首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
构造煤特有的孔裂隙系统决定了其不同类型具有独特的储层物性,而以脆性变形为主的碎裂煤发育区是煤层气勘探的有利区。根据贵州发耳煤矿9件煤样的显微镜观测和压汞实验数据,分析了构造煤微观变形和显微裂隙分形特征,进而对煤样孔隙渗透特征进行了研究。结果表明:碎裂煤显微裂隙信息维数分布在1.2~1.8;以信息维数为指标,可将碎裂煤划分为3类,信息维数分布范围分别为1.2~1.4、1.4~1.7和1.7~1.8;脆性构造变形增加了孔隙系统中大孔和中孔的孔容,构造变形越强烈,脆性系列构造煤的渗透性能越好。  相似文献   

2.
为查明织纳煤田构造煤分布规律,通过整理分析贵州织纳煤田比德向斜、三塘向斜、珠藏向斜、阿弓向斜和关寨向斜等14个含煤构造单元共200余个煤田钻孔取心资料,并辅以测井曲线分析,综合分析6、16和27号等主采煤层的煤体结构区域分布特征及构造控制因素。研究表明:自西向东,织纳煤田内构造煤比例逐渐增大,西部主要为原生结构煤和碎裂煤,东部以碎粒煤和碎粉煤为主;构造煤的分布主要受构造演化和4条深大断裂影响,多期性构造运动造成煤体多期次变形,其中,燕山期是煤层发生构造变形的主要阶段,喜马拉雅期对早期构造变形进行了叠加改造;深大断裂影响了区域应力场分布,遵义-惠水断裂对构造煤的形成和分布影响最大,主燕山早期自东向西的区域性应力场受到遵义-惠水断裂阻挡,在煤田东部褶皱、断裂作用剧烈,发育逆冲、逆掩断层等构造,对煤体结构破坏严重,碎粒煤和碎粉煤发育。研究取得的认识对织纳煤田瓦斯灾害防治和煤层气勘探开发具有指导意义。移动阅读   相似文献   

3.
我国主要含煤区煤体结构特征及与渗透性关系的研究   总被引:2,自引:0,他引:2  
通过对我国主要含煤区的100多个煤层以及若干个钻孔煤心,进行宏观煤岩类型、煤体结构、煤裂隙以及与煤层渗透性等方面研究,结果表明a.我国煤体破坏程度由北向南、自西向东增强,从盆地中部向盆缘增强.我国中、西部和北部主要是原生结构煤,东部和南部以及盆缘构造煤发育.b.糜棱煤是地层构造变形强烈的产物,但构造变形强烈的地层不一定形成糜棱煤.c.碎裂煤的渗透率比原生结构煤高,碎粒煤和糜棱煤渗透率低.对于一个即有碎裂煤,又有碎粒煤和糜棱煤发育并交替出现的煤层,碎粒煤和糜棱煤在碎裂煤之间起着低渗透性的屏障作用,渗透性低的煤分层扼杀了渗透性高的煤分层,极大地降低了煤层渗透性.因此在有碎粒煤和糜棱煤发育的煤层,煤体结构对煤层渗透性的影响大于裂隙发育程度的影响,成为控制渗透性的首要因素.  相似文献   

4.
中国煤储层渗透率主控因素和煤层气开发对策   总被引:8,自引:0,他引:8       下载免费PDF全文
我国煤储层渗透率比美国煤储层渗透率低1~2个数量级,低渗透率是制约我国煤层气勘探开发的主要因素之一,本文系统分析了我国煤储层渗透率的主控因素。研究表明,煤储层的渗透率主要受煤体结构、宏观裂隙以及割理/裂隙系统充填状况和现今地应力等因素的控制,适度构造变形产生的碎裂煤中因宏观裂隙发育导致其渗透率高于原生结构煤的渗透率,但强烈构造变形形成的碎粒煤和糜棱煤则使渗透率降低;割理/裂隙系统矿物充填和高应力不利于渗透率保存。在不同地区,控制煤储层渗透率的关键因素不同,针对性对策是煤层气开发的关键:针对复杂煤体结构,在压裂井层优选时要在煤体结构测井解释的基础上考虑避开糜棱煤;针对我国华北地区石炭—二叠系煤层割理/裂隙普遍以方解石充填为主的煤储层低渗透成因,建议探索和开发酸化压裂一体化储层增透技术;针对高应力和地应力类型在垂向上的转换,在压前搞清应力强度和类型的基础上,控制水力压裂隙高度以避免沟通煤层围岩含水层;针对煤储层的应力敏感性和高应力状态,建议采用逐级降压制度,以提高单井的累计产气量。  相似文献   

5.
通过对淮北宿东矿区朱仙庄矿构造煤的宏观、微观特征的观察和研究,结合构造煤的形成环境,参照琚宜文的构造煤分类方案,将构造煤划分为8类:碎裂煤、碎斑煤、碎粒煤、碎粉煤、片状煤、鳞片煤、糜棱煤和非均质结构煤。同时,选取不同类型构造煤进行压汞实验,分析了不同变形级别煤样的孔隙分布特征、孔径结构的演化特征以及孔隙的类型和连通性。结果表明:构造煤的许多性质与其变形强度密切相关,朱仙庄矿构造煤变形从弱到强的顺序依次为片状煤、碎裂煤、碎斑煤、碎粒煤、鳞片煤、非均质结构煤、碎粉煤和糜棱煤。  相似文献   

6.
意大利Ivrea区变辉长岩和角闪岩中20条表面上相似的角闪岩相韧性剪切带内,斜长石的显微构造和化学分析表明,这些斜长石在An和Ba含量上有很大的差别。斜长石在p-T低于岩中的条件时发生变形,并伴随出现4种不同的显微构造和不同的化学成分:(1)相对没有变形的碎斑;(2)碎斑边上的动力生结晶颗粒和亚颗粒;(3)横切碎斑的裂隙中的充填物;(4)剪切带基质中细粒重结晶颗粒。  相似文献   

7.
煤的孔隙与裂隙是煤层气赋存的空间也是煤层气运移和产出的通道。在新疆阜康矿区三工、建江等7对矿井巷道煤层裂隙观测统计的基础上,采用宏观煤岩分析、显微煤岩分析、压汞实验与煤的孔隙结构分析等方法,研究阜康矿区煤层孔隙与裂隙特性,评价煤层气赋存特征与渗透性。结果表明:阜康矿区煤层孔隙发育以微孔和小孔为主,孔容和比表面积较大,有利于煤层气的吸附和解吸;裂隙发育具有非均质性,矿区西部裂隙最为发育,东部次之,中部不发育;煤岩组分中镜质组的增加会使微小孔增多,有利于煤层气的吸附;中孔孔容对孔隙度具有控制作用;阜康矿区煤层的孔隙率随着镜质体反射率的增大呈增大的趋势。研究结果对新疆阜康矿区煤层气的勘探开发具有一定的理论指导意义。   相似文献   

8.
煤孔隙结构是煤层气勘探开发与煤矿安全研究中的关键问题之一。构造煤相比于原生结构煤非均质性强,是煤储层研究中的热点和难点。采用原子力显微镜,结合NanoScope Analysis和Gwyddion分析软件,对脆性变形序列构造煤的孔隙结构和表面粗糙度特征进行研究。结果表明:构造作用整体上促进了脆性变形煤孔隙的发育,但不同脆性变形构造煤受构造作用影响的程度存在明显差异。根据煤受构造作用影响的程度,脆性变形煤孔隙结构演化可划分为强弱2个阶段:弱脆性变形阶段(原生结构煤—碎裂煤—片状煤—碎斑煤)构造作用对煤体的孔隙结构影响较小,平均孔数量缓慢增长,平均孔径缓慢减小,该阶段构造作用主要促进了100~200 nm大孔的发育;强脆性变形阶段(碎斑煤—碎粒煤—薄片煤)构造作用对煤体孔隙结构产生了显著影响,平均孔数量迅速增长,平均孔径迅速减小,这一阶段构造作用主要促进了10~50 nm介孔和50~100 nm大孔的发育。这表明脆性变形构造煤孔隙结构并非简单的线性演变。不同脆性变形煤的算术平均粗糙度和均方根粗糙度参数分别为3.00~6.05 nm和3.94~7.62 nm,其中,弱脆性变形阶段粗糙度整体较高且无明显变化,而强脆性变形阶段粗糙度迅速降低。通过AFM剖面分析,建立了煤表面孔隙形态的数学模型。基于该模型的算术平均粗糙度模拟结果表明,大孔是煤表面粗糙度的主要贡献者,构造作用主要通过影响煤中的孔隙结构,进而影响煤的表面粗糙度。   相似文献   

9.
基于测井资料划分煤体结构对于煤层气勘探开发比较重要。通过对沁水盆地郑庄区块80口井测井资料的分析,总结了该地区3#、15#煤层各测井参数响应分布特征及其典型特征值范围,依据研究区情况将煤体结构划分为3类:原生结构煤、碎裂状构造煤、碎粒或糜棱状构造煤。针对这3种煤体结构类型及夹矸层确定了相关的测井响应典型特征值范围,认为对于煤层气储层及其裂隙判别的敏感参数依次为体积密度、深侧向电阻率、声波时差、井径、自然伽马、中子孔隙度等;通过判断深、中、浅3个电阻率值的差异识别裂隙发育程度,并建立了几种煤体结构类型的测井响应敏感参数及裂隙发育特征模式。  相似文献   

10.
不同变质变形煤储层孔隙特征与煤层气可采性   总被引:3,自引:0,他引:3       下载免费PDF全文
煤储层孔隙是煤层气的主要聚集场所和运移通道,煤储层孔隙结构不仅制约着煤层气的含气量,而且对其可采性也有重要影响。文中选取淮北煤田和沁水盆地不同矿区有代表性的煤样,通过对研究区不同变质与变形煤样的宏微观构造观测、镜质组反射率与孔隙度测试以及压汞实验分析,研究了不同变质变形煤储层孔隙结构特征及其对煤层气可采性的制约。研究结果表明,按照不同的变质变形特征将研究区煤储层主要划分为5类,即:高变质较强至强变形程度煤储层(Ⅰ类)、高变质较弱变形程度煤储层(Ⅱ类)、中变质较强变形程度煤储层(Ⅲ类)、中变质较弱变形程度煤储层(Ⅳ类)及低变质强变形程度煤储层(Ⅴ类)。不同变质变形煤储层的孔隙结构具有以下特征:Ⅰ类和Ⅱ类煤储层吸附孔占主导,Ⅰ类煤储层孔隙连通性差,Ⅱ类煤储层因后期叠加了构造裂隙,孔隙连通性变好;Ⅲ类煤储层中孔、大孔增多,但有效孔隙少,孔隙连通性变差;Ⅳ类煤储层吸附孔较多,中孔、大孔中等,且煤储层内生裂隙发育,孔隙具有较好的连通性,渗透性明显变好;Ⅴ类煤储层吸附孔含量较低,中孔较发育,大孔不太发育,有效孔隙少,孔隙连通性差。由此,变质程度高且叠加了一定构造变形的煤储层(Ⅱ类)以及中等变质程度变形较弱且内生裂隙发育的煤储层(Ⅳ类),其煤层气有较好的渗透性,可采性较好。  相似文献   

11.
During hydraulic fracturing in gassy coal seams, the gas concentration in mining path ways is found to increase significantly. This phenomenon should be the displacement methane effect caused by hydraulic fracturing. Does this effect exist objectively? To this end, laboratory and field verification experiments were carried out. An experimental system integrated with true triaxial hydraulic fracturing, seepage, and displacement gas was developed. The largest sample size was 500?×?500?×?500 mm3. Proper sealing was assured in the experimental system, and the effects of coal bed methane were simulated effectively. Methane at a specific pressure was injected into a sealed coal sample. After pressure stabilization and the methane adsorption reached its equilibrium level, the high-pressure water was injected into the coal sample from the surface. Absorbed methane in the coal sample was displaced from the bottom of the coal by water pressure seepage. After the conduction of deep borehole hydraulic fracturing in a high gassy coal seam, the gas was displaced inward and outward from the main fracture section. The permeability, diffusion, and transfer of the gas resulted in a region of increased methane content in both sides of the main fracture section. And the methane content in the main fracture section was decreased. Along the length of the borehole, the methane content changed significantly. The existence of displaced methane caused by hydraulic fracturing in gassy coal seams was first verified by laboratory experiments and then field tests. The pore-pressure gradient provides power for driving methane by hydraulic fracturing. The amount of desorbed methane resulted from the competitive adsorption of water and methane is more than that of the absorbed methane resulted from increased methane pressure, which provides material guarantee for displacing methane by hydraulic fracturing. The displacement methane caused by hydraulic fracturing in gassy coal seams was also found to be time dependent.  相似文献   

12.
针对南方煤层层数多、单层薄,构造复杂,糜棱煤发育,选区评价难度大等问题,利用织金区块勘探成果及分析化验数据,开展了多煤层煤层气成藏条件研究。结果表明,南方多煤层煤层气具有“沉积控储,保存控气,地应力、煤体结构控产”四元富集高产规律。沉积控制煤层厚度、层数、煤岩煤质等,决定了煤层气资源基础,潮坪沼泽控制下的煤层分布稳定,连续性好,灰分小于20%,镜质组体积分数大于80%。构造、水文地质联合控制煤层含气性,呈现出向斜核部富气特征,珠藏次向斜翼部往核部方向,随着埋深增大,氯根质量浓度及储层压力逐渐增大,含气量由8 m3/t逐渐增大到28 m3/t。构造作用影响煤体结构、地应力大小及现今地应力状态,进而影响压裂改造效果、渗流条件,直接影响煤层气井产能,研究区NE向与NW向构造分属不同形变区,北西向构造珠藏、阿弓、三塘次向斜较北西向构造比德、水公河次向斜形成时间晚,构造作用相对弱,现今地应力小于20 MPa,煤体结构主要为原生结构煤或碎裂煤,且水平应力大于垂向应力,压裂缝以水平缝为主,利于裂缝在煤储层中延伸,煤层气开发条件更有利。通过富集高产规律研究,认为南方多煤层资源基础较好,构造及其对地应力、煤体结构的影响是多煤层选区评价的关键因素,岩脚向斜珠藏–阿弓–三塘次向斜为煤层气开发有利区。区域上,远离威宁—紫云断裂的NE向含煤向斜是南方多煤层煤层气勘探的重点方向。   相似文献   

13.
煤层瓦斯含量受多种因素影响,而煤层中的节理裂隙密集带则容易导致瓦斯聚积。在煤田地质勘探中,依据振幅随炮点和检波点入射角的变化可以预测裂隙的发育方向和发育密度。在对淮南地区张集西三煤矿的三维地震数据资料处理时,按不同的方位角增量抽取方位角道集,并对其方位角道集进行速度分析、NMO校正、叠加和偏移,得到6个方位偏移数据体。根据Malick等人的理论模型对其进行计算,获得d、A、B值,并据此预测裂缝发育方向与发育密度。将其预测成果与常规地震解释成果对比,发现两者之间非常吻合,可见利用方位角道集处理方法预测煤层裂隙具有可行性。  相似文献   

14.
二氧化碳注入煤层多用途研究   总被引:1,自引:0,他引:1  
为了减轻环境污染,提高煤层气产率,增加能源储备,根据煤层气地质学和生物气的基本理论,提出二氧化碳(CO2)注入煤层多种用途这一新观点。研究结果显示:煤对CO2具有很强的吸附能力,可将煤层作为CO2的储集层;煤具有优先吸附CO2而滞后吸附甲烷(CH4)的特性,向煤层注入CO2可大大提高煤层气的采收率;产甲烷菌具有利用CO2生成CH4的能力,新生成的CH4成为能源储备的有益补充。可见,CO2注入煤层不仅可有效减少温室气体的排放,强化煤层甲烷产出,而且为新能源生物CH4的生成提供了基质。  相似文献   

15.
石智军  李泉新 《探矿工程》2016,43(10):150-153,169
我国煤层气资源非常丰富。在煤矿区,煤层气(瓦斯)开发具有增加洁净能源供给、提高煤矿安全生产保障能力、减少温室气体排放等多重效益。地面钻井开发与井下钻孔抽采是煤矿区煤层气(瓦斯)开发的基本途径,同时也是煤矿区应急救援的主要手段。本文介绍了煤矿区地面煤层气开发新技术装备,大直径钻孔施工技术与装备及井下中硬、松软煤层和岩层瓦斯抽采钻孔成孔技术与装备。在此基础上分析了在新形势下煤矿区煤层气(瓦斯)抽采钻孔成孔技术和装备发展需求,为我国煤矿区煤层气(瓦斯)钻孔成孔提供借鉴。  相似文献   

16.
应力对煤岩裂缝宽度及渗透率的影响   总被引:3,自引:1,他引:2  
煤层气的开发实践表明,煤岩裂缝和渗透率是制约我国煤层气资源开发成败的关键因素之一,以室内实验为手段,系统研究了有效应力改变条件下煤岩裂缝宽度和渗透率的变化规律.结果表明:煤岩裂缝宽度和渗透率都随有效应力的增大而减小;当有效应力达到8 MPa后,裂缝宽度变化相对缓慢,渗透率变化也很微弱.由此可见,煤岩裂缝和渗透率对应力的变化非常敏感.  相似文献   

17.
沁水盆地煤层割理的充填特征及形成过程   总被引:3,自引:0,他引:3       下载免费PDF全文
刘洪林  康永尚  王烽  邓泽 《地质学报》2008,82(10):1376-1381
煤层作为煤层气的源岩和储集层,与常规天然气储层不同在于煤储层是一种双孔隙岩层,由基质孔隙和裂隙组成,且有自身独特的割理系统,基质孔隙和割理的大小、形态、孔隙度和连通性等决定了煤层气的储集、运移和产出,其中以割理系统对煤层气的产出最为重要。本文以沁水煤田为例,对煤层割理、割理填充物类型、充填方式、自生矿物形成时代进行了研究,总结了填充物形成的先后顺序,并根据填充物的形成时代、煤层埋藏史等提出了割理形成的3种机制:埋藏增压机制;岩浆诱发机制;抬升卸压机制。  相似文献   

18.
通过对淮南煤田西部煤层甲烷资料的分析, 选择了煤炭储量的类别、煤层甲烷含量的有效测点密度和评价验证钻孔中参数的获取情况作为煤层甲烷资源量分级的综合指标, 建立了包括实证、控制、概略、远景和潜在等五个级别的煤层甲烷资源量的分级标准。  相似文献   

19.
多分支水平井在煤层气开发中的应用机理分析   总被引:13,自引:0,他引:13  
应用多分支水平井开发煤层气资源,受到煤层地质条件和分支井眼几何形态等主控因素的制约,只有将二者有机结合并进行井身结构优化,才能发挥多分支水平井的效率.多分支水平井增产机理在于能够有效沟通煤层割理和裂缝系统,增加各分支井眼的波及面积和泄气面积,降低裂隙内气液两相流的流动阻力,加速流体的排出,提高单井产量和采出程度.通过对沁水煤层气田的数值模拟与经济评价可知,用多分支水平井开发煤层气具有明显的经济效益优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号