine cycle. Monthly water samples were obtained from all major tributaries (14) and the outflow to construct a mass-balance model. Sediment traps were also deployed in the lake for two years at two different stations. Total soluble iodine (TSI) in aqueous samples were analysed by ICP-MS and speciation (iodide, iodate and soluble organically bound iodine, SOI) by ion chromatography-ICP-MS. Iodine concentrations in the Alpine tributaries (1-2 μg l−1) decreased over the summer months due to increasing proportions of snow and glacial melt water from the Alps, while iodine levels in the lowland rivers (∼2-10 μg l−1) increased over the summer. Deposition of TSI to the catchment (16,340 kg I yr−1) was similar to the TSI out-flux by rivers (16,000 kg I yr−1). By also including the particulate riverine iodine flux out of the catchment (∼12,350 kg I yr−1) it is shown that the catchment is a net source of iodine, with the highest particulate fluxes coming from the Alpine rivers. The total TSI flux to the lake was 16,770 kg I yr−1, the largest proportion coming from the Alpenrhein (43%), followed by the Schussen (8%) and Bregenzer Ach (7.7%). Overall the mass-balance for TSI in the lake was negative, with more iodine flowing out of the lake than in (−2050 kg I yr−1; 12% of TSI in-flux). To maintain mass-balance, 8.8 μg I m−2 d−1 from the Obersee and 23 μg I m−2 d−1 from the Untersee must be released from the sediments into the water column. Thus, in comparison with the total iodine flux to the sediments measured by the sediment traps (4762-8075 kg I yr−1), up to 39% of the deposited iodine may be mobilised back into the lake. SOI was the dominant iodine fraction entering the lake, with a total flux of 10,290 kg I yr−1 (64% of TSI input), followed by iodate (3120 kg I yr−1) and iodide (2760 kg I yr−1). Net formation of SOI from iodide and iodate was also noted within the lake, with an estimated production of 6560 kg I yr−1, suggesting a strong role for biology in iodine cycling. In conclusion, organically bound iodine was the dominant iodine species in aqueous and solid phases in Lake Constance, despite low DOC concentrations (<2 mg l−1), and thus is expected to play an important role in iodine cycling in most freshwater environments.  相似文献   

13.
This study presents a detailed discrimination between the natural and anthropogenic sources of dissolved major elements in the Têt River, a typical small coastal river in the south of France. The main objectives were to quantify the materials that were released by human activities in the basin, and to determine the specific element inputs for the major land use forms. The dissolved material fluxes were estimated by weekly monitoring over a hydrological year (2000–2001) along the major water gauging stations, and the flux relationships were examined in the context of anthropogenic and natural basin characteristics as determined by a Geographical Information System (GIS). Intensive agricultural land use in the form of fruit tree cultures and vineyards has a strong control on the dissolved element fluxes in the river. Area specific element releases for these cultures are greatest for SO4, with an estimated average of about 430 ± 18 keq km−2 a−1. This is ?11 times the natural SO4 release by rock weathering. Also for K, NO3, PO4 and Mg, the specific releases were ?6 times the natural weathering rates (respectively about 44, 60, 4 and 265 keq km−2 a−1). Waste-waters are the other major source of anthropogenic elements in the river. They have an important role for the fluxes of inorganic P and N, but they are also a considerable source of Cl and Na to the river. For example, the average annual release of Cl is around 150 moles/inhabitant in the rural basin parts. Further downstream, however, where population density strongly increases, industrial effluents can enhance this value (>300 moles/inhabitant). The waste-waters contribute more than 70% of the dissolved inorganic N export to the sea, although their contribution to the average DOC export is almost negligible (3%).  相似文献   

14.
Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF.190 t yr−1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr−1) and the Schussen (50 t TDBr yr−1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr−1. In comparison, only 40 t TDBr yr−1 was deposited to the lake’s catchment by precipitation, and thus ∼80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (∼12 t yr−1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from the catchment, which is supported by Ti, Zr and Br/Corg data. In the lake bromine was irreversibly lost to the sediments, with best flux estimates based on mass-balance and sediment trap data of +50-90 μg Br m−2 d−1. Overall, it appears that bromine is not simply a cyclic salt in the case of Lake Constance, with a clear geological component and dynamic lacustrine biogeochemistry.  相似文献   

15.
Laboratory determined mineral weathering rates need to be normalised to allow their extrapolation to natural systems. The principle normalisation terms used in the literature are mass, and geometric- and BET specific surface area (SSA). The purpose of this study was to determine how dissolution rates normalised to these terms vary with grain size. Different size fractions of anorthite and biotite ranging from 180-150 to 20-10 μm were dissolved in pH 3, HCl at 25 °C in flow through reactors under far from equilibrium conditions. Steady state dissolution rates after 5376 h (anorthite) and 4992 h (biotite) were calculated from Si concentrations and were normalised to initial- and final- mass and geometric-, geometric edge- (biotite), and BET SSA. For anorthite, rates normalised to initial- and final-BET SSA ranged from 0.33 to 2.77 × 10−10 molfeldspar m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 5.74 to 8.88 × 10−10 molfeldspar m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.11 to 1.65 molfeldspar g−1 s−1. For biotite, rates normalised to initial- and final-BET SSA ranged from 1.02 to 2.03 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 3.26 to 16.21 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric edge SSA ranged from 59.46 to 111.32 × 10−12 molbiotite m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.81 to 6.93 × 10−12 molbiotite g−1 s−1. For all normalising terms rates varied significantly (p ? 0.05) with grain size. The normalising terms which gave least variation in dissolution rate between grain sizes for anorthite were initial BET SSA and initial- and final-geometric SSA. This is consistent with: (1) dissolution being dominated by the slower dissolving but area dominant non-etched surfaces of the grains and, (2) the walls of etch pits and other dissolution features being relatively unreactive. These steady state normalised dissolution rates are likely to be constant with time. Normalisation to final BET SSA did not give constant ratios across grain size due to a non-uniform distribution of dissolution features. After dissolution coarser grains had a greater density of dissolution features with BET-measurable but unreactive wall surface area than the finer grains. The normalising term which gave the least variation in dissolution rates between grain sizes for biotite was initial BET SSA. Initial- and final-geometric edge SSA and final BET SSA gave the next least varied rates. The basal surfaces dissolved sufficiently rapidly to influence bulk dissolution rate and prevent geometric edge SSA normalised dissolution rates showing the least variation. Simple modelling indicated that biotite grain edges dissolved 71-132 times faster than basal surfaces. In this experiment, initial BET SSA best integrated the different areas and reactivities of the edge and basal surfaces of biotite. Steady state dissolution rates are likely to vary with time as dissolution alters the ratio of edge to basal surface area. Therefore they would be more properly termed pseudo-steady state rates, only appearing constant because the time period over which they were measured (1512 h) was less than the time period over which they would change significantly.  相似文献   

16.
In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries.A lack of correlation between POC and lignin phenol abundances (Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C4 in addition to C3 source materials. A strong correlation between δ13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C3 and C4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 108 kg y−1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 105 kg y−1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 109 kg y−1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 109 kg y−1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 1011 kg).  相似文献   

17.
Chemical weathering in the Three Rivers region of Eastern Tibet   总被引:2,自引:0,他引:2  
Three large rivers - the Chang Jiang (Yangtze), Mekong (Lancang Jiang) and Salween (Nu Jiang) - originate in eastern Tibet and run in close parallel over 300 km near the eastern Himalayan syntaxis. Seventy-four river water samples were collected mostly during the summer season from 1999 to 2004. Their major element compositions vary widely, with total dissolved solids (TDS) ranging from 31 to 3037 mg/l, reflecting the complex geologic makeup of the vast drainage basins. The major ion distribution of the main channel samples primarily reflects the weathering of carbonates. Evaporite dissolution prevails in the headwater samples of the Chang Jiang in the Tibetan Plateau interior, as evidenced by the high TDS (928 and 3037 mg/l) and the Na-Cl dominant major element composition. Local tributary samples of the Mekong and Salween, draining the Lincang Batholith and the Tengchong Volcano, show distinctive silicate weathering signatures. We used five reservoirs - rain, halite, sulfate, carbonate, and silicate - in a forward model to calculate the contribution from silicate weathering to the total dissolved load and to estimate the consumption rate of atmospheric CO2 by silicate weathering. Carbonate weathering accounts for about 50% of the total cationic charge (TZ+) in the samples of the Mekong and the Salween exiting the Tibetan Plateau. In the “exit” sample of the Chang Jiang, 45% of TZ+ is from halite dissolution inherited from the extreme headwater tributaries in the interior of the plateau, and carbonates contribute only 26% to the TZ+. The net rate of CO2 consumption by silicate weathering is (103-121) × 103 mol km−2 year−1, lower than the rivers draining the Himalayan front. GIS-based analyses indicate that runoff and relief can explain 52% of the spread in the rate of atmospheric CO2 drawdown by silicate weathering, but other climatic (temperature, precipitation, potential evapotranspiration) and geomorphic (elevation, slope) factors also show collinearity. Only qualitative conclusions can be drawn for the significance of lithology due to lack of digitized lithologic information. The effect of the peculiar drainage pattern due to tectonic forcing is not readily apparent in the major element composition or in increased chemical weathering rates. The 87Sr/86Sr ratios and the silicate weathering rates are in general lower in the Three Rivers than in the rivers draining the Himalayan front.  相似文献   

18.
CO2 consumption by chemical weathering is an integral part of the boundless carbon cycle, whose spatial patterns and controlling factors on continental scale are still not fully understood. A dataset of 338 river catchments throughout North America was used to empirically identify predictors of bicarbonate fluxes by chemical weathering and interpret the underlying controlling factors. Detailed analysis of major ion ratios enables distinction of the contributions of silicate and carbonate weathering and thus quantifying CO2 consumption. Extrapolation of the identified empirical model equations to North America allows the analysis of the spatial patterns of the CO2 consumption by chemical weathering.Runoff, lithology and land cover were identified as the major predictors of the riverine bicarbonate fluxes and the associated CO2 consumption. Other influence factors, e.g. temperature, could not be established in the models. Of the distinguished land cover classes, artificial surfaces, dominated by urban areas, increase bicarbonate fluxes most, followed by shrubs, grasslands, managed lands, and forests. The extrapolation results in an average specific bicarbonate flux of 0.3 Mmol km−2 a−1 by chemical weathering in North America, of which 64% originates from atmospheric CO2, and 36% from carbonate mineral dissolution. Chemical weathering in North America thus consumes 50 Mt atmospheric CO2-C per year. About half of that originates from 10% of the area of North America.The estimated strength of individual predictors differs from previous studies. This highlights the need for a globally representative set of regionally calibrated models of CO2 consumption by chemical weathering, which apply very detailed spatial data to resolve the heterogeneity of earth surface processes.  相似文献   

19.
This paper describes the detrital mineralogy, early diagenetic reactions and authigenic mineral precipitates for freshwater contaminated sediments deposited in an urban water body (the Salford Quays of the Manchester Ship Canal, Greater Manchester, UK). These sediments contain a mix of natural and anthropogenic detrital grains. Detrital grains are dominated by quartz and clay grains, whilst anthropogenic grains are dominated by metal-rich glass grains, concentrated at a depth of 12–17 cm in the sediment as a result of historical inputs. Sediment porewaters contain significant concentrations of Fe, Mn, Zn and phosphate. Bacterial Fe(III) and Mn(IV) reduction are hypothesised to supply Fe2+ and Mn2+ to porewaters, with phosphate released from Fe oxide reduction or organic matter oxidation. Petrographic observations indicate that the metal-rich glass grains are undergoing chemical dissolution during early diagenesis, supplying Fe and Zn to porewaters.  相似文献   

20.
Concentrations of major ions, Sr and 87Sr/86Sr have been measured in the Gomti, the Son and the Yamuna, tributaries of the Ganga draining its peninsular and plain sub-basins to determine their contribution to the water chemistry of the Ganga and silicate and carbonate erosion of the Ganga basin. The results show high concentrations of Na and Sr in the Gomti, the Yamuna and the Ganga (at Varanasi) with much of the Na in excess of Cl. The use of this ‘excess Na’ (Na∗ = Nariv − Clriv) a common index of silicate weathering yield values of ∼18 tons km−2 yr−1 for silicate erosion rate (SER) in the Gomti and the Yamuna basins. There are however, indications that part of this Na∗ can be from saline/alkaline soils abundant in their basins, raising questions about its use as a proxy to determine SER of the Ganga plain. Independent estimation of SER based on dissolved Si as a proxy give an average value of ∼5 tons km−2 yr−1 for the peninsular and the plain drainages, several times lower than that derived using Na∗. The major source of uncertainty in this estimate is the potential removal of Si from rivers by biological and chemical processes. The Si based SER and CER (carbonate erosion rate) are also much lower than that in the Himalayan sub-basin of the Ganga. The lower relief, runoff and physical erosion in the peninsular and the plain basins relative to the Himalayan sub-basin and calcite precipitation in them all could be contributing to their lower erosion rates.Budget calculations show that the Yamuna, the Son and Gomti together account for ∼75% Na, 41% Mg and ∼53% Sr and 87Sr of their supply to the Ganga from its major tributaries, with the Yamuna dominating the contribution. The results highlight the important role of the plain and peninsular sub-basins in determining the solute and Sr isotope budgets of the Ganga. The study also shows that the anthropogenic contribution accounts for ?10% of the major ion fluxes of the Ganga at Rajmahal during high river stages (October). The impact of both saline/alkaline soils and anthropogenic sources on the major ion abundances of the Ganga is minimum during its peak flow and therefore the SER and CO2 consumption rates of the river is best determined during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号