首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Li concentrations and isotopic compositions of coexisting minerals (ol, opx, and cpx) from peridotite xenoliths entrained in the Hannuoba Tertiary basalts, North China Craton, provide insight into Li isotopic fractionation between mantle minerals during melt-rock interaction in the considerably thinned lithospheric mantle. Bulk analyses of mineral separates show significant enrichment of Li in cpx (2.4-3.6 ppm) relative to olivine (1.2-1.8 ppm), indicating that these peridotites have been affected by mantle metasomatism with mafic silicate melts. Bulk olivine separates (δ7Li ∼ +3.3‰ to +6.4‰) are isotopically heavier than coexisting pyroxenes (δ7Li ∼ −3.3‰ to −8.2‰ in cpx, and −4.0‰ to −6.7‰ in opx). Such large variation suggests Li elemental and isotopic disequilibrium. This conclusion is supported by results from in situ SIMS analyses of mineral grains where significant Li elemental and isotopic zonations exist. The olivine and opx have lower Li concentrations and heavier Li isotopes in the rims than in the cores. This reverse correlation of δ7Li with Li concentrations indicates diffusive fractionation of Li isotopes. However, the zoning patterns in coexisting cpx show isotopically heavier rims with higher Li abundances. This positive correlation between δ7Li and Li concentrations suggests a melt mixing trend. We attribute Li concentration and isotope zonation in minerals to the effects of two-stage diffusive fractionation coupled with melt-rock interaction. The earliest melts may have been derived from the subducted oceanic slab with low δ7Li values produced by isotopic fractionation during the dehydration of the seawater-altered slab. Melts at later stages were derived from the asthenosphere and interacted with the peridotites, producing the Li elemental and isotopic zoning in mineral grains. These data thus provide evidence for multiple-stage peridotite-melt interaction in the lithospheric mantle beneath the northern North China Craton.  相似文献   

2.
Li isotope fractionation in peridotites and mafic melts   总被引:4,自引:0,他引:4  
We have measured the Li isotope ratios of a range of co-existing phases from peridotites and mafic magmas to investigate high-temperature fractionations of 7Li/6Li. The Li isotopic compositions of seven mantle peridotites, reconstructed from analyses of mineral separates, show little variation (δ7Li 3.2-4.9‰) despite a wide range in fertility and radiogenic isotopic compositions. The most fertile samples yield a best estimate of δ7Li ∼ 3.5‰ for the upper mantle. Bulk analyses of olivine separates from the xenoliths are typically ∼1.5‰ isotopically lighter than co-existing orthopyroxenes, suggestive of a small, high-temperature equilibrium isotope fractionation. On the other hand, bulk analyses of olivine phenocrysts and their host melts are isotopically indistinguishable. Given these observations, equilibrium mantle melting should generate melts with δ7Li little different from their sources (<0.5‰ lighter). In contrast to olivine and orthopyroxene, that dominate peridotite Li budgets, bulk clinopyroxene analyses are highly variable (δ7Li = 6.6‰ to −8.1‰). Phlogopite separated from a modally metasomatised xenolith yielded an extreme δ7Li of −18.9‰. Such large Li isotope variability is indicative of isotopic disequilibrium. This inference is strongly reinforced by in situ, secondary ion mass-spectrometry analyses which show Li isotope zonation in peridotite minerals. The simplest zoning patterns show isotopically light rims. This style of zoning is also observed in the phenocrysts of holocrystalline Hawaiian lavas. More dramatically, a single orthopyroxene crystal from a San Carlos xenolith shows a W-shaped Li isotope profile with a 40‰ range in δ7Li, close to the isotope variability seen in all terrestrial whole rock analyses. We attribute Li isotope zonation in mineral phases to diffusive fractionation of Li isotopes, within mineral phases and along melt pathways that pervade xenoliths. Given the high diffusivity of Li, the Li isotope profiles we observe can persist, at most, only a few years at magmatic temperatures. Our results thus highlight the potential of Li isotopes as a high-resolution geospeedometer of the final phases of magmatic activity and cooling.  相似文献   

3.
We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using two different separation chemistries and three different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (δ25Mg = −0.14 ± 0.06; δ26Mg = −0.27 ± 0.12‰, 2SD), but our enstatite chondrite samples have lighter δ7Li (by up to ∼3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2SD), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = −0.10 ± 0.03‰ and δ26Mg = −0.21 ± 0.07‰. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk δ7Li and δ26Mg, which vary from −3.7‰ to +14.5‰, and −0.36‰ to + 0.06‰, respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ∼5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  相似文献   

4.
Ion-microprobe was used to measure Li abundances and isotopic compositions in pyroxenes from three Martian meteorites belonging to the nakhlite family. The profiles performed across augite crystals from Northwest Africa 817 show a large isotopic zoning from crystal cores (δ7Li ∼ 0‰) to rims (δ7Li ∼ +20‰) while Li abundances are almost constant (∼9.2 μg/g). Unlike NWA 817, the pyroxene studied in the Miller Range 03346 nakhlite shows a zoning in Li abundance, with concentrations increasing from ∼2.5 μg/g in the core to ∼9 μg/g in the rim. The augite rim (δ7Li = +7‰) is slightly enriched in 7Li with regard to the core (δ7Li = +4‰), but most of the isotopic variations observed occur at an intermediate position along the profile, where δ7Li falls down to ∼−11‰. In the case of Nakhla, Li concentrations in augite increase from cores (∼3.5 μg/g) to rims (∼6.5 μg/g), while the δ7Li variation is restricted (i.e., between δ7Li = +6.0 and +12.6‰). For the three meteorites the Li abundances were also measured in the groundmass, which was found to be enriched in lithium (∼10 μg/g). Conventional magmatic and post-magmatic processes such as alteration and fractional crystallization, fail to explain the dataset obtained on nakhlites. Degassing processes, which were previously proposed to explain the Li distribution in shergottite crystals, cannot result in the strong decoupling between Li abundances and isotopic composition observed in nakhlites. We suggest that the original magmatic Li distributions (concentrations and isotopic compositions) in nakhlites have been modified by diffusion of Li from the Li-rich groundmass towards the pyroxene crystals during sub-solidus cooling. Diffusion appears to have been efficient for NWA 817 and MIL 03346 but, apparently, did not produce a significant migration of Li in Nakhla, possibly because of the lower abundance of groundmass in the latter. Diffusion induced Li redistributions may also affect terrestrial porphyric rocks but very specific cooling rates are required to quench the diffusion profiles as observed in two of the present nakhlites.  相似文献   

5.
Lithium concentration and isotope data (δ7Li) are reported for pore fluids from 18 cold seep locations together with reference fluids from shallow marine environments, a sediment-hosted hydrothermal system and two Mediterranean brine basins. The new reference data and literature data of hydrothermal fluids and pore fluids from the Ocean Drilling Program follow an empirical relationship between Li concentration and δ7Li (δ7Li = −6.0(±0.3) · ln[Li] + 51(±1.2)) reflecting Li release from sediment or rocks and/or uptake of Li during mineral authigenesis. Cold seep fluids display δ7Li values between +7.5‰ and +45.7‰, mostly in agreement with this general relationship. Ubiquitous diagenetic signals of clay dehydration in all cold seep fluids indicate that authigenic smectite-illite is the major sink for light pore water Li in deeply buried continental margin sediments. Deviations from the general relationship are attributed to the varying provenance and composition of sediments or to transport-related fractionation trends. Pore fluids on passive margins receive disproportionally high amounts of Li from intensely weathered and transported terrigenous matter. By contrast, on convergent margins and in other settings with strong volcanogenic input, Li concentrations in pore water are lower because of intense Li uptake by alteration minerals and, most notably, adsorption of Li onto smectite. The latter process is not accompanied by isotope fractionation, as revealed from a separate study on shallow sediments. A numerical transport-reaction model was applied to simulate Li isotope fractionation during upwelling of pore fluids. It is demonstrated that slow pore water advection (order of mm a−1) suffices to convey much of the deep-seated diagenetic Li signal into shallow sediments. If carefully applied, Li isotope systematics may, thus, provide a valuable record of fluid/mineral interaction that has been inherited several hundreds or thousands of meters below the actual seafloor fluid escape structure.  相似文献   

6.
High-pressure, low-temperature (HP-LT) rocks from a Cretaceous age subduction complex occur as tectonic blocks in serpentinite mélange along the Motagua Fault (MF) in central Guatemala. Eclogite and jadeitite among these are characterized by trace element patterns with enrichments in fluid mobile elements, similar to arc lavas. Eclogite is recrystallized from MORB-like altered oceanic crust, presumably at the boundary between the down-going plate and overlying mantle wedge. Eclogite geochemistry, mineralogy and petrography suggest a two step petrogenesis of (1) dehydration during prograde metamorphism at low temperatures (<500 °C) followed by (2) partial rehydration/fertilization at even lower T during exhumation. In contrast, Guatemalan jadeitites are crystallized directly from low-T aqueous fluid as veins in serpentinizing mantle during both subduction and exhumation. The overall chemistry and mineralogy of Guatemalan eclogites are similar to those from the Franciscan Complex, California, implying similar P-T-x paths.Li concentrations (?90 ppm) in mineral separates and whole rocks (WR) from Guatemalan and Franciscan HP-LT rocks are significantly higher than MORB (4-6 ppm), but similar to HP-LT rocks globally. Li isotopic compositions range from −5‰ to +5‰ for Guatemalan HP-LT rocks, and −4‰ to +1‰ for Franciscan eclogites, overlapping previous findings for other HP-LT suites. The combination of Li concentrations greater than MORB, and Li isotopic values lighter than MORB are inconsistent with a simple dehydration model. We prefer a model in which Li systematics in Guatemalan and Franciscan eclogites reflect reequilibration with subduction fluids during exhumation. Roughly 5-10% of the Li in these fluids is derived from sediments.Model results predict that the dehydrated bulk ocean crust is isotopically lighter (δ7Li ? +1 ± 3‰) than the depleted mantle (∼+3.5 ± 0.5‰), while the mantle wedge beneath the arc is the isotopic complement of the bulk crust. A subduction fluid with an AOC-GLOSS composition over the full range of model temperatures (50-600 °C) gives an average fluid δ7Li (∼+7 ± 5‰ 1σ) that is isotopically heavier than the depleted mantle. If the lowest temperature steps are excluded (50-260 °C) as too cold to participate in circulation of the mantle wedge, then the average subduction fluid (δ7Li = +4 ± 2.3‰ 1σ, is indistinguishable from depleted mantle. Because of the relatively compatible nature of Li in metamorphic minerals, the most altered part of the crust (uppermost extrusives), may retain a Li isotopic signature (∼+5 ± 3‰) heavier than the bulk crust. The range of Li isotopic values for OIB, IAB and MORB overlap, making it is difficult to resolve which of these components may contribute to the recycled component in the mantle using δ7Li alone.  相似文献   

7.
Over the last decade it has become apparent that Li isotopes may be a good proxy to trace silicate weathering. However, the exact mechanisms which drive the behaviour of Li isotopes in surface environments are not totally understood and there is a need to better calibrate and characterize this proxy. In this study, we analysed the Li concentrations and isotopic compositions in the various surface reservoirs (soils, rocks, waters and plants) of a small forested granitic catchment located in the Vosges Mountains (Strengbach catchment, France, OHGE http://ohge.u-strasbg.fr). Li fluxes were calculated in both soil profiles and at the basin scale and it was found that even in this forested basin, atmospheric inputs and litter fall represented a minor flux compared to input derived from the weathering of rocks and soil minerals (which together represent a minimum of 70% of dissolved Li). Li isotope ratios in soil pore waters show large depth dependent variations. Average dissolved δ7Li decreases from −1.1‰ to −14.4‰ between 0 and −30 cm, but is +30.7‰ at −60 cm. This range of Li isotopic compositions is very large and it encompasses almost the entire range of terrestrial Li isotope compositions that have been previously reported. We interpret these variations to result from both the dissolution and precipitation of secondary phases. Large isotopic variations were also measured in the springs and stream waters, with δ7Li varying from +5.3‰ to +19.6‰. δ7Li increases from the top to the bottom of the basin and also covaries with discharge at the outlet. These variations are interpreted to reflect isotopic fractionations occurring during secondary phase precipitation along the water pathway through the rocks. We suggest that the dissolved δ7Li increases with increasing residence time of waters through the rocks, and so with increasing time of interaction between waters and solids. A dissolution precipitation model was used to fit the dissolved Li isotopic compositions. It was found that the isotopic compositions of springs and stream waters are explicable by an isotopic fractionation of −5‰ to −14‰ (best fit −10.8‰), in agreement with Li incorporation into clay. In soil solutions, it was found that isotopic fractionation during secondary precipitation is larger (at least −23‰), suggesting a major role for different secondary phases, such as iron oxides that maybe incorporate Li with a higher isotope fractionation.  相似文献   

8.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

9.
Iron isotopic compositions measured in chondrules from various chondrites vary between δ57Fe/54Fe = +0.9‰ and −2.0‰, a larger range than for igneous rocks. Whether these compositions were inherited from chondrule precursors, resulted from the chondrule-forming process itself or were produced by later parent body alteration is as yet unclear. Since iron metal is a common phase in some chondrules, it is important to explore a possible link between the metal formation process and the observed iron isotope mass fractionation. In this experimental study we have heated a fayalite-rich composition under reducing conditions for heating times ranging from 2 min to 6 h. We performed chemical and iron isotope analyses of the product phases, iron metal and silicate glass. We demonstrated a lack of evaporation of Fe from the silicate melt in similar isothermal experiments performed under non-reducing conditions. Therefore, the measured isotopic mass fractionation in the glass, ranging between −0.32‰ and +3.0‰, is attributed to the reduction process. It is explained by the faster transport of lighter iron isotopes to the surface where reduction occurs, and is analogous to kinetic isotope fractionation observed in diffusion couples [Richter, F.M., Davis, A.M., Depaolo, D.J., Watson, E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta67, 3905-3923]. The metal phase contains 90-99.8% of the Fe in the system and lacks significant isotopic mass fractionation, with values remaining similar to that of the starting material throughout. The maximum iron isotope mass fractionation in the glass was achieved within 1 h and was followed by an isotopic exchange and re-equilibration with the metal phase (incomplete at ∼6 h). This study demonstrates that reduction of silicates at high temperatures can trigger iron isotopic fractionation comparable in its bulk range to that observed in chondrules. Furthermore, if metal in Type I chondrules was formed by reduction of Fe silicate, our observed isotopic fractionations constrain chondrule formation times to approximately 60 min, consistent with previous work.  相似文献   

10.
Lithium isotopes in global mid-ocean ridge basalts   总被引:1,自引:0,他引:1  
The lithium isotope compositions of 30 well-characterized samples of glassy lavas from the three major mid-ocean ridge segments of the world, spanning a wide range in radiogenic isotope and elemental content and sea floor physical parameters, have been measured. The overall data set shows a significant range in δ7Li (+1.6 to +5.6), with no global correlation between Li isotopes and other geochemical or tectonic parameters. The samples with the greatest lithophile element depletion (N-MORB: K2O/TiO2 < 0.09) display an isotopic range consistent with the extant database. Samples with greater trace element enrichment display a greater degree of isotopic variability and trend toward heavier compositions (δ7Li = +2.4 to +5.6), but are not distinct on average from N-MORB. Together with published data, N-MORB is estimated to have mean δ7Li = +3.4 ± 1.4‰ (2σ), consistent with the estimate for an uncontaminated MORB source based on pristine peridotite xenoliths. Locally, where sampling density permits, sources of Li isotope heterogeneity may be evaluated. Sample sets from the East Pacific Rise show correlation of δ7Li with halogen concentration ratios. This is interpreted at 15.5°N latitude to represent incorporation of <5 weight percent recycled subduction-modified mantle in the MORB source. At 9.5°N latitude the data are more consistent with shallow level magma chamber contamination by seawater-derived components (<0.5 wt.%).  相似文献   

11.
Silicon isotopes in dissolved silicic acid were measured in the upper four kilometers between 4°N and 3°S latitude at 110°W longitude in the eastern Equatorial Pacific. Silicon isotopes became progressively heavier with silicic acid depletion of surface water as expected from biological fractionation. The value of ε estimated by applying a steady-state isotope fractionation model to data from all stations between 4°N and 3°S was −0.77 ± 0.12‰ (std. err.). When the analysis was restricted to those stations whose temperature and salinity profiles indicated that they were directly influenced by upwelling of the Equatorial Undercurrent (EUC), the resulting value of ε was −1.08 ± 0.27‰ (std. err.) similar to the value established in culture studies (−1.1‰). When the non steady state Rayleigh model was applied to the same restricted data set the resulting value of ε was significantly more positive, −0.61 ± 0.16‰ (std. err.). To the extent that the equatorial system approximates a steady state these results support a value of −1.1‰ for the fractionation factor for isotopes of Si in the sea. Without the assumption of steady state the value of ε can only be constrained to be between −0.6 and −1.1‰. Silicic acid in Equatorial Pacific Deep Water below 2000 m had a near constant δ30Si of +1.32 ± 0.05‰. That value is significantly more positive than obtained for North Pacific Deep Water at similar depths at stations to the northwest of our study area (0.9-1.0‰) and it is slightly less positive than new measures of the δ30Si of silicic acid from the silicic acid plume centered over the Cascadia basin in the Northeast Pacific (Si(OH)4 > 180  μM, δ30Si = +1.46 ± 0.12‰ (SD, n = 4). We show that the data from the equator and Cascadia basin fit a general trend of increasing δ30Si(OH)4 with increasing silicic acid concentration in the deep sea, but that the isotope values from the Northeast Pacific are anomalously light. The observed level of variation in the silicon isotope composition of deep waters from this single ocean basin is considerably larger than that predicted by current models based on fractionation during opal formation with no isotope effect during dissolution. Confirmation of such high variability in deep water δ30Si(OH)4 within individual ocean basins will require reassessment of the mechanisms controlling the distribution of isotopes of silicon in the sea.  相似文献   

12.
Tri-octahedral Li-Mg smectites (hectorites) were synthesized at temperatures ranging from 25 to 250 °C, in the presence of solutions highly enriched in lithium. After removing all the exchangeable lithium from the synthesized clays, Li isotope fractionation (Δ7Liclay-solution) was determined. This fractionation was linked to Li incorporation into the structural octahedral site, substituting for Mg2+. As predicted, experimental Δ7Liclay-solution inversely correlates with temperature, and ranges from −1.6‰ ± 1.3‰ at 250 °C to −10.0‰ ± 1.3‰ at 90 °C, and then stays relatively constant down to 25 °C. The relatively constant isotope fractionation factor below 90 °C may be due to high concentrations of edge octahedra in low crystallinity smectites. The isotopic fractionation factor (α), for a given temperature, does not depend on the solution matrix, nor on the amount of structural Li incorporated into the clay. Empirical linear laws for α as a function of 1/T (K) were inferred. Smectite Li contents and smectite-solution distribution coefficients (DLi/Mg) increase with temperature, as expected for a substitution process. The fractions of dissolved Li incorporated into the smectite octahedral sites are small and do not depend on the duration of the experiment. In a seawater-like matrix solution, less Li is incorporated into the smectites, probably as a result of competition with dissolved Mg2+ ions for incorporation into the octahedral sites. The high Li contents observed in marine smectites are therefore best explained either by a significant contribution from basalts, by adsorption processes, or by the influence of seawater chemical composition on distribution coefficients. We also calculate, using present-day estimates of hydrothermal water and river fluxes, that a steady-state ocean would require a relatively large global clay-water Li isotope fractionation (−12‰ to −21‰). This study demonstrates the ability of laboratory experiments to quantify the impact of secondary phases on the Li geochemical cycle and associated isotope fractionations.  相似文献   

13.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

14.
Lithium (Li) abundances and isotope compositions were determined in a representative suite of tektites (moldavites, Muong Nong-type tektites and an australite, Ivory Coast tektites and bediasites), impact-related glasses (Libyan Desert Glass, zhamanshinites and irghizites), a glass fragment embedded in the suevite from the Ries impact crater and sedimentary materials in order to test a possible susceptibility of Li to fractionation during hypervelocity impact events and to de-convolve links to their potential parental sources. The overall data show a large spread in Li abundance (4.7-58 ppm Li) and δ7Li values (−3.2‰ to 26.0‰) but individual groups of tektites and impact glasses have distinctive Li compositions.Most importantly, any significant high-temperature Li isotope fractionation can be excluded by comparing sedimentary lithologies from central Europe with moldavites. Instead, we suggest that Li isotope compositions in tektites and impact-related glasses are probably diagnostic of the precursor materials and their pre-impact geological histories. The Muong Nong-type tektites and australite specimen are identical in terms of Li concentrations and δ7Li and we tentatively endorse their common origin in a single impact event. Evidence for low-temperature Rayleigh fractionation, which must have operated prior to impact-induced melting and solidification, is provided for a subset of Muong Nong-type tektites. Although Li isotope variations in most tektites are broadly similar to those of the upper continental crust, Libyan Desert Glass carries high δ7Li ?24.7‰, which appears to mirror the previous fluvial history of parental material that was perhaps deposited in lacustrine environment or coastal seawater. Lithium isotopes in impact-related glasses from the Zhamanshin crater define a group distinct from all other samples and point to melting of chemically less evolved mafic lithologies, which is also consistent with their major and trace element patterns.Extreme shock pressures and the related extreme post-shock temperatures alone appear not to have any effect on the Li isotope systematics; therefore, useful information on parental lithologies and magmatic processes may be retrieved from analyses of Martian and lunar meteorites. Moreover, lack of significant Li depletion in tektites provides further constraints on the loss of moderately volatile elements during the Moon-forming impact.  相似文献   

15.
Previous efforts to constrain the timing of Paleoproterozoic atmospheric oxygenation have documented the disappearance of large, mass-independent sulfur isotope fractionation and an increase in mass-dependent sulfur isotope fractionation associated with multiple glaciations. At least one of these glacial events is preserved in diamictites of the ∼2.4 Ga Meteorite Bore Member of the Kungarra Formation, Turee Creek Group, Western Australia. Outcrop exposures of this unit show the transition from the Boolgeeda Iron Formation of the upper Hamersley Group into clastic, glaciomarine sedimentary rocks of the Turee Creek Group. Here we report in situ multiple sulfur isotope and elemental abundance measurements of sedimentary pyrite at high spatial resolution, as well as the occurrence of detrital pyrite in the Meteorite Bore Member. The 15.3‰ range of Δ33S in one sample containing detrital pyrite (−3.6‰ to 11.7‰) is larger than previously reported worldwide, and there is evidence for mass-independent sulfur isotope fractionation in authigenic pyrite throughout the section (Δ33S from −0.8‰ to 1.0‰). The 90‰ range in δ34S observed (−45.5‰ to 46.4‰) strongly suggests microbial sulfate reduction under non-sulfate limiting conditions, indicating significant oxidative weathering of sulfides on the continents. Multiple generations of pyrite are preserved, typically represented by primary cores with low δ34S (<−20‰) overgrown by euhedral rims with higher δ34S (4-7‰) and enrichments in As, Ni, and Co. The preservation of extremely sharp sulfur isotope gradients (30‰/<4 μm) implies limited sulfur diffusion and provides time and temperature constraints on the metamorphic history of the Meteorite Bore Member. Together, these results suggest that the Meteorite Bore Member was deposited during the final stages of the “Great Oxidation Event,” when pO2 first became sufficiently high to permit pervasive oxidative weathering of continental sulfides, yet remained low enough to permit the production and preservation of mass-independent sulfur isotope fractionation.  相似文献   

16.
Chemical and isotopic data for 23 geothermal water samples collected in New Zealand within the Taupo Volcanic Zone (TVZ) are reported. Major and trace elements including Li, B and Sr and their isotopic compositions (δ7Li, δ11B, 87Sr/86Sr) were determined in high temperature geothermal waters collected from deep boreholes in different geothermal fields (Ohaaki, Wairakei, Mokai, Kawerau and Rotokawa geothermal systems). Lithium concentrations are high (from 4.5 to 19.9 mg/L) and Li isotopic compositions (δ7Li) are homogeneous, ranging between −0.5‰ and +1.4‰. In particular, it is noteworthy that, except for the samples from the Kawerau geothermal field having slightly higher δ7Li values (+1.4%), the other geothermal waters have a near constant δ7Li signature around a mean value of 0‰ ± 0.6 (2σ, n = 21). Boron concentrations are also high and relatively homogeneous for the geothermal samples, falling between 17.5 and 82.1 mg/L. Boron isotopic compositions (δ11B) are all negative, and display a range between −6.7‰ and −1.9‰. These B isotope compositions are in agreement with those of the Ngawha geothermal field in New Zealand. Lithium and B isotope signatures are in a good agreement with a fluid signature mainly derived from water/rock interaction involving magmatic rocks with no evidence of seawater input. On the other hand, Sr concentrations are lower and more heterogeneous and fall between 2 and 165 μg/L. The 87Sr/86Sr ratios range from 0.70549 to 0.70961. These Sr isotope compositions overlap those of the Rotorua geothermal field in New Zealand, confirming that some geothermal waters (with more radiogenic Sr) have interacted with bedrocks from the metasedimentary basement. Each of these isotope systems on their own reveals important information about particular aspects of either water source or water/rock interaction processes, but, considered together, provide a more integrated understanding of the geothermal systems from the TVZ in New Zealand.  相似文献   

17.
We measured Ca stable isotope ratios (δ44/40Ca) in an ancient (2 My), hyperarid soil where the primary source of mobile Ca is atmospheric deposition. Most of the Ca in the upper meter of this soil (3.5 kmol m−2) is present as sulfates (2.5 kmol m−2), and to a lesser extent carbonates (0.4 kmol m−2). In aqueous extracts of variably hydrated calcium sulfate minerals, δ44/40CaE values (vs. bulk Earth) increase with depth (1.4 m) from a minimum of −1.91‰ to a maximum of +0.59‰. The trend in carbonate-δ44/40Ca in the top six horizons resembles that of sulfate-δ44/40Ca, but with values 0.1-0.6‰ higher. The range of observed Ca isotope values in this soil is about half that of δ44/40Ca values observed on Earth. Linear correlation among δ44/40Ca, δ34S and δ18O values indicates either (a) a simultaneous change in atmospheric input values for all three elements over time, or (b) isotopic fractionation of all three elements during downward transport. We present evidence that the latter is the primary cause of the isotopic variation that we observe. Sulfate-δ34S values are positively correlated with sulfate-δ18O values (R2 = 0.78) and negatively correlated with sulfate δ44/40CaE values (R2 = 0.70). If constant fractionation and conservation of mass with downward transport are assumed, these relationships indicate a δ44/40Ca fractionation factor of −0.4‰ in CaSO4. The overall depth trend in Ca isotopes is reproduced by a model of isotopic fractionation during downward Ca transport that considers small and infrequent but regularly recurring rainfall events. Near surface low Ca isotope values are reproduced by a Rayleigh model derived from measured Ca concentrations and the Ca fractionation factor predicted by the relationship with S isotopes. This indicates that the primary mechanism of stable isotope fractionation in CaSO4 is incremental and effectively irreversible removal of an isotopically enriched dissolved phase by downward transport during small rainfall events.  相似文献   

18.
We report lithium (Li) isotopic measurements in seawater-derived waters that were discharged from geothermal wells, thermal springs, and sub-marine springs located in volcanic island arc areas in Guadeloupe (the Bouillante geothermal field) and Martinique (Lamentin plain and the Diamant areas). While Li isotopic signatures of the geothermal fluids collected from deep reservoirs were found to be homogeneous for a given site, the δ7Li signatures for each of these reservoirs were significantly different. The first low temperature (25-250 °C) experiments of Li isotope exchange during seawater/basalt interaction confirmed that Li isotopic exchange is strongly temperature dependent, as previously inferred from natural studies. Li isotopic fractionation ranged from +19.4‰ (Δsolution-solid) at 25 °C to +6.7‰ at 250 °C. These experiments demonstrated the importance of Li isotopic fractionation during the formation of Li-bearing secondary minerals and allowed us to determine the following empirical relationship between isotopic fractionation and temperature: Δsolution-solid = 7847/T − 8.093. Application of experimental results and literature data to the Bouillante area suggested that geothermal water was in equilibrium at 250-260 °C. It likely has a deep and large reservoir located in the upper sheeted dike complex of the oceanic crust, just below the transition zone between andesite volcanic flows and the basaltic dikes. The upper dike section, from which Li is extracted by hydrothermal fluids, was characterized by light Li isotopic values in the rocks, indicating retention of 6Li by the altered rocks. For the Lamentin and Diamant areas, the geothermal fluids appeared to be in equilibrium with reservoir volcano-sedimentary rocks at 90-120 °C and 180 °C, respectively. Further evidence for this argument is provided by the fact that only the Na/Li thermometric relationship determined for sedimentary basins yielded temperature values in agreement with those measured or estimated for the reservoir fluids. This suggests the importance of a sedimentary signature in these reservoir rocks. Altogether, this study highlights that the use of Li isotopic systematics is a powerful tool for characterizing the origin of geothermal waters as well as the nature of their reservoir rocks.  相似文献   

19.
An 18 million year record of the Ca isotopic composition (δ44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ44/42Ca in this record averages +0.37 ± 0.05 (1σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ44/42Ca (i.e., by 0.06 ± 0.06‰ (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ44/42Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ44/42Caw of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δsed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ44/42Caw and Δsed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.  相似文献   

20.
At Lucky Strike near the Azores Triple Junction, the seafloor setting of the hydrothermal field in a caldera system with abundant low-permeability layers of cemented breccia, provides a unique opportunity to study the influence of subsurface geological conditions on the hydrothermal fluid evolution. Coupled analyses of S isotopes performed in conjunction with Se and Fe isotopes have been applied for the first time to the study of seafloor hydrothermal systems. These data provide a tool for resolving the different abiotic and potential biotic near-surface hydrothermal reactions. The δ34S (between 1.5‰ and 4.6‰) and Se values (between 213 and 1640 ppm) of chalcopyrite suggest a high temperature end-member hydrothermal fluid with a dual source of sulfur: sulfur that was leached from basaltic rocks, and sulfur derived from the reduction of seawater sulfate. In contrast, pyrite and marcasite generally have lower δ34S within the range of magmatic values (0 ± 1‰) and are characterized by low concentrations of Se (<50 ppm). For 82Se/76Se ratios, the δ82Se values range from basaltic values of near −1.5‰ to −7‰. The large range and highly negative values of hydrothermal deposits observed cannot be explained by simple mixing between Se leached from igneous rock and Se derived from seawater. We interpret the Se isotope signature to be a result of leaching and mixing of a fractionated Se source located beneath hydrothermal chimneys in the hydrothermal fluid. At Lucky Strike we consider two sources for S and Se: (1) the “end-member” hydrothermal fluid with basaltic Se isotopic values (−1.5‰) and typical S isotope hydrothermal values of 1.5‰; (2) a fractionated source hosted in subsurface environment with negative δ34S values, probably from bacterial reduction of seawater sulfate and negative δ82Se values possibly derived from inorganic reduction of Se oxyanions. Fluid trapped in the subsurface environment is conductively cooled and has restricted mixing and provide favorable conditions for subsurface microbial activity which is potentially recorded by S isotopes. Fe isotope systematic reveals that Se-rich high temperature samples have δ57Fe values close to basaltic values (∼0‰) whereas Se-depleted samples precipitated at medium to low temperature are systematically lighter (δ57Fe values between −1 to −3‰). An important implication of our finding is that light Fe isotope composition down to −3.2‰ may be explained entirely by abiotic fractionation, in which a reservoir effect during sulfide precipitation was able to produce highly fractionated compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号