首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Spatially resolved argon isotope measurements have been performed on neutron-irradiated samples of two Martian basalts (Los Angeles and Zagami) and two Martian olivine-phyric basalts (Dar al Gani (DaG) 476 and North West Africa (NWA) 1068). With a ∼50 μm diameter focused infrared laser beam, it has been possible to distinguish between argon isotopic signatures from host rock (matrix) minerals and localized shock melt products (pockets and veins). The concentrations of argon in analyzed phases from all four meteorites have been quantified using the measured J values, 40Ar/39Ar ratios and K2O wt% in each phase. Melt pockets contain, on average, 10 times more gas (7-24 ppb 40Ar) than shock veins and matrix minerals (0.3-3 ppb 40Ar). The 40Ar/36Ar ratio of the Martian atmosphere, estimated from melt pocket argon extractions corrected for cosmogenic 36Ar, is: Los Angeles (∼1852), Zagami (∼1744) and NWA 1068 (∼1403). In addition, Los Angeles shows evidence for variable mixing of two distinct trapped noble gas reservoirs: (1) Martian atmosphere in melt pockets, and (2) a trapped component, possibly Martian interior (40Ar/36Ar: 480-490) in matrix minerals. Average apparent 40Ar/39Ar ages determined for matrix minerals in the four analyzed meteorites are 1290 Ma (Los Angeles), 692 Ma (Zagami), 515 Ma (NWA 1068) and 1427 Ma (DaG 476). These 40Ar/39Ar apparent ages are substantially older than the ∼170-474 Ma radiometric ages given by other isotope dating techniques and reveal the presence of trapped 40Ar. Cosmic ray exposure (CRE) ages were measured using spallogenic 36Ar and 38Ar production. Los Angeles (3.1 ± 0.2 Ma), Zagami (2.9 ± 0.4 Ma) and NWA 1068 (2.0 ± 0.5 Ma) yielded ages within the range of previous determinations. DaG 476, however, yielded a young CRE age (0.7 ± 0.25 Ma), attributed to terrestrial alteration. The high spatial variation of argon indicates that the incorporation of Martian atmospheric argon into near-surface rocks is controlled by localized glass-bearing melts produced by shock processes. In particular, the larger (mm-size) melt pockets contain near end-member Martian atmospheric argon. Based on petrography, composition and argon isotopic data we conclude that the investigated melt pockets formed by localized in situ shock melting associated with ejection. Three processes may have led to atmosphere incorporation: (1) argon implantation due to atmospheric shock front collision with the Martian surface, (2) transformation of an atmosphere-filled cavity into a localized melt zone, and (3) shock implantation of atmosphere trapped in cracks, pores and fissures.  相似文献   

2.
Detailed Rb-Sr and Sm-Nd isotopic analyses have been completed on the lherzolitic shergottites ALH77005 and LEW88516. ALH77005 yields a Rb-Sr age of 185 ± 11 Ma and a Sm-Nd age of 173 ± 6 Ma, whereas the Rb-Sr and Sm-Nd ages of LEW88516 are 183 ± 10 and 166 ± 16 Ma, respectively. The initial Sr isotopic composition of ALH77005 is 0.71026 ± 4, and the initial εNd value is +11.1 ± 0.2. These values are distinct from those of LEW88516, which has an initial Sr isotopic composition of 0.71052 ± 4 and an initial εNd value of +8.2 ± 0.6. Several of the mineral and whole rock leachates lie off the Rb-Sr and Sm-Nd isochrons, indicating that the isotopic systematics of the meteorites have been disturbed. The Sm-Nd isotopic compositions of the leachates appear to be mixtures of primary igneous phosphates and an alteration component with a low 143Nd/144Nd ratio that was probably added to the meteorites on Mars. Tie lines between leachate-residue pairs from LEW88516 mineral fractions and whole rocks have nearly identical slopes that correspond to Rb-Sr ages of 90 ± 1 Ma. This age may record a major shock event that fractionated Rb/Sr from lattice sites located on mineral grain boundaries. On the other hand, the leachates could contain secondary alteration products, and the parallel slopes of the tie lines could be coincidental.Nearly identical mineral modes, compositions, and ages suggest that these meteorites are very closely related. Nevertheless, their initial Sr and Nd isotopic compositions differ outside analytical uncertainty, requiring derivation from unique sources. Assimilation-fractional-crystallization models indicate that these two lherzolitic meteorites can only be related to a common parental magma, if the assimilant has a Sr/Nd ratio near 1 and a radiogenic Sr isotopic composition. Further constraints placed on the evolved component by the geochemical and isotopic systematics of the shergottite meteorite suite suggest that it (a) formed at ∼4.5 Ga, (b) has a high La/Yb ratio, (c) is an oxidant, and (d) is basaltic in composition or is strongly enriched in incompatible elements. The composition and isotopic systematics of the evolved component are unlike any evolved lunar or terrestrial igneous rocks. Its unusual geochemical and isotopic characteristics could reflect hydrous alteration of an evolved Martian crustal component or hydrous metasomatism within the Martian mantle.  相似文献   

3.
Aqueous extraction contributes to the formation and weathering of planetary materials and renders electrolytes such as phosphate available for biology. In this context, the solubility of phosphate is measured in planetary materials, represented by the Mars meteorites Nakhla, Dar al Gani 476 (DaG 476), Elephant Morraine 79001 (EETA 79001), and terrestrial analogs, and in the Murchison CM2 and Allende CV3 carbonaceous chondrites. The Mars meteorites contain high levels of phosphate that is readily extracted by water, up to 15 mg kg−1 in Nakhla and DaG 476 and 38 mg kg−1 in EETA 79001, while the terrestrial analogs and the carbonaceous chondrites contain 0.5 to 6 mg kg−1. Correspondingly, high phosphate concentrations of 4 to >28 mg L−1 are obtained in extracts of the Mars meteorites at high solid/solution ratios, exceeding the concentrations of 0.4 to 2.0 mg L−1 in the extracts of the terrestrial analogs. A wide range of planetary conditions, including N2 and CO2 atmospheres, solid/solution ratios of 0.01 to 1.0 kg L−1, extraction times of 1 to 21 d, and temperatures of 20 to 121°C affect the amounts of extractable phosphate by factors of only 2 to 5 in most materials. Phosphate-fixing capacity and exchangeable phosphate are assessed by the isotopic exchange kinetics (IEK) method, which quantifies the amount of P isotopically exchangeable within 1 min (E1min) and between 1 min and 3 months (E1min-3m) and the amount of P that cannot be exchanged within 3 months (E>3m). The IEK results show that the DaG 476 Mars meteorite and terrestrial analogs have low P-fixing capacities, while the carbonaceous chondrites have high P-fixing capacities. Aqueous processing under early planetary CO2 atmospheres has large effects on the available phosphate. For example, the fraction of total P that is exchangeable in 3 months increases from 1.6 to 11%, 13 to 51.6%, and 43.9 to 90.4% in the DaG 476 Mars meteorite, Allende, and Murchison, respectively. The results show that solutions with high phosphate concentrations can form in the pores of planetary lava ash and basalts and in carbonaceous asteroids and meteorites. These solutions can help prebiotic synthesis and early microbial nutrition. The Martian and carbonaceous chondrite materials contain sufficient phosphate for space-based agriculture.  相似文献   

4.
The Sulagiri meteorite fell in India on 12 September 2008,LL6 chondrite class is the largest among all the Indian meteorites.Isotopic compositions of noble gases(He,Ne,Ar,Kr and Xe) and nitrogen in the Sulagiri meteorite and cosmic ray exposure history are discussed.Low cosmogenic(~(22)Ne/~(21)Ne)_c ratio is consistent with irradiation in a large body.Cosmogenic noble gases indicate that Sulagiri has a 4πcosmic-ray exposure(CRE) age of 27.9 ± 3.4 Ma and is a member of the peak of CRE age distribution of IX chondrites.Radiogenic ~4He and ~(40)Ar concentrations in Sulagiri yields the radiogenic ages as 2.29 and4.56 Ca,indicating the loss of He from the meteorite.Xenon and krypton are mixture of Q and spallogenic components.  相似文献   

5.
The cosmic ray exposure (CRE) ages of aubrites are among the longest of stone meteorites. New aubrites have been recovered in Antarctica, and these meteorites permit a substantial extension of the database on CRE ages, compositional characteristics, and regolith histories. We report He, Ne, and Ar isotopic abundances of nine aubrites and discuss the compositional data, the CRE ages, and regolith histories of this class of achondrites. A Ne three-isotope correlation reveals a solar-type ratio of 20Ne/22Ne = 12.1, which is distinct from the present solar wind composition and lower than most ratios observed on the lunar surface. For some aubrites, the cosmic ray-produced noble gas abundances include components produced on the surface of the parent object. The Kr isotopic systematics reveal significant neutron-capture-produced excesses in four aubrites, which is consistent with Sm and Gd isotopic anomalies previously documented in some aubrites. The nominal CRE ages confirm a non-uniform distribution of exposure times, but the evidence for a CRE age cluster appears doubtful. Six meteorites are regolith breccias with solar-type noble gases, and the observed neutron effects indicate a regolith history. ALH aubrites, which were recovered from the same location and are considered to represent a multiple fall, yield differing nominal CRE ages and, if paired, document distinct precompaction histories.  相似文献   

6.
Total carbon determinations on the Haverö, Dingo Pup Donga, and North Haig ureilites yield values of 2.07, 3.17, and 5.58 wt.%, respectively. Haverö and Dingo Pup Donga contain relatively large amounts of trapped Ar, Kr and Xe, which like the carbon content varies with grain size for Haverö. These two meteorites also contain dominant cosmic rayproduced He and Ne, and show 3He exposure ages of ~23 m.y. and ~7 m.y., respectively. North Haig contains much smaller amounts of trapped gases and spallogenic gases, which may result from loss due to terrestrial weathering. The isotopic composition of Xe in five grain size analyses of Haverö and a whole rock analysis of Dingo Pup Donga shows the presence of a major solar-like Xe component. The presence of this solar component adds an additional complication to the concept of forming ureilites from carbonaceous chondrites.  相似文献   

7.
We discuss observed xenon isotopic signatures in solar system reservoirs and possible relationships. The predominant trapped xenon component in ordinary chondrites (OC) is OC-Xe and its isotopic signature differs from Xe in ureilites, in carbonaceous chondrites, in the atmospheres of Earth and Mars, and in the solar wind. Additional minor Xe components were identified in type 3 chondrites and in the metal phase of chondrites. The OC-Xe and ureilite signatures are both consistent with varying mixtures of HL-Xe and slightly mass fractionated solar-type Xe. Xenon in the Martian atmosphere is found to be strongly mass fractionated by 37.7‰ per amu, relative to solar Xe, favoring the heavy isotopes. Xenon in SNC’s from the Martian mantle show admixture of solar-type Xe, which belongs to an elementally strongly fractionated component. The origin of the isotopic signatures of Ne and Xe in the terrestrial atmosphere are discussed in the light of evidence that the Xe isotopic fractionations in the Martian and terrestrial atmospheres are consistent. However, in the terrestrial atmospheric Xe component excesses are observed for132Xe and also for129,131Xe, relative to fractionated solar Xe. The suggested chemically fractionated fission Xe component (CFF-Xe) seems to closely match the above excesses. We discuss models of origin for planetary volatiles and possible processes driving their evolution to present day compositions.  相似文献   

8.
The concentration and the isotopic ratios of noble gases He, Ne, Ar, Kr and Xe were measured in porewater trapped in shallow sediments of the estuary of the St-Lawrence River, Québec, Canada. The gases are atmospheric in origin but most samples have gas concentrations 1.7-28 times higher than those expected in solution in water at equilibrium with the atmosphere. Elemental fractionation of heavier noble gases Kr and Xe compared to Ar strongly suggests that noble gases were adsorbed on sediments or organic matter and then desorbed into porewaters due to depressurization, as collected samples were brought to the surface. Atmospheric Ar in porewater is used as a reference to measure the N2-fluxes at the water-sediment interface. Ignoring the Ar enrichments observed in porewater could lead to a severe underestimation of the denitrification rate in oceans and estuaries.  相似文献   

9.
Acid-resistant residues were prepared by HCl-HF demineralization of three H-type ordinary chondrites: Brownfield 1937 (H3), Dimmitt (H3,4), and Estacado (H6). These residues were found to contain a large proportion of the planetary-type trapped Ar, Kr, and Xe in the meteorites. The similarity of these acid residues to those from carbonaceous chondrites and LL-type ordinary chondrites suggests that the same phase carries the trapped noble gases in all these diverse meteorite types. Because the H group represents a large fraction of all meteorites, this result indicates that the gas-rich carrier phase is as universal as the trapped noble-gas component itself. When treated with an oxidizing etchant, the acid residues lost almost all their complement of noble gases. In addition, the Xe in at least one oxidized residue, from Dimmitt, displayed isotopic anomalies of the type known as CCFX or DME-Xe, which is characterized by simultaneous excesses of both the lightest and heaviest isotopes. The anomaly in the Dimmitt sample differs from that observed in carbonaceous-chondrite samples, however, in the relative proportions of the light- and heavy-isotope excesses.The results of this study do not show an inverse correlation between trapped 20Ne36Ar and trapped 36Ar abundance, as has been reported for acid-resistant residues from LL-chondrites. The results of this work therefore fail to support the hypothesis that meteoritic trapped noble gas abundances were established at the time of condensation.  相似文献   

10.
The timescale of accretion and differentiation of asteroids and the terrestrial planets can be constrained using the extinct 182Hf-182W isotope system. We present new Hf-W data for seven carbonaceous chondrites, five eucrites, and three shergottites. The W isotope data for the carbonaceous chondrites agree with the previously revised 182W/184W of chondrites, and the combined chondrite data yield an improved ?W value for chondrites of −1.9 ± 0.1 relative to the terrestrial standard. New Hf-W data for the eucrites, in combination with published results, indicate that mantle differentiation in the eucrite parent body (Vesta) occurred at 4563.2 ± 1.4 Ma and suggest that core formation took place 0.9 ± 0.3 Myr before mantle differentiation. Core formation in asteroids within the first ∼5 Myr of the solar system is consistent with the timescales deduced from W isotope data of iron meteorites. New W isotope data for the three basaltic shergottites EETA 79001, DaG 476, and SAU 051, in combination with published 182W and 142Nd data for Martian meteorites reveal the preservation of three early formed mantle reservoirs in Mars. One reservoir (Shergottite group), represented by Zagami, ALH77005, Shergotty, EETA 79001, and possibly SAU 051, is characterized by chondritic 142Nd abundances and elevated ?W values of ∼0.4. The 182W excess of this mantle reservoir results from core formation. Another mantle reservoir (NC group) is sampled by Nakhla, Lafayette, and Chassigny and shows coupled 142Nd-182W excesses of 0.5-1 and 2-3 ? units, respectively. Formation of this mantle reservoir occurred 10-20 Myr after CAI condensation. Since the end of core formation is constrained to 7-15 Myr, a time difference between early silicate mantle differentiation and core formation is not resolvable for Mars. A third early formed mantle reservoir (DaG group) is represented by DaG 476 (and possibly SAU 051) and shows elevated 142Nd/144Nd ratios of 0.5-0.7 ? units and ?W values that are indistinguishable from the Shergottite group. The time of separation of this third reservoir can be constrained to 50-150 Myr after the start of the solar system. Preservation of these early formed mantle reservoirs indicates limited convective mixing in the Martian mantle as early as ∼15 Myr after CAI condensation and suggests that since this time no giant impact occurred on Mars that could have led to mantle homogenization. Given that core formation in planetesimals was completed within the first ∼5 Myr of the solar system, it is most likely that Mars and Earth accreted from pre-differentiated planetesimals. The metal cores of Mars and Earth, however, cannot have formed by simply combining cores from these pre-differentiated planetesimals. The 182W/184W ratios of the Martian and terrestrial mantles require late effective removal of radiogenic 182W, strongly suggesting the existence of magma oceans on both planets. Large impacts were probably the main heat source that generated magma oceans and led to the formation metallic cores in the terrestrial planets. In contrast, decay of short-lived 26Al and 60Fe were important heat sources for melting and core formation in asteroids.  相似文献   

11.
Noble gas isotopes of HIMU and EM ocean island basalts from the Cook-Austral and Society Islands were investigated to constrain their origins. Separated olivine and clinopyroxene (cpx) phenocrysts were used for noble gas analyses. Since samples are relatively old, obtained from the oceanic area and showing chemical zoning in cpx phenocrysts, several tests on sample preparation and gas extraction methods were performed. First, by comparing heating and crushing methods, it has been confirmed that the crushing method is suitable to obtain inherent magmatic noble gases without radiogenic and cosmogenic components which were yielded after eruption, especially for He and Ne analyses. Second, noble gas compositions in the core and the rim of cpx phenocrysts were measured to evaluate the zoning effect on noble gases. The result has been that noble gas concentrations and He and Ne isotope ratios are different between them. The enrichment of noble gases in the rim compared to the core is probably due to fractional crystallization. Difference of He and Ne isotope ratios is explained by cosmogenic effect, and isotope ratios of the trapped component seem to be similar between the rim and the core. Third, leaching test reveals no systematic differences in noble gas compositions between leached and unleached samples.3He/4He ratios of HIMU samples in the Cook-Austral Islands are uniform irrespective of phenocryst type (olivine and cpx) and age of samples (10–18 Ma), and lower (average 6.8 RA) than those of the Pacific MORB. On the other hand, 3He/4He of EM samples in the Cook-Austral Islands are similar to MORB values. EM samples in the Society Islands show rather higher 3He/4He than MORB. Ne, Kr and Xe isotope ratios are almost atmospheric within analytical uncertainties. 40Ar/36Ar are not so high as those of MORB. Anomalous noble gas abundance pattern such as He and Ne depletion and Kr and Xe enrichment relative to atmospheric abundances was observed. Furthermore, Ne/Ar and Kr/Ar show correlation with some trace elemental ratios like La/Yb.Lower 3He/4He of HIMU than MORB values requires relatively high time-integrated (U + Th)/3He for the HIMU source, which suggests that the HIMU source was produced from recycled materials which had been once located near the Earth’s surface. Moreover, extreme noble gas abundance pattern and strong correlation of Ne/Ar and Kr/Ar with La/Yb indicate that the HIMU endmember is highly depleted in light noble gases and enriched in heavy noble gases. Such feature is not common to mantle materials and is rather similar to the noble gas abundance patterns of the old oceanic crust and sediment, which supports the model that the HIMU source originates from subducted oceanic crust and/or sediment.If the HIMU source corresponds to the oceanic crust which subducted at 1–2 Ga as suggested by Pb isotope studies, however, the characteristic 3He/4He of HIMU (6.8 RA) would be too high because radiogenic 4He produced by U and Th decay should dramatically decrease 3He/4He. To overcome this problem, the He open system model is introduced which includes the effects of 4He production and diffusion between the HIMU source material and the surrounding mantle. This model favors that the HIMU source resides in the upper mantle, rather than in the lower mantle. Furthermore, this model predicts the thickness of the HIMU source to be in the order of 1 km.In contrast to low and uniform 3He/4He character of HIMU, 3He/4He of EM are rather variable. Entrainment of upper mantle material and/or a less-degassed component are required to explain the observed 3He/4He of EM in the Polynesian area. Participation of the less-degassed component would be related to the “superplume” below the Polynesian region.  相似文献   

12.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   

13.
He, Ne, Ar, Kr and Xe concentrations and isotopic abundances were measured in three bulk grain size fractions prepared from sample L-16-19, No. 120 (C level, 20–22 cm depth) returned by the Luna 16 mission. The expected anticorrelation between the concentrations of trapped solar wind noble gases and grain size is observed. Elemental abundances of solar wind trapped noble gases are similar to those previously found in corresponding grain size fractions of the Apollo 11 and 12 fines. The trapped ratio 4He20Ne varies in the soils from different lunar maria due to diffusion losses. A rough correlation of 4He20Ne with the proportion of ilmenite in these samples is apparent. The elemental and isotopic ratios of the surface correlated noble gases in Luna 16 resemble those previously found in Apollo fines. Based on 21Ne, 78Kr and 126Xe a cosmic ray exposure age of 360 my was determined. This age is similar to those obtained for the soils from other lunar maria.  相似文献   

14.
We present the elemental and isotopic composition of noble gases in the bulk solar wind collected by the NASA Genesis sample return mission. He, Ne, and Ar were analyzed in diamond-like carbon on a silicon substrate (DOS) and 84,86Kr and 129,132Xe in silicon targets by UV laser ablation noble gas mass spectrometry. Solar wind noble gases are quantitatively retained in DOS and with exception of He also in Si as shown by a stepwise heating experiment on a flown DOS target and analyses on other bulk solar wind collector materials. Solar wind data presented here are absolutely calibrated and the error of the standard gas composition is included in stated uncertainties. The isotopic composition of the light noble gases in the bulk solar wind is as follows: 3He/4He: (4.64 ± 0.09) × 10−4, 20Ne/22Ne: 13.78 ± 0.03, 21Ne/22Ne: 0.0329 ± 0.0001, 36Ar/38Ar 5.47 ± 0.01. The elemental composition is: 4He/20Ne: 656 ± 5, and 20Ne/36Ar 42.1 ± 0.3. Genesis provided the first Kr and Xe data on the contemporary bulk solar wind. The preliminary isotope and elemental composition is: 86Kr/84Kr: 0.302 ± 0.003, 129Xe/132Xe: 1.05 ± 0.02, 36Ar/84Kr 2390 ± 150, and 84Kr/132Xe 9.5 ± 1.0. The 3He/4He and the 4He/20Ne ratios in the Genesis DOS target are the highest solar wind values measured in exposed natural and artificial targets. The isotopic composition of the other noble gases and the Kr/Xe ratio obtained in this work agree with data from lunar samples containing “young” (∼100 Ma) solar wind, indicating that solar wind composition has not changed within at least the last 100 Ma. Genesis could provide in many cases more precise data on solar wind composition than any previous experiment. Because of the controlled exposure conditions, Genesis data are also less prone to unrecognized systematic errors than, e.g., lunar sample analyses. The solar wind is the most authentic sample of the solar composition of noble gases, however, the derivation of solar noble gas abundances and isotopic composition using solar wind data requires a better understanding of fractionation processes acting upon solar wind formation.  相似文献   

15.
Isotopic concentrations of the noble gases have been measured in several different phases of Elephant Moraine A79001 and in whole rock samples of Zagami and Allan Hills A77005, three meteorites which belong to the rare group of SNC achondrites that may have originated from the planet Mars. Shocked phases of EETA79001 contain a trapped Ar, Kr, and Xe component characterized by 84Kr132Xe ~15, 40Ar36Ar > 2000, 129Xe132Xe ≥ 2, and 4He40Ar ≤ 0.1. These elemental and isotopic ratios are unlike those for any other noble gas component except analyses of the Martian atmosphere made by Viking spacecraft. The isotopic composition of the trapped Kr shows an approximate 1% per mass unit enrichment of lighter isotopes compared to terrestrial Kr, and the traped Xe may show either a fission component or a fractionated enrichment of heavier isotopes compared to terrestrial Xe. It is hypothesized that these gases represent a portion of the Martian atmosphere which was shock-implanted into EETA79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. Cosmic ray-produced gases in the eight known SNC meteorites form three distinct groups with exposure ages of ~11 MY (Chassigny and the nakhlites), ~2.6 MY (Shergotty, Zagami, and ALHA77005), and ~0.5 MY (EETA79001). These ages suggest three distinct events and cannot have been produced by irradiation for a common time under greatly different shielding. Comparison of cosmogenic 3He21Ne measured in EETA79001 with two independent models for the production of this ratio as a function of shielding indicates that this meteorite was irradiated in space as a relatively small object. If the SNC meteorites were ejected from Mars ~ 180 My ago, the shock age of the shergottites, they must have been relatively large objects (>6 meters diameter) which experienced at least three space collisions to initiate cosmic ray exposure. Ejection from Mars by three events at the times of initiation of cosmic ray exposure would permit the ejected objects to have been much smaller (<1 meter diameter), but would require three such events on 1.3 Gy Martian terraine in the past ~10 MY and would not explain the common 180 MY shock age seen in all four shergottites.  相似文献   

16.
The noble gases (He, Ne, Ar, Kr and Xe) are powerful geochemical tracers because they have distinctive isotopic compositions in the atmosphere, crust and mantle. This study illustrates how noble gases can be used to trace fluid origins in high-temperature metamorphic and mineralising environments; and at the same time provides new information on the composition of noble gases in deeper parts of the crust than have been sampled previously.We report data for H2O and CO2 fluid inclusions trapped at greenschist to amphibolite facies metamorphic conditions associated with three different styles of mineralisation and alteration in the Proterozoic Mt Isa Inlier of Australia. Sulphide fluid inclusions are dominated by crustal 4He. However, co-variations in fluid inclusion 20Ne/22Ne, 21Ne/22Ne, 40Ar/36Ar and 136Xe/130Xe indicate noble gases were derived from three or more reservoirs. In most cases, the fluid inclusions elemental noble gas ratios (e.g. Ne/Xe) are close to the ranges expected in sedimentary and crystalline rocks. However, the elemental ratios have been modified in some of the samples providing evidence for independent pulses of CO2, and interaction of CO2 with high-salinity aqueous fluids.Compositional variation is attributed to mixing of: (i) magmatic fluids (or deeply sourced metamorphic fluids) characterised by basement-derived noble gases with 20Ne/22Ne ∼ 8.4, 21Ne/22Ne ∼ 0.4, 40Ar/36Ar ∼ 40,000 and 136Xe/130Xe ∼ 8; (ii) basinal-metamorphic fluids with a narrow range of compositions including near-atmospheric values and (iii) noble gases derived from the meta-sedimentary host-rocks with 20Ne/22Ne ∼ 8-9.8, 21Ne/22Ne < 0.1, 40Ar/36Ar < 2500 and 136Xe/130Xe ∼ 2.2.These data provide the strongest geochemical evidence available for the involvement of fluids from two distinct geochemical reservoirs in Mt Isa’s largest ore deposits. In addition the data show how noble gases in fluid inclusions can provide information on fluid origins, the composition of the crust’s major lithologies, fluid-rock interactions and fluid-fluid mixing or immiscibility processes.  相似文献   

17.
Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700°K. Henry's law is obeyed at pressures up to 10?2 atm for He, Ne, Ar and up to 10?5 atm for Kr, Xe, with the following distribution coefficients at 500° (cc STP g?1 atm?5): He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 102–105 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution in kcal/mole are: He ?2.42 ±0.12, Ne ?2.20 ±0.10, Ar ?15.25 ±0.25, Kr ?13.0 ±0.3, Xe ?12-5 ± 0.5. These values, too, stand in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.Extrapolation of the magnetite data to the formation temperature of C1 chondrites, 360°K, shows that the Arp36 content of Orgueil magnetite could be acquired by equilibrium solubility at a total nebular pressure of 4 × 10?6 atm. In the absence of data for silicates (the principal host phase of planetary gas), an attempt is made to estimate the solubilities required to account for planetary gases in meteorites. These values do not appear grossly unreasonable in the light of the magnetite data, when structural differences between the two minerals are taken into account. It seems that equilibrium solubility may be able to account for four features of planetary gas: elemental ratios, amounts, correlations with other volatiles and retentive siting. It cannot account for the isotopic fractionation of planetary gas, however.  相似文献   

18.
The noble gases He, Ne, Ar, Kr and Xe and also K and Ba were measured in the Apollo 11 igneous rocks 10017 and 10071, and in an ilmenite and two feldspar concentrates separated from rock 10071. Whole rock K/Ar ages of rocks 10017 and 10071 are (2350 ± 60) × 106 yr and (2880 ± 60) × 106 yr, respectively. The two feldspar concentrates of rock 10071 have distinctly higher ages: (3260 ± 60) × 106 yr and (3350 ± 70) × 106 yr. These ages are still 10 per cent lower than the Rb/Sr age obtained by Papanastassiouet al. (1970) and some Ar40 diffusion loss must have occurred even in the relatively coarse-grained feldspar.The relative abundance patterns of spallation Ne, Ar, Kr and Xe are in agreement with the ratios predicted from meteoritic production rates. However, diffusion loss of spallation He3 is evident in the whole rock samples, and even more in the feldspar concentrates. The ilmenite shows little or no diffusion loss. The isotopic composition of spallation Kr and Xe is similar to the one observed in meteorites. Small, systematic differences in the spallation Kr spectra of rocks 10017 and 10071 are due to variations in the irradiation hardness (shielding). The Kr spallation spectra in the mineral concentrates are different from the whole rock spectra and also show individual variations, reflecting the differences in target element composition. The relative abundance of cosmic ray produced Xe131 differs by nearly 50 per cent in the two rocks. The other Xe isotopes show no variations of similar magnitude. The origin of the Xe131 yield variability is discussed.Kr81 was measured in all the samples investigated. The Kr81/Kr exposure ages of rocks 10017 and 10071 are (480 ± 25) × 106 yr and (350 ± 15) × 106 yr, respectively. Exposure ages derived from spallation Ne21, Ar38, Kr83 and Xe126 are essentially in agreement with the Kr81/Kr ages. The age of rock 10071 might be somewhat low because of a possible recent exposure of our sample to solar flare particles.  相似文献   

19.
Noble gases trapped in meteorites are tightly bound in a carbonaceous carrier labeled “phase Q.” Mechanisms having led to their retention in this phase or in its precursors are poorly understood. To test physical adsorption as a way of retaining noble gases into precursors of meteoritic materials, we have performed adsorption experiments for Ar, Kr, and Xe at low pressures (10−4 mbar to 500 mbar) encompassing pressures proposed for the evolving solar nebula. Low-pressure adsorption isotherms were obtained for ferrihydrite and montmorillonite, both phases being present in Orgueil (CI), for terrestrial type III kerogen, the best chemical analog of phase Q studied so far, and for carbon blacks, which are present in phase Q and can be considered as possible precursors.Based on adsorption data obtained at low pressures relevant to the protosolar nebula, we propose that the amount of noble gases that can be adsorbed onto primitive materials is much higher than previously inferred from experiments carried out at higher pressures. The adsorption capacity increases from kerogen, carbon blacks, montmorillonite to ferrihydrite. Because of its low specific surface area, kerogen can hardly account for the noble gas inventory of Q. Carbon blacks in the temperature range 75 K-100 K can adsorb up to two orders of magnitude more noble gases than those found in Q. Irreversible trapping of a few percent of noble gases adsorbed on such materials could represent a viable process for incorporating noble gases in phase Q precursors. This temperature range cannot be ruled out for the zone of accretion of the meteorite precursors according to recent astrophysical models and observations, although it is near the lower end of the temperatures proposed for the evolving solar nebula.  相似文献   

20.
To simulate trapping of noble gases by meteorites, we reacted 15 FeCr or FeCrNi alloy samples with CO, H2O or H2S at 350–720 K, in the presence of noble gases. The reaction products, including (Fe,Cr)2O3, FeCr2S4, FeS, C, and Fe3C, were analyzed by mass spectrometry, usually after chemical separation by selective solvents. Three carbon samples were prepared by catalytic decomposition of CO or by dehydration of carbohydrates with H2SO4.The spinel and carbon samples were similar to those of earlier studies (Yang et al., 1982 and Yang and Anders, 1982), with only minor effects attributable to the presence of Ni. All samples sorted substantial amounts of noble gases, with distribution coefficients of 10?1–10?2 cm3 STP/g atm for Xe. On the basis of release temperature three gas components were distinguished: a generally dominant physisorbed component (20–80% of total), and two more strongly bound, chemisorbed and trapped components. Judging from the elemental pattern, the adsorbed components were acquired at the highest noble gas partial pressure encountered by the sample—atmosphere or synthesis vessel.Sulfides, particularly daubréelite, showed three distinctive trends relative to chromite or magnetite: the high-T component was larger, 30–70% of the total; NeXe ratios were higher, by up to 102, possibly due to preferential diffusion of Ne during synthesis. In one synthesis, at relatively high P, the gases were sorbed with only minimal elemental fractionation, presumably by occlusion.Most of the features of primordial noble gases can be explained in terms of the data and concepts presented in the three papers of this series. The elemental fractionation pattern of Ar, Kr, Xe in meteorites, terrestrial rocks, and planets resembles the adsorption pattern on the solids studied: carbon, spinels, Sulfides, etc. The variation in NeAr ratio may be explained by preferential diffusion of Ne. The high release temperature of meteoritic noble gases may be explained by transformation of physisorbed to chemisorbed gas, as observed in some experiments. The ready loss of meteoritic heavy gases on surficial oxidation (“Phase Q”) is consistent with adsorption, as is the high abundance. Extrapolation of the limited laboratory data suggests that the observed amounts of noble gases could have been adsorbed from a solar gas at 160–170 K and 10?6–10?5 atm, i.e. in the early contraction stages of the solar nebula. The principal unsolved problem is the origin of isotopically anomalous, apparently mass-fractionated noble gases in the Earth's atmosphere and in meteoritic carbon and chromite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号