首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 266 毫秒
1.
综合糙率是采用曼宁公式确定河道水位和流量关系的关键参数。在河道冰封期,冰盖的出现增加了流动的阻力,明流条件下确定的综合糙率不再适用,需要重新估算。基于Einstein阻力划分过流断面的原理,冰盖下矩形河道的过水断面可划分为冰盖区、河床区和边壁区。根据总流的连续性方程,在确定各分区糙率系数、水力半径和断面面积的基础上,提出了冰盖下矩形河道综合糙率的计算公式。采用已有的试验水槽测量数据和天然河道实测资料对公式进行了验证,结果表明:公式计算的综合糙率与实测值吻合较好,与Einstein公式和Sabaneev公式相比,计算精度更高;对于冰封水流,宽浅河道采用分区水深代替水力半径进行简化计算的条件有别于明渠水流,在宽深比大于20时,计算结果才满足精度要求。  相似文献   

2.
生态水文学:生态需水及其与流速因素的相互作用   总被引:5,自引:0,他引:5       下载免费PDF全文
本文研究涉及生态水文学中生态需水问题的一般认知。探讨了生态系统动态变化与水流驱动力因素之间的关系,重点探讨水流驱动因素中的关键指标——流速,通过分析流速与生态系统相互作用,从生态水文学动力因素出发估算生态需水;基于生态流速和水力半径,提出考虑河道内生态需水与水力因素关系的生态水力半径法,充分利用水生生物信息(鱼类产卵洄游流速)与河道信息(水位、流速、糙率等)估算河道内生态需水;归纳生态水力半径法在生态需水计算中的初步应用:考虑污染物降解耦合水量水质的生态需水计算、考虑鱼类等生物对流速要求的生态需水计算、考虑河道冲淤平衡的输沙需水量计算等方面。本文提出的生态流速研究既包括生物生长发育适宜的流速,又包括流速大小变化所涉及的许多动力因素,旨在延伸与扩展生态水文学的内涵与应用。  相似文献   

3.
本文研究涉及生态水文学中生态需水问题的一般认知。探讨了生态系统动态变化与水流驱动力因素之间的关系,重点探讨水流驱动因素中的关键指标—流速,通过分析流速与生态系统相互作用,从生态水文学动力因素出发估算生态需水;基于生态流速和水力半径,提出考虑河道内生态需水与水力因素关系的生态水力半径法,充分利用水生生物信息(鱼类产卵洄游流速)与河道信息(水位、流速、糙率等)估算河道内生态需水;归纳生态水力半径法在生态需水计算中的初步应用:考虑污染物降解耦合水量水质的生态需水计算、考虑鱼类等生物对流速要求的生态需水计算、考虑河道冲淤平衡的输沙需水量计算等方面。本文提出的生态流速研究既包括生物生长发育适宜的流速,又包括流速大小变化所涉及的许多动力因素,旨在延伸与扩展生态水文学的内涵与应用。  相似文献   

4.
陈锡林 《水文》2000,20(1):41-46
在分析了新沂河沭阳以东段(以下简称新沂河沭东段)行洪能力呈下降趋势的基础上,认为河道糙率是导致行洪能力下降的主要原因之一.根据实测资料进行河道全断面综合糙率计算时,采用了《比降-面积法测流规范》(以下简称规范》)中推荐的公式,同时指出这些公式在分别计算泓道、滩地单元糙率上的不足.针对新沂河沭东段束水漫滩河道的特点,提出了一种计算泓道、滩地单元糙率的新方法,计算成果合理,能较好地反映实际情况.  相似文献   

5.
陈锡林 《水文》2000,20(1):41-46
在分析了新沂河沭阳以东(以下简称新沂河沭东段)行洪能力呈下降趋势的基础上,认为河道糙率是导致行洪上降的主要原因之一。根据实测资料进行河道全断面综合糙率计算时,采用了《比降--面积法测流规范》(以下简称《规范》中推荐的公式,同时指出这些公式在分别计算泓道、滩地单元糙率上的不足。针对新沂河沭东段束水漫滩河道的特点,提出了一种计算泓道、 单元糙率的新方法,计算成果合理,能较好地反映实际情况。  相似文献   

6.
天然河流的河道综合糙率呈现出空间上的差异性和随水位(或流量)变化的动态性,但目前缺乏相关参数化方法来定量描述河道糙率的动态变化规律。尝试通过参数化方法开展受河道植被影响显著河流的糙率反演研究,用以提升模型精度。基于植被分布将河道断面划分为若干糙率不同的子区,通过率定河道断面各分区的糙率,从而反演糙率—水位曲线。在此基础上通过分析河道植被覆盖情况与河道断面特点对糙率曲线变化的影响,推求了基于分区糙率的河道断面综合糙率计算公式,从而定量描述分区糙率与综合糙率的关系。以漓江干流为例,采用该方法率定漓江干流(大溶江至阳朔段)水动力模型。结果表明:漓江干流综合糙率随水位在0.022~0.180间变化;在1.5 m的临界水深下,断面可划分为底床植被区(n=0.210)与非植被区(n=0.006),能较好地反演糙率—水位曲线并获得理想的水位模拟效果。漓江底床植被繁茂是糙率随水位变化的根本原因,断面边滩的坡度变化是糙率与水位曲线梯度变化的主要驱动因素,两者的共同作用使得糙率随着水位呈现两段式的非线性变化。  相似文献   

7.
山区型河道一维水力数值模拟糙率确定方法   总被引:3,自引:0,他引:3  
韩龙喜  朱羿  蒋莉华 《水文》2002,22(6):16-18,62
糙率参数取值是河道水流一维数值模拟的关键技术。山区型河道因河势变化急剧而产生的局部阻力对水流流态影响较大。根据山区型河道的水力特性,提出了综合反映子河段内河底切力及局部阻力的综合糙率的确定方法,并通过算例对该方法进行了测试,取得了预期的效果。该方法使得水流一维数值模拟时的计算子河段划分趋于方便,同时对于缺少历史观测资料的河道糙率参数的确定,提供了一种新的方法。  相似文献   

8.
《地下水》2017,(4)
河道糙率是反映河流阻力的综合性系数,也是衡量河流能量损失大小的特征值。天然河道糙率一般由河道各种糙率单元综合组成。河道糙率是河道工程水力计算中的重要因素,关系到天然河道输水能力和行洪标准的确切评价。南运河处于漳卫南运河水系的最下游,河道全长309 km,是历史上京杭大运河的下段,也是引黄、引江南水北调东线方案的输水干线。通过对南运河畅流期及冰期糙率进行计算,并对畅流期与冰期糙率变化规律进行研究。结果表明,在畅流期,流量不同时,随着流量的增大,河道糙率逐渐变小。当增大至滩地过水(120 m3/以上)的情况下,河道糙率又有所增大。冰期河道糙率与期畅流期相比,冰盖下输水糙率值明显增大。研究河道畅流期与冰期糙率的变化规律,对南运河冰期输水监测具有指导意义。  相似文献   

9.
感潮河段洪水受上游洪水和下游潮水的共同作用,且河道断面复杂,这些因素加剧了糙率取值的难度.本文通过糙率影响试验,分析了糙率改变对感潮河段计算水位的影响.在具有明显漫滩的断面,将糙率取值分为漫滩糙率和主槽糙率后再进行水位计算.试验结果表明,糙率值的改变对计算水位影响较大,且对感潮河段洪水过程的不同阶段影响程度不同;漫潍糙率的改变对漫滩洪水位影响很大,主槽糙率的改变对低水位影响较大.  相似文献   

10.
山区阶梯式河道水流阻力研究   总被引:1,自引:0,他引:1       下载免费PDF全文
罗铭  张焕  丁锐  黄尔  杨奉广 《水科学进展》2019,30(5):719-726
山区阶梯式河道是自然界来水来沙和山区大比降河床相互作用所形成的,其水力特性、河道阻力较为复杂。为了深入研究其阻力机理,从河床结构阻水的角度提出阶梯式结构糙率尺度的概念,得到了适用于阶梯式河道跌落水流的形体阻力系数表达式,并由不同来源的阻力分量构成了新的山区阶梯式河道水流总阻力系数公式。新公式结果表明,通过不同类型河段的野外试验数据,表面泥沙、阶梯形状以及漂石产生的阻力系数分量之和与试验测量总阻力系数数据的误差较小。随着雷诺数和阶梯单元尺寸的增加,河床表面的泥沙肤面阻力系数基本不变,阶梯式结构形成的跌落水流过渡到滑行水流,阶梯形体阻力系数逐渐变小,而较大粒径松散漂石产生的水流阻力系数只随着雷诺数的增大而减小。  相似文献   

11.
冰盖下水流垂线流速分布规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
河道中冰盖显著改变了水流流动结构.采用k-ε紊流模型建立了冰盖下水流流动垂向二维数值模型;根据量纲分析理论提出了流速分布规律的影响因素;针对各种因素的不同组合进行了数值计算,并对其流动特性如最大流速点位置、冰区及床面区平均流速等进行了分析研究;对冬季封冻河道的二点测流法精度进行了理论分析.研究结果表明,冰盖下水流的纵向流速在流动核心区并不遵循对数分布规律,同时揭示了冰盖底部与河床的相对粗糙比、河床相对粗糙度及雷诺数对流速分布规律的影响.  相似文献   

12.
Manning’s roughness coefficient is one of the most important parameters in establishing the plan, design, operation, and maintenance of the water resource projects for hydraulic engineers, and since the worth of this value has a significant effect on the analysis of the water level and flow rate distribution, it is very important to carry out the calculation of flood stage, design of the stream/river structure, and safety assessment of the stream. Due to the importance of these factors, the calculation of objective and quantitative roughness coefficient has long drawn attention from researchers at home and abroad. Many studies have been conducted to estimate the roughness coefficient based on the actual measurements for various types of streams, such as gravel and sand streams, and many others have produced experience equation for various levels of materials and relative depth. Despite many of these efforts, the roughness coefficient uses constant values when applied to the actual model or real design. This application is a major source of error in simulating flood and unsteady flow. To solve these problems, good results were obtained by attempting to calculate the roughness coefficient applied with the entropy concept in open-channel flow. In particular, the proposed roughness coefficient based on the measurements taken from laboratories under conditions showed very similar to the actual stream flow which was found to be about the same as the value from the unsteady flow. Accordingly, the newly developed roughness coefficient equation, which is the result of this study, is a very practical one formula that can be applied to the flood flow of real natural streams. It can also be used as an alternative to make up for the disadvantages of the Manning’s roughness coefficient.  相似文献   

13.
The hydro-mechanical response of fractured rock masses is complex, due partly to the presence of fractures at different scales. Surface morphology has a significant influence on fluid flow behaviour of a fracture. Different empirical correlations and statistical models have been proposed to estimate the equivalent hydraulic aperture and determine the pressure drop along a fracture. However, the existing models suffer from not being adequately generalised to be applicable to a wide range of real fracture surfaces. To incorporate the effect of profile roughness in the hydro-mechanical behaviour of fractured rock masses, the joint roughness coefficient (JRC) is the most widely used empirical approach. However, the average JRC of two fracture walls in fluid flow analysis, as is a common practice, appears to be inappropriate. It will be shown how different combinations of pairs of JRCs could lead to a similar JRC value. Also, changing the position of the top and bottom walls of a fracture can significantly change the hydraulic response of the fracture while the average JRC is identical in both cases. In this paper, correlations are developed which are based on the simulation of JRCs using estimated fluid flow parameters of 2D fractures can be estimated. In order to widen the application range of the correlations, JRC flow channels were generated: these are 2D channels with their top and bottom walls being made from two of the JRC profiles. To estimate the JRC of linear profiles, a correlation developed between JRC and a newly developed Riemannian roughness parameter, D R1, is proposed. Considering ten JRC profiles, a total of 100 JRC flow channels were generated. In order to only investigate the effect of surface roughness on fluid flow, the minimum closure between the top and bottom walls of JRC flow channels were considered to be constant. Three cases with minimum closures of 0.01, 0.05 and 0.10 cm were considered in this study. All JRC flow channels were subjected to fluid analysis using FLUENT software. Based on these results, correlations were developed between the geometrical and hydraulic properties of flow channels. Analysis of several real fractures demonstrated the applicability of these correlations.  相似文献   

14.
Natural or induced groundwater flow may negatively influence the performance of artificial ground freezing: high water flow velocities can prevent frozen conditions from developing. Reliable models that take into consideration hydraulic mechanisms are then needed to predict the ground freezing development. For forty years, numerous thermo-hydraulic coupled numerical models have been developed. Some of these models have been validated against experimental data but only one has been tested under high water flow velocity conditions. This paper describes a coupled thermo-hydraulic numerical model completely thermodynamically consistent and designed to simulate artificial ground freezing of a saturated and non-deformable porous medium under seepage flow conditions. On some points, less restrictive assumptions than the ones usually used in the literature are considered. As for the constant-porosity assumption, its validity is verified. The model appears to be well validated against analytical solutions and a three-dimensional ground freezing experiment under high seepage flow velocity conditions. It is used to highlight key thermo-hydraulic mechanisms associated with phase change in a porous medium.  相似文献   

15.
JAN H. VAN DEN  BERG 《Sedimentology》1987,34(4):681-698
Reliable field data obtained by directly measuring bed-load transport of fine- to coarse-grained bed material are extremely scarce, mainly because of the difficulty of sampling accurately. Therefore, the verification of bed-load transport formulae is largely based on flume experiments, which refer to unrealistic shallow-water conditions. In this study, some bed-load transport formulae were tested against data from natural environments. As an alternative to ascertaining the bed-load transport rate by sampling the bed-load, the transport rate was deduced from data on bedform height and bedform celerity. For this purpose, 43 sets of data from rivers, representing a wide range of bed material, bedform dimensions and hydraulic conditions were collected as were some sets of data from tidal settings. Two formulae were used for the prediction of the bed-load transport: the formula of Van Rijn (1981) and the Kalinske (1947) formula as approximated by Elzerman & Frijlink (1951) (and, in the present study, slightly modified for application to tidal waters). Both the bed-load function of Van Rijn and the modified formula of Kalinske-Frijlink require data which are easily obtained and that can be measured accurately. At those stages of the flow when bed-load transport was high the Van Rijn function tended to overestimate that transport. For flow stages when bed-load transport was low the opposite was true. The modified Kalinske-Frijlink function gave consistently good results: 86% of the transport rates predicted using the river data were within 0·5–2·0 times the values actually measured.  相似文献   

16.
Generalized equations using fractional-flow dimensions were derived to estimate the Darcy and seepage velocities obtained from the point-dilution and the single-well injection-withdrawal field tests conducted in fractured-rock aquifers. Seepage velocities can only be estimated from single-well tests if the hydraulic conductivity and the hydraulic gradient are known a priori. However, if a radial-convergent test is also performed between two boreholes, the kinematic porosity can be estimated and be used to estimate the seepage velocity from the single-well test results. To apply the generalized equations, the flow dimension and the extent of the flow region must be known. Therefore, the generalized radial flow (GRF) model of Barker (1988; a generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24(10):1796–1804) is used to estimate the flow dimension because of its wide range of applications. A pumping test performed on the boreholes will yield an estimate of the fractional-flow dimension by applying the GRF model. Electronic Publication  相似文献   

17.
水平井的水力特征及其解析解的适用条件   总被引:3,自引:0,他引:3  
利用自制的水平井砂槽模型, 进行了一系列不同流量条件下的水平井抽水试验, 结果表明: (1)在不同出流条件下, 水平井井管中可以同时出现层流-粗糙紊流多种不同流态; (2) 水平井出流条件下, 井管中的水头损失既不能忽略, 也不服从线性变化规律.它与井管中的水流流态有关.用“等水头井壁”或“等强度线汇”来刻画水平井井壁边界条件是不全面的.根据“等强度线汇”理论得到的解析解与试验结果对比发现, 本试验条件下解析解的近似适用条件是: 水平井管中的水流全部为层流(Re < 2 320)或者层流和层流-光滑紊流过渡区(Re < 4 000)同时并存的情况.当水平井管中出现光滑紊流区(Re> 4 000), 即同时有层流、层流-光滑紊流过渡态和光滑紊流或更多种流态时, 解析解已不再适用, 此时必须用新的层流-管流耦合模型来求解.   相似文献   

18.
Large-scale landslide dams can induce significant hazards to human lives by blocking the river flows and causing inundation upstream. They may trigger severe outburst flooding that may devastate downstream areas once failed. Thus, the advancement in understanding the formation of landslide dams is highly necessary. This paper presents 3D numerical investigations of the formation of landslide dams in open fluid channels via the discrete element method (DEM) coupled with computational fluid dynamics (CFD). By employing this model, the influence of flow velocity on granular depositional morphology has been clarified. As the grains settle downwards in the fluid channel, positive excess water pressures are generated at the bottom region, reducing the total forces acting on the granular mass. In the meantime, the particle sedimentations into the fluid channel with high impacting velocities can generate fluid streams to flow backwards and forwards. The coupled hydraulic effects of excess water pressure and fluid flow would entrain the solid grains to move long distances along the channel. For simulations using different flow velocities, the larger the flow velocity is, the further distance the grains can be transported to. In this process, the solid grains move as a series of surges, with decreasing deposit lengths for the successive surges. The granular flux into the fluid channel has very little influence on the depositional pattern of particles, while it affects the particle–fluid interactions significantly. The results obtained from the DEM-CFD coupled simulations can reasonably explain the mechanisms of granular transportation and deposition in the formation of landslide dams in narrow rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号