首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method has been developed for the determination of platinum and palladium based on separation and preconcentration with a microcolumn packed with nanometric TiO2 immobilised on silica gel (immobilised nanometric TiO2) prior to their determination by inductively coupled plasma-atomic emission spectrometry. The optimum experimental parameters for the preconcentration of Pt and Pd, such as the pH of the sample solution, its flow rate and volume, the type and concentration of eluent and interfering ions, have been investigated. Platinum and Pd could be quantitatively retained by immobilised nanometric TiO2 in the pH range 6–8, then eluted completely with 2.0 ml of 3% m/v thiourea in 1.0 mol l−1 HNO3. The detection limits of this method for Pt and Pd were 12 and 7. 6 ng l−1 with an enrichment factor of 100, and the relative standard deviations were 4.7% and 3.3% at the 10 ng ml−1 level. The method has been applied for the determination of Pt and Pd in geological samples with satisfactory results.  相似文献   

2.
A method for the selective separation of Ag, Cd, Cr, Cu, Ni, Pb and Zn in traces from solutions of calcite (CaCO3), dolomite (CaMg(CO3)2) and gypsum (CaSO4.2H2O) before their determination by inductively coupled plasma-atomic emission spectrometry (ICP-AES) is presented. The expected interferences of Ca and Mg on intensities of trace analytes were removed by collecting the elements of interest with cobalt(III) hexamethylenedithiocar-bamate, Co(HMDTC)3. The flotation of aqueous solutions (1 l) of calcite, dolomite and gypsum was performed at pH 6.0, by 1.5 mg l−1 Co and 0.6 mmol l−1 HMDTC. To minimise the effect of the reaction between Ca/Mg, which restrains the function of the surfactant, careful selection of the most suitable foaming reagent was necessary. The accuracy of the method was established by analysing natural alkaline-earth minerals by the standard addition method as well as using the dolomite reference materials GBW 07114 and GSJ JDo-1. The ICP-AES limits of detection following flotation on different minerals were found to be 0.080 μg g−1 for Cd, 0.105 μg g−1 for Ag, 0.142 μg g−1 for Cu, 0.195 μg g−1 for Cr, 0.212 μg g−1 for Ni, 0.235 μg g−1 for Zn and 0.450 μg g−1 for Pb.  相似文献   

3.
A selective and sensitive spectrophotometric method has been developed for determining the total amount of vanadium in carbonaceous shales (stone coal ores). The method is based on the reaction of vanadium(V) with the chromophore reagent 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) in the presence of hydrogen peroxide. In a 0.072 mol l−1 sulfuric acid medium, 5-Br-PADAP reacts with vanadium(V) to form a red-violet complex with a maximum absorption peak at 596 nm with an apparent molar absorption coefficient of the complex of 8.45 × 104 l mol−1 cm−1. Beer's law was obeyed in the range 0–25 μg vanadium in 25 ml of solution, with a correlation coefficient of 0.9995. Interferences due to various non-target ions were also investigated and high quantities of other common inorganic ions were tolerable. The method involved the dissolution of the ore sample by Na2O2 fusion, followed by filtering of the alkali solution after which Fe(III), Cu(II), Ni(II) and Co(II) etc. were effectively separated from the solution by precipitation in a NaOH solution. Selectivity was increased with the use of EDTA as a masking agent. The vanadium in ore samples was determined with a relative deviation (RSD) between 0.20 and 0.76%, and has been successfully applied to the determination of vanadium-bearing stone coal ores. The results indicated that the accuracy of 5-Br-PADAP spectrophotometry is comparable with the ICP-AES method. The characteristics of the method, i.e., simplicity, selectivity, sensitivity and rapid calibration, make it specially suitable for routine analysis.  相似文献   

4.
Fluorine, chlorine, bromine, iodine and sulfur were determined in seventeen geological reference materials after extraction by pyrohydrolysis. Fluorine, Cl and S (as sulfate ions) were determined in the extraction solution by ion chromatography with detection limits of around 0.2 mg l−1. Bromine and I were measured by ICP-MS with detection limits of 1 μg l−1 for Br and 0.1 μg l−1 for I. For rock samples, using normal extraction conditions (500 mg of sample and 100 ml of final solution) detection limits were 40 mg kg−1 for F and Cl, 15 mg kg−1 for S, 0.2 mg kg−1 for Br and 0.02 mg kg−1 for I. These detection limits may be improved by increasing the amount of sample and hence the concentration of the final solution. Water was also determined using an extraction technique based on H2O degassing, reduction on zinc at 1000 °C and H2 manometry. Our results for fluorine, chlorine, sulfur and water are in good agreement with literature data. Very few reference materials have recommended values for bromine and especially for iodine. Among the analysed samples, three are new reference materials: BHVO-2, BCR-2 and AGV-2.  相似文献   

5.
Inductively coupled plasma-atomic emission spectrometry in conjunction with an ultrasonic nebulizer was employed for the determination of Sr and Ba in river waters at parts per billion (μg l−1) levels without pre-concentration. The ultrasonic nebulizer, equipped with a desolvation system, enhanced the analytical sensitivity by ten to twenty fold compared to conventional pneumatic nebulizers. The detection limits for Sr and Ba, ascertained from blanks and reference samples made in 0.05% NaCl solution, were 0.045 μg l−1 and 0.16 μg l−1 respectively. The accuracy of measurements, based on analyses of solutions of reference materials (G-2 and W-1) and multielement commercial standards (Merck®), was ± 10%. Replicate analyses of samples and reference samples showed measurement precision to be to be better than ± 5%, which is adequate considering that the concentration of Sr and Ba in river waters varies by one to two orders of magnitude.  相似文献   

6.
The selenium content of fifty two geochemical reference samples, issued by several reference material producers (ANRT, GIT-IWG, USGS, NIST and GSJ) has been determined by continuous hydride generation and atomic absorption spectrometry. Selenium(VI) in the digested solutions was pre-reduced to selenium(IV) by heating in 6 mol l−1 HCl solution. The limit of detection was 3 ng g−1 selenium in common geological samples. Some samples which contain a large amount of heavy metals were analysed by the standard addition technique. The agreement between the reported results and published data is satisfactory.  相似文献   

7.
The uptake of Ni and Co in the hydrous Mn oxide or the amorphous Fe-oxide phases of ferromanganese deposits in the oceans was studied by electron-microprobe analyses of 17 natural manganese nodules and by experiments on desorption-dissolution of these metals from synthetic Fe oxide or Mn oxides and natural nodule material. Ni was found to occur nearly always in the Mn-oxide phases of natural nodules, while Co occurs both in the Mn-oxide and Fe-oxide phases, with a slight preference for the latter. The solubility of Ni and Co (from coprecipitates of these metals with Fe hydroxides after aging) in seawater was found to depend strongly on the crystallinity of the host phase. The adsorption of Co by the synthetic Mn oxides from seawater was higher than that of Ni. The experimentally determined solubility of Ni and Co in seawater from natural nodule material is extremely low and matches the concentration range of these metals in ocean water.  相似文献   

8.
碳酸盐岩的Fe/Mn元素比值,作为一项新的地球化学指标,可以用于恢复海洋的氧化还原状态.在氧化条件下,Fe3+和Mn4+均不可溶,因此氧化海水中的溶解Fe和Mn的含量均很低.Fe3+和Mn4+在还原条件下可以被细菌还原为可溶的Fe2+和Mn2+,而氧化还原电位的计算表明,Mn4+的还原要早于Fe3+的还原,因此细菌的Mn还原过程发生在沉积物的更浅层.可溶的Fe2+和Mn2+向上扩散到海水中,替代碳酸盐岩晶格里的Ca2+,因此碳酸盐岩晶格中的Fe2+和Mn2+的含量受控于来自沉积物孔隙水的扩散,而后者又与水岩界面的氧化还原状态相关.因此可以预测,随着海水变得逐渐缺氧,碳酸盐岩中的Fe/Mn比值会逐渐增高.为了验证这一假说,我们分析了中元古代高于庄组白云岩的Fe/Mn比值.研究发现,几乎所有的样品的Fe/Mn比值介于20~30之间,显著高于泥盆纪末期深水碳酸盐岩和浅水台地碳酸盐岩的Fe/Mn比值.高于庄组碳酸盐岩高的Fe/Mn比值一方面可能指示了中元古代低的大气氧气浓度和海洋的广泛缺氧,也可能反映了白云岩形成于缺氧的沉积物空隙水里.  相似文献   

9.
Procedures for sampling, sample preparation and ICP-MS analysis of endemic sponges from Lake Baikal have been developed. Sample decomposition was carried out using an open acid decomposition with ultrasound treatment. The distribution of nineteen elements (Mg, Al, P, Ca, Ti, Mn, Co, Ni, Cu, Rb, Sr, Y, Cd, Ba, La, Ce, Pb, Th and U) in different parts of a sponge's body (outer and inner layers and layers adjacent to the substratum) was studied. Detection limits were determined; these ranged from 0.013 to 4.12 μg g-1 for trace elements and from 23 to 130 μg g-1 for biogenic elements. The degree of elemental uptake by living substances is discussed with regard to the environment.  相似文献   

10.
11.
The CRPG (Nancy, France) has prepared secondary reference materials for Li isotope measurements by mixing 7Li or 6Li spikes and either L-SVEC or IRMM-016 certified reference materials to produce solutions having a known Li concentration and isotopic composition. The Li7-N and Li6-N solution samples (1.5 mol l−1 HNO3) have nominal δ7Li isotopic compositions of 30.1‰ and -9.7‰ respectively relative to L-SVEC and concentrations of 100 mg l−1. Repeated measurement of these samples using the QUAD-ICP-MS at the CRPG yielded δ7Li of 30.4 ± 1.1‰ (n = 13) and -8.9 ± 0.9‰ (n = 9) at the 2s level of confidence. An additional LiCl-N solution was measured and yielded a delta value of 9.5 ± 0.6‰ (n = 3). Identical results were obtained at the BRGM (Orléans, France) from determinations performed with a Neptune MC-ICP-MS (30.2 ± 0.3‰, n = 89 for the Li7-N, -8.0 ± 0.3‰, n = 38 for the Li6-N and 10.1 ± 0.2‰, n = 46 for LiCl-N at the 2s level of confidence). The deviation of measured composition relative to the nominal value for the Li6-N solution might be explained by either contamination during preparation or an error during sample weighing. These secondary reference materials, previously passed through ion exchange resin or directly analysed, may be used for checking the accuracy of Li isotopic measurements over a range of almost 40‰ and will be available to the scientific community upon request to J. Carignan or N. Vigier, CRPG.  相似文献   

12.
A single-column suppressed ion chromatography technique was employed for the simultaneous determination of major and trace anions in sulfaterich groundwater samples. An analytical column, a self regenerating suppressor and sodium carbonate as the eluent were used to separate the anions. Method detection limits for the anions of interest were 10.4, 15.9, 36.8, 62, 60, 61 and 67 μg l−1 for F, Cl, NO2, Br, NO3, PO43− and SO42− respectively. The precision of the method was tested at five different concentration levels for each anion reference sample to evaluate the effectiveness of the method for groundwater analysis. Recovery studies were performed between two successive months by adding reference samples to the geothermal groundwater and drinking water samples. Precision was also assessed as the relative standard deviation of both repeatability (within-day) and reproducibility (between-day and different concentrations) for groundwater samples. Standard deviation and RSD values of 220 groundwater samples acquired over 8 months were evaluated. The suppressed ion chromatography technique was found to be a suitable method for determining major anions in sulfate-rich geothermal water samples.  相似文献   

13.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

14.
Abstract A Hercynian charnockite occurs within high-grade gneisses in the Agly Massif, French Pyrenees. Its thermal history has been evaluated using the Fe-Mg distribution coefticient ( K D) between garnet and biotite. These minerals have different origins but similar compositions in the charnockites and host gneisses. In the charnockite, the Bi–Ga pairs are the retrograde products of Opx alteration. This Opx reaction with feldspar can be written. Opx + PI + Fluid 1(H2O + Al + K + Fe + Ti) = Bi + Ga + Q + Fluid 2(H2O + Na). The garnets are relatively Ca poor (4–2.5% grossular); they are automorphic and zoned in the gneisses and poikiloblastic in the charnockites. Both types show a retrograde rim (of few hundred microns'width) across which Fe and Mn increase as Mg decreases. The biotites show a good correlation between the octahedral cations (Ti4++ Fe2+) and (Mg2++ Al3+VI); Ti and Fe both increase, whereas Mg and AlVI decrease. There is an inverse linear correlation between Fe2+ and Mg2+ and the Fe/Mg ratio increases as Ti increases. The relation between Ti and K Ga-BiDFe-Mg is less clear: it seems that K D slightly decreases as Ti increases. The equilibration temperatures of Ga–Bi pairs are discussed: the charnockite Ga-Bi pairs have equilibrated between 550°C and 600°C; whereas those of the gneisses have equilibrated between 550°C and 650°C. Two main thermal steps appear: one in the gneisses between 600-650°C and a second one in both the gneisses and the charnockites between 550°C and 600°C.  相似文献   

15.
Molybdenum concentrations in USGS reference materials and marine sediments have been measured using ICP-AES following dissolution of samples in HF-HNO3-HCl with final aliquots made in 1 mol l−1 HCl. The concentrations determined at one of the recommended wavelengths, 281.615 nm, are found to be severely affected by a spectral interference from Al, leading to inaccurate analytical results. At an alternative wavelength, 202.030 nm, the Mo emission signal is attenuated in the window size 0.094 nm due to the presence of an Fe line (202.074 nm), thus affecting the analytical sensitivity of measurements. The attenuation of the emission signal at 202.030 nm could severely limit the determination of Mo in geological samples.  相似文献   

16.
The direct analysis of nickel sulfide fire assay buttons by UV laser ablation ICP-MS was used to determine the platinum-group elements and gold in the following reference materials: UMT-1, WPR-1, WMG-1, GPt-4, GPt-6 and CHR-Bkg. The instrument was calibrated with buttons prepared using quartz doped with the appropriate standard solutions. Analytical precision (RSD) was generally better than 10%, although occasional higher RSDs may infer local heterogeneities within nickel sulfide buttons. Good or excellent agreement was observed between analysed and reference material values except Rh in UMT-1 and WMG-1, which suffered an interference from copper. Detection limits calculated as 10 s quantitation limits were Au (1.7 ng g−1), Pd (3.3 ng g−1), Pt (8.3 ng g−1), Os (1.3 ng g−1), Rh (1 ng g−1), Ru (5 ng g−1) and Ir (0.7 ng g−1).  相似文献   

17.
Fifty-two trace elements in NIST SRM 614, 616 and MPI-DING BM90/21-G glass reference materials as well as in NIST SRM 612, USGS BCR2-G and other MPI-DING reference glasses (KL2-G, GOR132-G, GOR128-G, ATHO-G, Tl-G, StHs6/80-G and ML3B-G) were determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Accurate ultra-low trace element abundances in the NIST SRM 614, 616 and BM90/21-G reference glasses down to lower ng g−1 levels were determined with relative standard deviations (RSD) of less than 10%. Limits of detection using He as carrier gas were up to two times lower than with Ar and were 0.004 to 0.12 μg g−1 for elements of lower mass numbers (amu < 85) and 0.002 to 0.06 μg g−1 for elements having amu < 85. The measured concentrations generally agree within 15% with previous studies except for B in NIST SRM 614 and 616, which appears to be heterogeneously distributed, and Co, Zn, Ga and Ag in NIST SRM 616 for which the existing data set is too small to evaluate the discrepancies. New values for As (0.593 μg g−1), Ag (0.361 μg g−1) and Cd (0.566 μg g−1) in NIST SRM 614 and new values for Na (94864 μg g−1) and As (0.276 μg g−1) in NIST SRM 616 are reported.  相似文献   

18.
The cathodoluminescence analyses of the trigonal carbonates calcite and dolomite have been applied intensively in sedimentary petrology for a long time and the properties of these minerals are well-known, but much less attention has been paid to aragonite. In this study, the cathodoluminescence behaviour and the trace element composition of natural and synthetic aragonite have been studied employing trace element analyses (proton induced X-ray emission) and luminescence spectroscopy. Aragonite doped with Mn2+ has been synthesized in a NH4+–Mg2+–Ca2+–Cl solution in contact with a CO2–H2O–NH3 atmosphere. The low effective distribution coefficients indicate a rapid growth of the crystals of millimetre size which occurred within hours or days. The natural aragonite samples contain Mn, Fe and Sr in different concentrations. The Mn-bearing aragonites exhibit a bright green luminescence which is caused by a strong emission band at 575 nm with a half-width of about 84 nm. The luminescence intensity shows a strong positive correlation with Mn in aragonite when Fe and Mn do not exceed 2000 p.p.m. The intensity is depressed if the concentration of these elements exceeds the critical values. In the shell of a recent Unio sp., the luminescence intensity deviates from the linear correlation, although the trace element contents are not too high; this is probably an effect of quenching by organic material between the crystallites of the biogenic aragonite.  相似文献   

19.
Methods based on high performance liquid chromatography coupled with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) for iodine speciation analysis are described. Experiments were performed relating to iodine species, preservative medium and time. The concentration and pH of the buffer are also discussed in relation to separation efficiency. The developed methods allowed the fast and sensitive determination of iodine species with detection limits of 0.025 μg l−1 (as 1) for both iodide and iodate with < 5% relative standard deviation (RSD) for 50 nmol l−1. Attempts were made to quantify total organo-iodine by size-exclusion chromatography (SEC). By way of example, a number of groundwater samples were analysed by these methods, revealing that iodide is the main iodine species in the sampled waters, but that high concentrations of organo-iodine compounds were observed in some samples as well. In summary, the total concentration and the dominant species of iodine in aquatic freshwater environments is easily and accurately measured using this new method.  相似文献   

20.
Some recent experiments on the determination of Au and the platinum-group elements (PGE) in geochemical samples are reviewed. Emphasis is given to the determination of ultra-low levels of PGE concentrations in resistant matrices, including chromites, molybdenites and ultrabasic ores. The problems and features of PGE determination in samples of various chemical composition are considered. For each sample type studied, a series of sample preparation techniques are proposed. These techniques included acid digestion, fusion with sodium peroxide, cold sintering with an oxidizing mixture of Na2O2+ Na2CO3 and also oxidizing fluorination with bromine trifluoride. A new approach for preparing geochemical material prior to digestion, based on mechano-chemical activation with simultaneous hyperfine grinding, is proposed and studied. The instrumental determination of PGE contents was carried out directly by AAS from extracted organic phases. It was found that a combination of digestion processes was required to achieve geochemical background levels of Au and PGE concentrations with the following detection limits: Pd, Rh - 1 ng g−1, Pt, Ru - 10 ng g−1, Au - 0.2 ng g−1, Ag - 0.1 ng g−1. The uncertainty in PGE and Au determination in geochemical samples is dependent on metal concentration, and also on their distribution in samples. The total analytical uncertainty of the proposed method is between 15-30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号