首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of acid mine drainage (AMD) highly rich in sulfate and multiple metal elements has been investigated in a continuous flow column experiment using organic and inorganic reactive media. Treatment substrates that composed of spent mushroom compost (SMC), limestone, activated sludge and woodchips were incorporated into bacterial sulfate reduction (BSR) treatment for AMD. SMC greatly assisted the removals of sulfate and metals and acted as essential carbon source for sulfate-reducing bacteria (SRB). Alkalinity produced by dissolution of limestone and metabolism of SRB has provided acidity neutralization capacity for AMD where pH was maintained at neutral state, thus aiding the removal of sulfate. Fe, Pb, Cu, Zn and Al were effectively removed (87–100%); however, Mn was not successfully removed despite initial Mn reduction during early phase due to interference with Fe. The first half of the treatment was an essential phase for removal of most metals where contaminants were primarily removed by the BSR in addition to carbonate dissolution function. The importance of BSR in the presence of organic materials was also supported by metal fraction analysis that primary metal accumulation occurs mainly through metal adsorption onto the organic matter, e.g., as sulfides and onto Fe/Mn oxides surfaces.  相似文献   

2.
Spent mushroom compost (SMC) is widely used as reactor matrix in passive bioreactor involving sulfate reducing bacteria (SRB) for acid mine drainage (AMD) treatment. Follow-up our previous report, recent work has been established the extent of activity, sustained organic carbon availability, and the biochemical events of successive alkalinity producing system-based chemo-bioreactor for continuous performance using SMC. Removal of iron and sulfate from influent was over 77 and 90%, respectively, for first 13 weeks, while sulfate removal efficiency suddenly dropped down to 31% thereafter. Ahead of 13th week, process failure was beginning to be noticed when available dissolved organic carbon (DOC) value dropped down to 50 mg/L. SRB population was mostly affected with DOC drought at this stage. Sulfur was one of the major elements found with other tested metals in blackish green effluent precipitate. Sulfide compounds of the tested metals were formed on both exhausted chemo-bioreactor bed and precipitate. FTIR analysis indicated that SMC was responsible for metal binding and available nutrients supply. The present study revealed the feasibility of SMC as a host for treating AMD by this chemo-bioreactor that will assist in designing the continuous treatment practice.  相似文献   

3.
Combined treatment with electroremediation and sulphate reducing bacteria (SRB) was tested in laboratory and pilot scale. The contaminated soil came from a chlor-alkali factory and contained about 100 mg/kg Hg. Iodide/iodine complexing agent was used to mobilize mercury. Mercury iodide complexes were moved to the anode solution using an electric field. The anode solution was then mixed with hydrogen sulphide (H2S) containing water, causing precipitation of mercury sulphide. The H2S was produced at site by a SRB reactor. Precipitation problems arising from the nature of the anode solution were expected, since this solution is highly acidic, very oxidised and may contain iodide/iodine that strongly complexes mercury and can hinder mercury sulphide precipitation. Mercury concentrations in the anode solution were up to 65.7 mg/L (field) and 15.4 mg/L (lab. scale). Reduction of mercury in the water was >93% at all times. Iodide did not hinder the process: Nonetheless, in the lab system, iodide concentration was high in the anode solution but mercury reduction was> 99.9%. The redox potential was sufficiently low for HgS precipitation during the experiments, except for a short period, when the mercury removal decreased to 94%. Sulphate reducing bacteria are shown as a viable tool for the treatment of mercury contaminated, acidic, oxidative, iodide containing water, such as that produced by electrokinetic remediation. A second SRB step or other water treatment is required to reduce the mercury concentration to environmentally acceptable levels. Redox potential is the most sensitive factor in the system.  相似文献   

4.
在上流式好氧颗粒污泥床反应器中, 以厌氧颗粒污泥和好氧絮状活性污泥为接种泥, 采用人工配制的模拟废水, 成功培养出性能优异的好氧颗粒污泥.反应器内污泥浓度稳定在5g/L左右, 颗粒污泥粒径为0.5~2.0mm, 当进水COD为2000mg/L, 容积负荷为4.8kg/(m3·d)时, 系统对COD的去除率稳定在96%以上.通过扫描电镜观察, 好氧颗粒污泥是层状结构, 表面有大量丝状菌缠绕, 内部有短杆菌和空穴存在.逐步提高制药废水在进水中的比例, 经过47d的培养, 生物制药废水完全取代模拟废水, 系统对COD、NH3-N、TP的去除率分别稳定在90%、90%和70%以上.   相似文献   

5.
Under stagnant conditions, the ability of 15 earth materials (non-lime) including various inorganic 2:1 and 1:1 layer silicates, an amorphous oxide, and two 'whole' soils were tested for their pH-buffering efficiency in an acid mine drainage (AMD) water. The purpose was to decrease AMD acidity to a level where sulfate-reducing bacteria (SRB) placed in it may be activated. Of all materials, a whole soil (a high cation-exchange capacity clayey mollisol containing 40% clay, and 4% soil organic matter) caused the greatest pH increases from 2.5 up to 5.5 units after 10 days in the AMD water. Influent AMD was then ameliorated at various speeds through an SRB driven bioreactor using a 50/50 weight over weight (w/w) combination of the mollisol and ryegrass (MR) as the pH buffer substrate. This substrate combination decreased the SRB acclimatisation period (from 50 days in a previous experiment utilising sludge + ryegrass) to <10 days in the present experiment. After causing pH increases from 2.8 to >6 units in 5 days, the buffer reduced the hydraulic retention time (HRT) of the constant-flow reactor from 12 days at flow speeds of 100 ml/day to 2 days at 25 ml/day, respectively. After 10 days, soluble Fe, Al and sulfate were all decreased >1,800-, >40- and 3-fold, respectively. This was a more efficient performance than the no-flow bioreactor of a previous experiment using sludge + ryegrass. This method of AMD rehabilitation is an alternative for localities that lack cheap sources of calcium compounds for chemical treatment, but have a similar soil type and copious quantities of fresh decomposable plant wastes.  相似文献   

6.
A series of laboratory batch experiments was conducted to evaluate the potential for treatment of acid mine drainage (AMD) using organic C (OC) mixtures amended by zero-valent Fe (Fe0). Modest increases in SO4 reduction rates (SRRs) of up to 15% were achieved by augmenting OC materials with 5 and 10 dry wt% Fe0. However, OC was essential for supporting SO4 reducing bacteria (SRB) and therefore SO4 reduction. This observation suggests a general absence of autotrophic SRB which can utilize H2 as an electron donor. Sulfate reduction rates (SRRs), calculated using a mass-based approach, ranged from −12.9 to −14.9 nmol L−1 d−1  g−1 OC. Elevated populations of SRB, iron reducing bacteria (IRB), and acid producing (fermentative) bacteria (APB) were present in all mixtures containing OC. Effective removal of Fe (91.6–97.6%), Zn (>99.9%), Cd (>99.9%), Ni (>99.9%), Co (>99.9%), and Pb (>95%) was observed in all reactive mixtures containing OC. Abiotic metal removal was achieved with Fe0 only, however Fe, Co and Mn removal was less effective in the absence of OC. Secondary disordered mackinawite [Fe1+xS] was observed in field-emission scanning electron microscopy (FE-SEM) backscatter electron micrographs of mixtures that generated SO4 reduction. Energy dispersive X-ray (EDX) spectroscopy revealed that Fe–S precipitates were Fe-rich for mixtures containing OC and Fe0, and S-rich in the absence of Fe0 amendment. Sulfur K-edges determined by synchrotron-radiation based bulk X-ray absorption near-edge structure (XANES) spectroscopy indicate solid-phase S was in a reduced form in all mixtures containing OC. Pre-edge peaks on XANES spectra suggest tetragonal S coordination, which is consistent with the presence of an Fe–S phase such as mackinawite. The addition of Fe0 enhanced AMD remediation over the duration of these experiments, however long-term evaluation is required to identify optimal Fe0 and OC mixtures.  相似文献   

7.
This study was performed to investigate the operating status, evaluate the problems, and discuss possible improvement methods of passive treatment systems for acid mine drainage (AMD) in South Korea. Thirty-five passive treatment systems in 29 mines have been constructed from 1996 to 2002 using successive alkalinity producing systems (SAPS) as the main treatment process. We investigated 29 systems (two for metal mines), 19 of which revealed various problems. Overflows of drainage from SAPS, wetland, or oxidation ponds were caused by the flow rate exceeding the capacities of the facilities or by the reduced permeability of the organic substance layer. Leakages occurred at various parts of the systems. In some cases, clogged and broken pipes at the mouths of the mine adits made the whole system unusable. Some systems showed very low efficiencies without apparent leakage or overflow. Even though the systems showed fairly good efficiencies in metal removal ratios (mainly iron) and pH control; sulfate removal rates were very poor except in three systems, which may indicate very poor sulfate reductions with sulfate reducing bacteria (SRB) as a means.  相似文献   

8.
一株硫酸盐还原菌的分离及生理生态特性的研究   总被引:3,自引:0,他引:3  
硫酸盐有机废水生物处理技术一直是人们关注的热点,该种废水处理的关键是如何在有效地去除COD的同时,高效地去除SO_4~(2-)厌氧生物处理系统中的硫酸盐还原菌(Sulfte-Reducing Bacteria,SRB)在一定的条件下可以有效地将SO_4~(2-)还原而从废水中去除。产酸脱硫反应器是一个复杂的生态学系统,在这个生态系统中,SRB起着最主要的生态学作用,要研究产酸脱硫反应器中的各种群的微生物的生理生态学,是非常复杂而且难以实现的。为了更方便地研究产酸脱硫反应器中的微生物生理生态学,比较好的做法是把在反应器中数量上占优势,并且起主要功能的种群分离出来,对它们进行单独和配合研究。本实验就是利用滚管法和改进的Hungate技术,在COD/SO_4~(2-)=3的稳定阶段,对产酸脱硫反应器中的SRB进行了分离,分离出在数量上占优势的SRB,命名为SRB-ZH07。在厌氧试管和三角瓶中,进行了SRB-ZH07生理生态学研究。pH值对SRB-ZH07的生长和硫酸盐去除率的影响,pH为7.0左右SRB-ZH07的生长状况最好,在34h,菌液的OD_(600nm)达到0.827,而其它pH下的OD_(600nm)...  相似文献   

9.
Spent mushroom compost (SMC) is commonly used as a carbon source for passive treatment systems in South Korea; however, it has some drawbacks, such as sulfate release from itself. Consequently, investigations to identify effective substitutes for SMC are necessary. In this study, batch experiments were conducted for 27 days to evaluate the efficiency of rice wine waste (RWW) for reducing sulfate and removing dissolved metals within synthetic acid mine drainage (AMD). The results showed that RWW could be more suitable than SMC, which even released sulfate in the early stage of the experiment, for sulfate reduction by sulfate-reducing bacteria. Both materials produced similar results with respect to the removal of dissolved metals, such as Fe and Al. Furthermore, a mixture of SMC and RWW showed the greatest efficiency in sulfate removal. Overall, both RWW and the mixed carbon source showed comparable performance to SMC, which indicated that RWW had a great potential for use as a carbon source for AMD treatment.  相似文献   

10.
Feasibility of using straw as sole substrate for in situ bioremediation of acidic mine drainage (AMD) was studied. The result showed that straw was more suitable than woodchips, which had been successfully used for bioremediating AMD at the source, for establishing bioremediation layer. The sulfate removal rate of rice straw treatment was almost two times higher than that of the woodchips treatment when the initial pH of the synthetic AMD was set to 3.0. Straw treatment may be more efficient at reducing sulfate than woodchips treatment under stressful conditions. The sulfate removal rate of the rice straw treatment increased from 8.67 to 21.77 mg L−1 day−1 when initial pH increased from 1 to 7 while the removal rate of woodchips treatment increased from 3.80 to 11.95 mg L−1 day−1. The sulfate removal rate of the rice straw treatment decreased from 13.93 to 9.91 mg L−1 day−1 when temperature decreased from 25 to 5°C while the removal rate of woodchips treatment decreased from 7.43 to 4.98 mg L−1 day−1. Differences in soluble organic carbon release between rice straw and woodchips led to the differences in bioremediation efficiency. Concentrations of Cu2+ maintained at low level in the column effluent during the whole bioremediation period. Cu2+ was removed by forming sulfide precipitates. Microbial community analysis showed that sulfate reducing bacteria in the bioremediation layer together with microorganisms capable of degrading rice straw caused the bioremediation of AMD. These findings have significant environmental implications in terms of in situ bioremediation of AMD using straw as sole substrate.  相似文献   

11.
连续流气提式流化床启动过程中好氧颗粒污泥的形成机制   总被引:4,自引:0,他引:4  
探讨连续流气提式好氧颗粒污泥流化床(CAFB)反应器的运行特征,对该工艺颗粒污泥形成过程、形成机理和颗粒性质进行分析。以市政污泥为接种污泥,以醋酸钠为碳源,在连续运行方式下培养好氧颗粒污泥。研究结果表明:CAFB反应器启动的第4-5天即有大量颗粒污泥形成,颗粒直径800~1 000 μm,比重1.006,生物相丰富,能够分泌大量胞外聚合物。当COD有机负荷高达8 和13 kg/(m3·d)时,对COD处理效率均维持在93%~97%,COD出水质量浓度仅为30~80 mg/L,引起启动后期丝状菌的大量繁殖,污泥流失。进一步提高污泥负荷有望控制污泥膨胀。  相似文献   

12.
Some species of sulphate‐reducing bacteria (SRB) are known to mediate the formation of dolomite and Mg‐calcite. However, their exact role in the mineralization process remains elusive. Here, we present the result of a laboratory experiment that was designed to test whether formation of carbonate minerals by SRB can occur in the absence of living cells, through passive mineralization of their exopolymeric substances (EPS). SRB capable of mediating dolomite were cultivated in the laboratory, allowing them to secrete EPS. Microbial activity within the cultures was subsequently inhibited with antibiotics. Only after this step, Ca2+ and Mg2+ were added to the solution and carbonate minerals could form. Mg‐calcite and disordered Ca‐dolomite precipitated in association with EPS. The mol.% of Mg2+ in the crystals increased with longer incubation times. This result demonstrates that organic compounds produced by SRB can mediate the formation of Ca‐Mg carbonates in the absence of an active metabolism.  相似文献   

13.
Acid-producing phase reactor of two-phase anaerobic treatment process has remarkable advantages treating sulfate-laden wastewater. In order to investigate SRB population‘s capability of utilizing substrate and the microbial acidification type formed during the course of sulfate reduction, continuous-flow and batch tests were conducted in a continuous stirred tank bio-film reactor supplied with sodium sulfate as electron acceptor. The experimental results demonstrated that the acidification type formed b...  相似文献   

14.
吗啉废水的生化处理工艺   总被引:2,自引:0,他引:2  
以含有吗啉、甲基吗啉的高浓度有机废水为研究对象,提出了曝气吹脱-吸附-生物处理的联合工艺,并在室内进行了小试实验。结果表明:原废水经过2次曝气吹脱后,ρ(NH3-N)从62 500 mg/L降为431 mg/L,ρ(COD)从50 840 mg/L降为26 051 mg/L。通过吸附实验,ρ(COD)从26 051 mg/L降为2 769 mg/L,ρ(NH3-N)从412 mg/L降为134 mg/L。在生物处理室内小试实验中,采用了活性污泥反应器与曝气生物滤池相结合的处理工艺。在活性污泥反应系统中,当废水pH为7.5、ρ(DO)为4.3 mg/L、水力停留时间为30 h时,COD的去除率最高,可以达到83.1%。在曝气生物滤池中,当ρ(DO)为3.3 mg/L时,COD去除率最高,达到55.8%。在生物处理的最佳参数条件下进行连续监测,当进水ρ(COD)为2 769 mg/L、出水ρ(COD)平均值为387 mg/L时,COD去除率可达到85.9%。吗啉废水经过此联合工艺的处理,ρ(COD)从50 840 mg/L降为387 mg/L。  相似文献   

15.
Sago industry is one of the major small-scale sectors in India and over 800 units are located in the southern State of Tamilnadu. Processing of sago generates enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. The present study is an attempt to treat the sago wastewater using Hybrid Upflow Anaerobic Sludge Blanket (HUASB) reactor, which offers the advantages of both fixed film and up flow anaerobic sludge blanket treatment. HUASB reactor with a volume of 5.6 L was operated at Organic Loading Rates varying from 10.7 to 24.7 kg COD/m3.day. After 130 days of startup, the reactor produced appreciable decrease in COD of wastewater and removed solids efficiently. The COD removal varied from 91–87%. While the removal of Total Solids was in the range of 61–57%, that of volatile solids varied from 70–67%. The ideal OLR for the reactor was 23.5 kg COD/m3.day. The findings of the study open up newer possibilities of design low cost and compact onsite treatment systems with very short retention periods.  相似文献   

16.
In this research, physical, chemical and biological treatability of Tehran solid waste leachate was studied. Results indicate that the amount of COD for the fresh raw leachate of Tehran is equal to 66,608 mg/l. The leachate is transferred to an equalization tank for storage and pH control process. After neutralization, leachate is introduced to an up flow and down flow anaerobic reactor. The effluent of anaerobic reactor is conducted to a sequencing batch reactor. Sequence batch reactor (SBR) effluent was pumped in to sand and activated carbon filters, after chemical coagulation and clarification. Results showed that anaerobic reactor with detention time of 3 days had a 35% COD removal and increasing the detention time to 4.5 days would improve the COD removal to 45%. Nutrient adjustment with phosphorus and nitrogen increased the initial 23% efficiency of sequence batch reactor to 44%. The effluent COD of SBR reactor was 21,309 mg/l. Recycling of aerobic reactor effluent with incoming feed to anaerobic reactor reduced the anaerobic reactor influent COD to 20,000 mg/l and this caused 53% and 57% COD removal in the anaerobic and aerobic effluent, respectively. The total systems COD performance increased to 80% and SBR effluent COD eventually reduced to 4,000 mg/l. Coagulation, flocculation and sedimentation processes were practiced to make the 4,000 mg/l effluent COD comply with environmental standards of Iran. The optimum coagulant found to be ferric chloride with the dosage of 50 mg/l at pH of 12, which reduced 10% of COD to an amount of 3,676 mg/l. The effluent was stored in a tank and then pumped in to pressure sand filter and afterwards to activated carbon filter. The COD removal was three and 90% for sand and activated carbon filters, respectively. The total process reduced the remaining COD to 36 mg/l, which is in compliance with environmental standards of Iran.  相似文献   

17.
硫酸盐还原菌(sulfate-reducing bacteria,SRB) 是一类兼性厌氧菌,在湖泊和海洋有机物矿化过程和生物源性黄铁矿 的生成过程中都扮演着重要角色。环境溶解氧浓度对硫酸盐还原过程影响较大,硫酸盐还原菌在水体中的耐氧性是目前的研 究热点。文章采集了象山港和水口水库不同溶解氧水平下的水样,并在相应的溶解氧梯度下进行富集培养,以探讨不同溶解 氧浓度下硫酸盐还原菌的耐氧性特征及硫代谢相关菌的组成。结果显示,在富集培养条件下湖泊和沿海海域中Desulfovibrio (脱硫弧菌属) 和Desulfomicrobium (脱硫微菌属) 为主要硫酸盐还原细菌,而Shewanella (希瓦氏菌属) 和Sulfurospirillum (硫小螺体属) 为其硫代谢相关菌。Desulfovibrio的相对丰度与溶解氧水平密切相关,随溶解氧浓度的减少,其相对丰度增加。 SRB 的耐氧上限为6.68 mg/L,明显高于以往纯培养或共培养的耐氧上限值。作者推测这不仅与其高氧环境的适应策略有关, 还可能得益于共存菌的贡献,后者可能通过消耗环境中的氧为Desulfovibrio提供生态位,提高其耐氧水平。  相似文献   

18.
硫酸盐还原菌(sulfate-reducing bacteria,SRB) 是一类兼性厌氧菌,在湖泊和海洋有机物矿化过程和生物源性黄铁矿 的生成过程中都扮演着重要角色。环境溶解氧浓度对硫酸盐还原过程影响较大,硫酸盐还原菌在水体中的耐氧性是目前的研 究热点。文章采集了象山港和水口水库不同溶解氧水平下的水样,并在相应的溶解氧梯度下进行富集培养,以探讨不同溶解 氧浓度下硫酸盐还原菌的耐氧性特征及硫代谢相关菌的组成。结果显示,在富集培养条件下湖泊和沿海海域中Desulfovibrio (脱硫弧菌属) 和Desulfomicrobium (脱硫微菌属) 为主要硫酸盐还原细菌,而Shewanella (希瓦氏菌属) 和Sulfurospirillum (硫小螺体属) 为其硫代谢相关菌。Desulfovibrio的相对丰度与溶解氧水平密切相关,随溶解氧浓度的减少,其相对丰度增加。 SRB 的耐氧上限为6.68 mg/L,明显高于以往纯培养或共培养的耐氧上限值。作者推测这不仅与其高氧环境的适应策略有关, 还可能得益于共存菌的贡献,后者可能通过消耗环境中的氧为Desulfovibrio提供生态位,提高其耐氧水平。  相似文献   

19.
In this study, the characteristics of sewage of small community were determined for 6 months to ascertain the type of treatment required in subtropical conditions. The results demarcated sewage of this community as a medium-strength wastewater (chemical oxygen demand: 475 mg/L, biochemical oxygen demand: 240 mg/L and total suspended solids: 434 mg/L). Chemical oxygen demand to sulphate ratio of the sewage (11.6) established that it was amenable to anaerobic digestion. The temperature, strength, biodegradability and components of sewage were suitable for anaerobic digestion, and thus, upflow anaerobic sludge blanket reactor (UASB) was selected for its treatment. These reactors are often shutdown in small communities due to environmental and/or socio-economic factors. The ability of two UASB reactors, seeded with cow dung (UASBCD) and activated sludge of a dairy treatment plant (UASBASDIT) to restart after a long idle period of 12 months, was investigated along with sludge analysis by scanning electron microscope. Biomass in both reactors reactivated rapidly after shutdown period and within 30 days after substrate feeding achieved uniform removal efficiencies for chemical oxygen demand, total suspended solids, total dissolved solids, chloride and oil and grease. Chemical oxygen demand removal efficiency of both reactors became uniform and remained close to 80% after 30 days through reactivation of microbes in sludge bed due to adequate food and temperature conditions. During restart-up, at an average organic loading rate of 0.902 kg COD/m3 per day, methane yields of 0.091 and 0.084 m3/kg COD removed were achieved for UASBCD and UASBASDIT reactors, respectively.  相似文献   

20.
Sewage treatment station in oilfield needs a new process to meet the desired requirements. A new process was proposed to meet the discharge standards, which consisted of the following sub-processes: electrochemical treatment → coagulation treatment → integrated biochemical treatment of moving bed biofilm reactor and membrane bio-reactor → combined treatment process of macroporous adsorption resin. Electrochemical treatment included 5 electrolytic cells, total volume of which was 10 L. The PFS was chosen as the coagulants in the coagulation treatment, and the removal rate of COD could reach 66% when the dosage of PFS was 500 mg/L. The biochemical treatment consisted of anoxic tank, aerobic tank and membrane zone, and the removal rate of COD was about 55–70% when HRT was 12 h. SD300 resin was chosen as the best adsorbent in the treatment using macroporous adsorption resin. In addition, the effluent COD after coagulation treatment process becomes about 180 mg/L, the effluent COD after biological treatment becomes about 50 mg/L, and the last effluent COD with the macroporous adsorption resin becomes about 20 mg/L. The three-dimensional fluorescence spectrum was used to analyze the differences in types of organic matters in water samples between the raw water and the treated one. The results demonstrated that the new process meets the needs of wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号