首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
全球气候变化对湿地生态水文的影响研究综述   总被引:7,自引:0,他引:7       下载免费PDF全文
近百年来全球气候呈现以变暖为主要特征的显著变化,并且未来气温将继续上升,降水模式也会发生改变。从气候变化对湿地水文水资源的影响、气候变化影响下湿地水文与生态的相互作用过程以及湿地生态水文模型等3个方面,对国内外相关研究动态和发展趋势进行了总结分析。从中发现,当前全球气候背景下的湿地生态水文学正在从单一湿地生态水文过程为主要对象,发展成为以研究气候-水文-生态三者相互作用机制为主要内容的综合性、交叉性学科。现关于气候变化影响下水文-生态之间的关系多集中于单向作用的研究,特别是水文过程对植被的影响研究较多,缺乏对气候变化影响下湿地水文过程与生态过程相互作用机理的全面认识。气候变化对湿地生态水文的影响机制研究已经成为水文学研究亟待解决的科学问题,而基于物理机制的湿地生态水文模型,逐渐成为预测未来气候变化下湿地生态水文响应的重要工具。  相似文献   

2.
社会水文学研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
为了推动新兴学科——社会水文学的发展及其在流域水资源管理中的应用,有必要对有关社会水文学的研究工作进行阶段性总结,并对未来的研究方向进行展望。回顾了水文学的发展历程,理解社会水文学产生的背景,阐述社会水文学的概念及其内涵;辨析其与传统水文学、生态水文学和水文经济学等学科在研究内容、方法和理论等方面的异同点;介绍社会水文学的研究进展:本阶段着重于制度、政策和文化等社会因子在水文研究中的表达以及流域示范研究的开展,但大多数研究仍基于传统水文学背景、共进化背景或者水资源管理背景,社会水文学的理论和方法还不够成熟。未来应从以下方面加强社会水文学研究:① 深入开展社会水文学社会部分的定量研究、综合历史分析和水文重建方法、充分利用现有不同流域案例促进过程社会水文学、历史社会水文学和比较社会水文学研究;② 开展社会水文系统社会驱动力的研究,探寻社会水文学的动力机制;③ 引入非线性动力学理论刻画人-水耦合系统的复杂反馈机制,提高社会水文学的普适化数学表述;④ 积极推进“大数据”和知识挖掘技术在社会水文学研究中的应用。  相似文献   

3.
基于文献计量分析我国生态水文学研究现状及热点   总被引:3,自引:2,他引:1  
陈华  杨阳  王伟 《冰川冻土》2016,38(3):769-775
利用中国期刊全文数据库(CNKI)、万方数据库和维普中文期刊全文数据库,通过检索2000-2015年我国以中文形式刊载的生态水文学领域的成果论著,采用文献计量分析方法,系统分析了国内生态水文学研究领域的发展现状,剖析了主要研究知名机构的热点研究主题,讨论该研究领域的国内研究热点及前沿方向。结果表明:生态水文过程、效应以及不同尺度的生态水文模型是现阶段生态水文学的前沿热点,生态需水(量)、干旱区的生态水文过程、森林水文生态作用及其资源和环境效应、河湖湿地植物与水关系及其水环境效应以及陆地生态系统水碳耦合关系等,一直是生态水文学关注的焦点。2000-2008年是我国生态水文学领域研究高速发展阶段,2009-2015年进入平稳调整阶段。中国科学院、中国水利水电科学研究院和北京师范大学等是我国生态水文学研究的主力机构。  相似文献   

4.
湿地是流域水循环和水量平衡的重要调节器,在维护流域水量平衡、减轻洪旱灾害和应对气候变化等方面发挥极其重要的作用。流域湿地水文调蓄功能是湿地生态水文学研究的重要内容,科学认识和理解流域湿地水文调蓄功能对流域湿地恢复保护、水资源综合管控与应对气候变化具有极其重要的意义。本文阐述了流域湿地水文调蓄功能的概念与内涵,剖析了流域湿地水文调蓄功能时空变异性、阈值性和多维性三大特征及其影响因素(包括湿地土壤特性、植被特征和初始水文条件等内在因素和流域特征、降雨特征、气候变化和人类活动等外在因素),探讨了流域湿地不变情景下和变化情景下水文调蓄功能评估方法,并介绍了流域湿地水文调蓄功能定量评估模型与应用情况。最后,从学科发展和实践需求的视角提出了流域湿地水文调蓄功能未来亟需加强研究的重点方向。  相似文献   

5.
生态水文学研究的奠基之作--<生态水文学>   总被引:2,自引:0,他引:2  
生态水文学是 90年代以来兴起的一门新兴边缘学科 ,是描述生态格局和生态过程的水文学机制的一门科学 ,是生态学的水文方面 ,是研究植物如何影响水文过程及水文过程如何影响植物分布和生长的水文学和生态学之间的交叉学科。所研究的对象不仅仅局限于湿地生态系统 ,还应该包括其他生态系统 ,如干旱地区的生态系统、森林和疏林生态系统、江河生态系统、湖泊生态系统和水生生态系统等。近 2 0年来 ,水文过程在生态系统中的重要性和植物对水文过程的影响变得越来越明显。任何生态系统格局和生态过程的变化都与水文过程相关联。正确的管理水资源…  相似文献   

6.
土壤水文属性对水文过程、能量过程、碳氮循环过程及各过程间相互作用有重要影响.首先简要回顾近30年来土壤水文属性的研究进展,包括土壤水文属性的监测分析、土壤水文属性对水文过程的影响机理,以及不同尺度土壤水文属性对水文过程的影响差异及联系.其次,论述土壤水文属性研究的挑战与机遇.最后介绍祁连山区土壤水文属性对水文过程的影响及多尺度特征研究.力求加深对土壤水文属性变异规律及其对水文过程影响机理的认知,发展土壤水文学和山区水文学,支持水资源科学管理和区域可持续发展.  相似文献   

7.
全球气候变化和快速城市化导致的城市水循环过程变化是当前城市水文学研究的热点问题。为综合理解城市水循环演变过程,结合城市水文学的发展历程,剖析水循环过程对快速城市化进程的响应机制。总结了国内外城市化水文效应的主要成果,包括城市化对水循环过程、洪涝灾害、水生态系统以及水资源的影响。系统归纳了城市化水文效应的评估方法和技术手段。针对现有研究中的不足,指出变化环境下城市化水文效应研究面临的主要挑战及关键技术难题,提出未来研究的重点方向,如城市化降水效应的机理、不透水面的分布及有效性评估、城市化与水生态系统的响应关系与综合城市水资源管理及需水预测等。  相似文献   

8.
中国降水同位素站网   总被引:4,自引:0,他引:4  
赵琦经  顾慰组 《水文》1995,(5):25-27
中国降水同位素站网赵珂经,顾慰祖,顾文燕,毛羽骏(水利部水文司)(南京水文水资源研究所)1水文和水资源研究中的降水同位素同位素方法自50年代开始引进水文测验后,至60年代逐步发展并形成同位素水文学的独立领域。现时已由应用人工放射性同位素发展到应用各种...  相似文献   

9.
生态水文研究前沿问题及生态水文观测试验   总被引:4,自引:1,他引:3  
自1987年Ingram HAP提出生态水文学概念以来,生态水文学得到了快速的发展。2007年,“生态水文学与环境可持续性”已成为UNESCO/IHP第7阶段计划的主题之一。回顾了生态水文学概念的变迁,综述了有关术语及其科学内涵,简要分析了水循环与生物地球化学循环、水文与生态系统相互作用、水文过程与生命过程耦合、绿水及其生态作用等方面关注的科学问题及其观测研究进展;介绍了黑河流域生态水文学研究的初步认识。  相似文献   

10.
流域生态水文过程模拟研究进展   总被引:6,自引:0,他引:6  
生态水文学作为生态学和水文学的交叉学科,得到了相关研究者的广泛关注,并成为水文水资源研究领域中的一个热点,生态水文过程主要包括水文过程、生态过程以及二者之间相互作用的过程。从生态水文学内涵的角度,对山地、湿地、干旱区生态水文过程模拟以及流域集成模拟进展做了阐述,并分析建模的策略和统计了部分生态水文模型,考虑了建模过程中的尺度、数据、精度3个关键问题。并对生态水文模拟发展趋势做了展望,指出在未来的研究中应更多的关注以下几个方面:①生态水文过程模拟建模基础研究;②生态水文过程集成模拟研究;③基于数据库和GIS/RS技术的生态水文过程耦合模拟研究;④与原型观测相结合的生态水文过程模拟研究。建立符合我国实情的生态水文模型,是现阶段我国生态水文学研究的重要任务。  相似文献   

11.
生态水文过程对水环境影响研究述评   总被引:13,自引:0,他引:13       下载免费PDF全文
当前生态水文过程对水环境影响的国内外研究主要包括生态水文过程的形成、基于生态水文格局分析的生态需水研究、流域尺度上生态水文过程对水文、水质和水生态的影响以及理论、方法与模型研究;但这些研究尚未过渡到生态水文过程的揭示上来,我国的生态水文学研究尤为薄弱。未来生态水文过程与水环境安全调控研究中的主要议题包括:①生态水文过程形成、演化及驱动机制分析;②基于生态水文过程的生态需水时空分异;③流域生态水文过程对地表水水质分异的影响;④流域生态水文过程与水的生态空间变化;⑤近海陆域生态水文过程与近海水质调控;⑥基于现代地理信息技术的生态水文模型研究;⑦基于水环境安全的生态水文决策与管理研究。  相似文献   

12.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

13.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

14.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

15.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

16.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

17.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

18.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

19.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号