首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The oxygen three-isotope systematics of 36 chondrules from the Allende CV3 chondrite are reported using high precision secondary ion mass spectrometer (CAMECA IMS-1280). Twenty-six chondrules have shown internally homogenous Δ17O values among olivine, pyroxene, and spinel within a single chondrule. The average Δ17O values of 19 FeO-poor chondrules (13 porphyritic chondrules, 2 barred olivine chondrules, and 4 chondrule fragments) show a peak at −5.3 ± 0.6‰ (2SD). Another 5 porphyritic chondrules including both FeO-poor and FeO-rich ones show average Δ17O values between −3‰ and −2‰, and 2 other FeO-poor barred olivine chondrules show average Δ17O values of −3.6‰ and 0‰. These results are similar to those for Acfer 094 chondrules, showing bimodal Δ17O values at −5‰ and −2‰. Nine porphyritic chondrules contain olivine grains with heterogeneous Δ17O values as low as −18‰, indicating that they are relict olivine grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The Δ17O values of four barred olivine chondrules range from −5‰ to 0‰, indicating that not all BO chondrules plot near the terrestrial fractionation line as suggested by previous bulk chondrule analyses. Based on these data, we suggest the presence of multiple oxygen isotope reservoirs in local dust-rich protoplanetary disk, from which the CV3 parent asteroid formed.A compilation of 225 olivine and low-Ca pyroxene isotopic data from 36 chondrules analyzed in the present study lie between carbonaceous chondrite anhydrous mineral (CCAM) and Young and Russell lines. These data define a correlation line of δ17O = (0.982 ± 0.019) × δ18O − (2.91 ± 0.10), which is similar to those defined by chondrules in CV3 chondrites and Acfer 094 in previous studies. Plagioclase analyses in two chondrules plot slightly below the CCAM line with Δ17O values of −2.6‰, which might be the result of oxygen isotope exchange between chondrule mesostasis and aqueous fluid in the CV parent body.  相似文献   

2.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

3.
We review the oxygen isotopic compositions of minerals in chondrules and compound objects composed of a chondrule and a refractory inclusion, and bulk oxygen isotopic compositions of chondrules in unequilibrated ordinary, carbonaceous, enstatite, and Kakangari-like chondrites, focusing on data acquired using secondary ion mass-spectrometry and laser fluorination coupled with mass-spectrometry over the last decade. Most ferromagnesian chondrules from primitive (unmetamorphosed) chondrites are isotopically uniform (within 3–4‰ in Δ17O) and depleted in 16O (Δ17O>−7‰) relative to amoeboid olivine aggregates (AOAs) and most calcium–aluminum-rich inclusions (CAIs) (Δ17O<−20‰), suggesting that these classes of objects formed in isotopically distinct gaseous reservoirs, 16O-poor and 16O-rich, respectively. Chondrules uniformly enriched in 16O (Δ17O<−15‰) are exceptionally rare and have been reported only in CH chondrites. Oxygen isotopic heterogeneity in chondrules is mainly due to the presence of relict grains. These appear to consist of chondrules of earlier generations and rare refractory inclusions; with rare exceptions, the relict grains are 16O-enriched relative to chondrule phenocrysts and mesostasis. Within a chondrite group, the magnesium-rich (Type I) chondrules tend to be 16O-enriched relative to the ferrous (Type II) chondrules. Aluminum-rich chondrules in ordinary, enstatite, CR, and CV chondrites are generally 16O-enriched relative to ferromagnesian chondrules. No systematic differences in oxygen isotopic compositions have been found among these chondrule types in CB chondrites. Aluminum-rich chondrules in carbonaceous chondrites often contain relict refractory inclusions. Aluminum-rich chondrules with relict CAIs have heterogeneous oxygen isotopic compositions (Δ17O ranges from −20‰ to 0‰). Aluminum-rich chondrules without relict CAIs are isotopically uniform and have oxygen isotopic compositions similar to, or approaching, those of ferromagnesian chondrules. Phenocrysts and mesostases of the CAI-bearing chondrules show no clear evidence for 16O-enrichment compared to the CAI-free chondrules. Spinel, hibonite, and forsterite of the relict refractory inclusions largely retained their original oxygen isotopic compositions. In contrast, plagioclase and melilite of the relict CAIs experienced melting and 16O-depletion to various degrees, probably due to isotopic exchange with an 16O-poor nebular gas. Several igneous CAIs experienced isotopic exchange with an 16O-poor nebular gas during late-stage remelting in the chondrule-forming region. On a three-isotope diagram, bulk oxygen isotopic compositions of most chondrules in ordinary, enstatite, and carbonaceous chondrites plot above, along, and below the terrestrial fractionation line, respectively. Bulk oxygen isotopic compositions of chondrules in altered and/or metamorphosed chondrites show evidence for mass-dependent fractionation, reflecting either interaction with a gaseous/fluid reservoir on parent asteroids or open-system thermal metamorphism. Bulk oxygen isotopic compositions of chondrules and oxygen isotopic compositions of individual minerals in chondrules and refractory inclusions from primitive chondrites plot along a common line of slope of 1, suggesting that only two major reservoirs (gas and solids) are needed to explain the observed variations. However, there is no requirement that each had a permanently fixed isotopic composition. The absolute (207Pb–206Pb) and relative (27Al–26Mg) chronologies of CAIs and chondrules and the differences in oxygen isotopic compositions of most chondrules (16O-poor) and most refractory inclusions (16O-rich) can be interpreted in terms of isotopic self-shielding during UV photolysis of CO in the initially 16O-rich (Δ17O−25‰) parent molecular cloud or protoplanetary disk. According to these models, the UV photolysis preferentially dissociates C17O and C18O in the parent molecular cloud and in the peripheral zones of the protoplanetary disk. If this process occurs in the stability field of water ice, the released atomic 17O and 18O are incorporated into water ice, while the residual CO gas becomes enriched in 16O. During the earliest stages of evolution of the protoplanetary disk, the inner solar nebula had a solar H2O/CO ratio and was 16O-rich. During this time, AOAs and the 16O-rich CAIs and chondrules formed. Subsequently, the inner solar nebula became H2O- and 16O-depleted, because ice-rich dust particles, which were depleted in 16O, agglomerated outside the snowline (5 AU), drifted rapidly towards the Sun and evaporated. During this time, which may have lasted for 3 Myr, most chondrules and the 16O-depleted igneous CAIs formed. We infer that most chondrules formed from isotopically heterogeneous, but 16O-depleted precursors, and experienced isotopic exchange with an 16O-poor nebular gas during melting. Although the relative roles of the chondrule precursor materials and gas–melt isotopic exchange in establishing oxygen isotopic compositions of chondrules have not been quantified yet, mineralogical, chemical, and isotopic evidence indicate that Type I chondrules may have formed in chemical and isotopic equilibrium with nebular gas of variable isotopic composition. Whether these variations were spatial or temporal are not known yet.  相似文献   

4.
A correlation of petrography, mineral chemistry and in situ oxygen isotopic compositions of fine-grained olivine from the matrix and of fine- and coarse-grained olivine from accretionary rims around Ca-Al-rich inclusions (CAIs) and chondrules in CV chondrites is used here to constrain the processes that occurred in the solar nebula and on the CV parent asteroid. The accretionary rims around Leoville, Vigarano, and Allende CAIs exhibit a layered structure: the inner layer consists of coarse-grained, forsteritic and 16O-rich olivine (Fa1-40 and Δ17O = −24‰ to −5‰; the higher values are always found in the outer part of the layer and only in the most porous meteorites), whereas the middle and the outer layers contain finer-grained olivines that are more fayalitic and 16O-depleted (Fa15-50 and Δ17O = −18‰ to +1‰). The CV matrices and accretionary rims around chondrules have olivine grains of textures, chemical and isotopic compositions similar to those in the outer layers of accretionary rims around CAIs. There is a correlation between local sample porosity and olivine chemical and isotopic compositions: the more compact regions (the inner accretionary rim layer) have the most MgO- and 16O-rich compositions, whereas the more porous regions (outer rim layers around CAIs, accretionary rims around chondrules, and matrices) have the most MgO- and 16O-poor compositions. In addition, there is a negative correlation of olivine grain size with fayalite contents and Δ17O values. However, not all fine-grained olivines are FeO-rich and 16O-poor; some small (<1 μm in Leoville and 5-10 μm in Vigarano and Allende) ferrous (Fa>20) olivine grains in the outer layers of the CAI accretionary rims and in the matrix show significant enrichments in 16O (Δ17O = −20‰ to −10‰). We infer that the inner layer of the accretionary rims around CAIs and, at least, some olivine grains in the finer portions of accretionary rims and CV matrices formed in an 16O-rich gaseous reservoir, probably in the CAI-forming region. Grains in the outer layers of the CAI accretionary rims and in the rims around chondrules as well as matrix may have also originated as 16O-rich olivine. However, these olivines must have exchanged O isotopes to variable extents in the presence of an 16O-poor reservoir, possibly the nebular gas in the chondrule-forming region(s) and/or fluids in the parent body. The observed trend in isotopic compositions may arise from mixtures of 16O-rich forsterites with grain overgrowths or newly formed grains of 16O-poor fayalitic olivines formed during parent body metamorphism. However, the observed correlations of chemical and isotopic compositions of olivine with grain size and local porosity of the host meteorite suggest that olivine accreted as a single population of 16O-rich forsterite and subsequently exchanged Fe-Mg and O isotopes in situ in the presence of aqueous solutions (i.e., fluid-assisted thermal metamorphism).  相似文献   

5.
The oxygen-isotope compositions (obtained by laser fluorination) of hand-picked separates of isolated forsterite, isolated olivine and chondrules from the Tagish Lake carbonaceous chondrite describe a line (δ17O = 0.95 * δ18O − 3.24; R2 = 0.99) similar to the trend known for chondrules from other carbonaceous chondrites. The isolated forsterite grains (Fo99.6-99.8; δ18O = −7.2‰ to −5.5‰; δ17O = −9.6‰ to −8.2‰) are more 16O-rich than the isolated olivine grains (Fo39.6-86.8; δ18O = 3.1‰ to 5.1‰; δ17O = −0.3‰ to 2.2‰), and have chemical and isotopic characteristics typical of refractory forsterite. Chondrules contain olivine (Fo97.2-99.8) with oxygen-isotope compositions (δ18O = −5.2‰ to 5.9‰; δ17O = −8.1‰ to 1.2‰) that overlap those of isolated forsterite and isolated olivine. An inverse relationship exists between the Δ17O values and Fo contents of Tagish Lake isolated forsterite and chondrules; the chondrules likely underwent greater exchange with 16O-poor nebular gases than the forsterite. The oxygen-isotope compositions of the isolated olivine grains describe a trend with a steeper slope (1.1 ± 0.1, R2 = 0.94) than the carbonaceous chondrite anhydrous mineral line (CCAMslope = 0.95). The isolated olivine may have crystallized from an evolving melt that exchanged with 16O-poor gases of somewhat different composition than those which affected the chondrules and isolated forsterite. The primordial components of the Tagish Lake meteorite formed under conditions similar to other carbonaceous chondrite meteorite groups, especially CMs. Its alteration history has its closest affinities to CI carbonaceous chondrites.  相似文献   

6.
We report the oxygen-isotope compositions of relict and host olivine grains in six high-FeO porphyritic olivine chondrules in one of the most primitive carbonaceous chondrites, CO3.0 Yamato 81020. Because the relict grains predate the host phenocrysts, microscale in situ analyses of O-isotope compositions can help assess the degree of heterogeneity among chondrule precursors and constrain the nebular processes that caused these isotopic differences. In five of six chondrules studied, the Δ17O (=δ17O −0.52 · δ18O) compositions of host phenocrysts are higher than those in low-FeO relict grains; the one exception is for a chondrule with a moderately high-FeO relict. Both the fayalite compositions as well as the O-isotope data support the view that the low-FeO relict grains formed in a previous generation of low-FeO porphyritic chondrules that were subsequently fragmented. It appears that most low-FeO porphyritic chondrules formed earlier than most high-FeO porphyritic chondrules, although there were probably some low-FeO chondrules that formed during the period when most high-FeO chondrules were forming.  相似文献   

7.
We report oxygen- and magnesium-isotope compositions of Ca,Al-rich inclusions (CAIs) from several Rumuruti (R) chondrites measured in situ using a Cameca ims-1280 ion microprobe. On a three-isotope oxygen diagram, δ17O vs. δ18O, compositions of individual minerals in most R CAIs analyzed fall along a slope-1 line. Based on the variations of Δ17O values (Δ17O = δ17O − 0.52 × δ18O) within individual inclusions, the R CAIs are divided into (i) 16O-rich (Δ17O ∼ −23-26‰), (ii) uniformly 16O-depleted (Δ17O ∼ −2‰), and (iii) isotopically heterogeneous (Δ17O ranges from −25‰ to +5‰). One of the hibonite-rich CAIs, H030/L, has an intermediate Δ17O value of −12‰ and a highly fractionated composition (δ18O ∼ +47‰). We infer that like most CAIs in other chondrite groups, the R CAIs formed in an 16O-rich gaseous reservoir. The uniformly 16O-depleted and isotopically heterogeneous CAIs subsequently experienced oxygen-isotope exchange during remelting in an 16O-depleted nebular gas, possibly during R chondrite chondrule formation, and/or during fluid-assisted thermal metamorphism on the R chondrite parent asteroid.Three hibonite-bearing CAIs and one spinel-plagioclase-rich inclusion were analyzed for magnesium-isotope compositions. The CAI with the highly fractionated oxygen isotopes, H030/L, shows a resolvable excess of 26Mg (26Mg) corresponding to an initial 26Al/27Al ratio of ∼7 × 10−7. Three other CAIs show no resolvable excess of 26Mg (26Mg). The absence of 26Mg in the spinel-plagioclase-rich CAI from a metamorphosed R chondrite NWA 753 (R3.9) could have resulted from metamorphic resetting. Two other hibonite-bearing CAIs occur in the R chondrites (NWA 1476 and NWA 2446), which appear to have experienced only minor degrees of thermal metamorphism. These inclusions could have formed from precursors with lower than canonical 26Al/27Al ratio.  相似文献   

8.
An Fe isotope study of ordinary chondrites   总被引:3,自引:0,他引:3  
The Fe isotope composition of ordinary chondrites and their constituent chondrules, metal and sulphide grains have been systematically investigated. Bulk chondrites fall within a restricted isotopic range of <0.2‰ δ56Fe, and chondrules define a larger range of >1‰ (−0.84‰ to 0.21‰ relative to the IRMM-14 Fe standard). Fe isotope compositions do not vary systematically with the very large differences in total Fe concentration, or oxidation state, of the H, L, and LL chondrite classes. Similarly, the Fe isotope compositions of chondrules do not appear to be determined by the H, L or LL classification of their host chondrite. This may support an origin of the three ordinary chondrite groups from variable accretion of identical Fe-bearing precursors.A close relationship between isotopic composition and redistribution of Fe during metamorphism on ordinary chondrite parent bodies was identified; the largest variations in chondrule compositions were found in chondrites of the lowest petrologic types. The clear link between element redistribution and isotopic composition has implications for many other non-traditional isotope systems (e.g. Mg, Si, Ca, Cr). Isotopic compositions of chondrules may also be determined by their melting history; porphyritic chondrules exhibit a wide range in isotope compositions whereas barred olivine and radial pyroxene chondrules are generally isotopically heavier than the ordinary chondrite mean. Very large chondrules preserve the greatest heterogeneity of Fe isotopes.The mean Fe isotope composition of bulk ordinary chondrites was found to be −0.06‰ (±0.12‰ 2 SD); this is isotopically lighter than the terrestrial mean composition and all other published non-chondritic meteorite suites e.g. lunar and Martian samples, eucrites, pallasites, and irons. Ordinary chondrites, though the most common meteorites found on Earth today, were not the sole building blocks of the terrestrial planets.  相似文献   

9.
We report high precision SIMS oxygen three isotope analyses of 36 chondrules from some of the least equilibrated LL3 chondrites, and find systematic variations in oxygen isotope ratios with chondrule types. FeO-poor (type I) chondrules generally plot along a mass dependent fractionation line (Δ17O ∼ 0.7‰), with δ18O values lower in olivine-rich (IA) than pyroxene-rich (IB) chondrules. Data from FeO-rich (type II) chondrules show a limited range of δ18O and δ17O values at δ18O = 4.5‰, δ17O = 2.9‰, and Δ17O = 0.5‰, which is slightly 16O-enriched relative to bulk LL chondrites (Δ17O ∼ 1.3‰). Data from four chondrules show 16O-rich oxygen isotope ratios that plot near the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line. Glass analyses in selected chondrules are systematically higher than co-existing minerals in both δ18O and Δ17O values, whereas high-Ca pyroxene data in the same chondrule are similar to those in olivine and pyroxene phenocrysts.Our results suggest that the LL chondrite chondrule-forming region contained two kinds of solid precursors, (1) 16O-poor precursors with Δ17O > 1.6‰ and (2) 16O-rich solid precursors derived from the same oxygen isotope reservoir as carbonaceous chondrites. Oxygen isotopes exhibited open system behavior during chondrule formation, and the interaction between the solid and ambient gas might occur as described in the following model. Significant evaporation and recondensation of solid precursors caused a large mass-dependent fractionation due to either kinetic or equilibrium isotope exchange between gas and solid to form type IA chondrules with higher bulk Mg/Si ratios. Type II chondrules formed under elevated dust/gas ratios and with water ice in the precursors, in which the ambient H2O gas homogenized chondrule melts by isotope exchange. Low temperature oxygen isotope exchange may have occurred between chondrule glasses and aqueous fluids with high Δ17O (∼5‰) in LL the parent body. According to our model, oxygen isotope ratios of chondrules were strongly influenced by the local solid precursors in the proto-planetary disk and the ambient gas during chondrule melting events.  相似文献   

10.
We report bulk chemical compositions and physical properties for a suite of 94 objects, mostly chondrules, separated from the Mokoia CV3ox carbonaceous chondrite. We also describe mineralogical and petrologic information for a selected subset of the same suite of chondrules. The data are used to examine the range of chondrule bulk compositions, and to investigate the relationships between chondrule mineralogy, texture and bulk compositions, as well as oxygen isotopic properties that we reported previously. Most of the chondrules show minimal metamorphism, corresponding to petrologic subtype <3.2. In general, elemental fractionations observed in chondrule bulk compositions are reflected in the compositions of constituent minerals. For chondrules, mean bulk compositions and compositional ranges are very similar for large (>2 mg) and small (<2 mg) size fractions. Two of the objects studied are described as matrix-rich clasts. These have similar bulk compositions to the chondrule mean, and are potential chondrule precursors. One of these clasts has a similar bulk oxygen isotopic composition to Mokoia chondrules, but the other has an anomalously high value of Δ17O (+3.60‰).Chondrules are diverse in bulk chemical composition, with factor of 10 variations in most major element abundances that cannot be attributed to secondary processes. The chondrules examined show evidence for extensive secondary oxidation, and possible sulfidization, as expected for an oxidized CV chondrite, but minimal aqueous alteration. Some of the bulk chondrule compositional variation might be the result of chemical (e.g. volatilization or condensation) or physical (e.g. metal loss) processes during chondrule formation. However, we suggest that it is mainly the result of significant variations in the assembly of particles that constituted chondrule precursors. Precursor material likely included a refractory component, possibly inherited from disaggregated CAIs, an FeO-poor ferromagnesian component such as olivine or pyroxene, an oxidized ferromagnesian component, and a metal component. Bulk oxygen isotope ratios of chondrules can be explained if refractory and ferromagnesian precursor materials initially shared similar oxygen isotopic compositions of δ17O, δ18O around −50‰, and then significant exchange occurred between the chondrule and surrounding 16O-poor gas during melting.  相似文献   

11.
The iron-rich olivine end-member, fayalite, occurs in the matrix, chondrules, Ca-Al-rich inclusions (CAIs), silicate aggregates, and dark inclusions in the Kaba and Mokoia oxidized CV3 chondrites. In most occurrences, fayalite is associated with magnetite and troilite. To help constrain the origin of the fayalite (Fa98-100), we measured oxygen and silicon isotopic compositions and Mn-Cr systematics in fayalite from two petrographic settings of the Kaba meteorite. One setting consists of big fayalite laths embedded in the matrix and radiating from a core of fine-grained magnetite and sulfide, while the other setting consists of small fayalite-magnetite-sulfide assemblages within or at the surface of Type I barred or porphyritic olivine chondrules. Oxygen in the big fayalite laths and small chondrule fayalites falls on the terrestrial fractionation line, and is distinct from that in chondrule forsterites, which are enriched in 16O (Δ17O = ∼−4‰). Oxygen in the big fayalite laths may be isotopically heavier than that in chondrule fayalites. Silicon isotopes suggest that forsterite is ∼1‰/amu heavier than adjacent fayalite within Kaba chondrules. However, we were unable to confirm large silicon isotopic differences among fayalites reported previously. The Mn-Cr data for big Kaba fayalites give an initial 53Mn/55Mn ratio of (2.07 ± 0.17) × 10−6, consistent with literature results on Mokoia chondrule fayalites. The combined data suggest that fayalites in both petrographic settings formed at about the same time, ∼9.7 Ma after the formation of CAIs. Our data indicate that those fayalite-magnetite-troilite assemblages replacing metal inside and around chondrules formed by aqueous alteration on the meteorite parent body. The formation site and mechanism for the big fayalite laths is less clear, but the petrographic setting indicates that they did not form in situ. None of the models that have been suggested for formation of these fayalites is entirely satisfactory.  相似文献   

12.
We report in situ measurements of O-isotopic compositions of magnetite, olivine and pyroxene in chondrules of the Ningqiang anomalous carbonaceous chondrite. The petrographic setting of Ningqiang magnetite is similar to those in oxidized-CV chondrites such as Allende, where magnetite is found together with Ni-rich metal and sulfide in opaque assemblages in chondrules. Both magnetite and silicate oxygen data fall close to the carbonaceous-chondrite-anhydrous-mineral line with relatively large ranges in δ18O in magnetite (−4.9 to +4.2‰) and in silicates (−15.2 to −4.5‰). Magnetite and silicates are not in O-isotopic equilibrium: the weighted average Δ17O (=δ17O − 0.52 × δ18O) values of magnetite are 1.7 to 3.6‰ higher than those of the silicates in the same chondrules. The petrological characteristics and O-isotopic disequilibrium between magnetite and silicates suggest the formation of Ningqiang magnetite by the oxidation of preexisting metal grains by an aqueous fluid during parent body alteration. The weighted average Δ17O of −3.3 ± 0.3‰ is the lowest magnetite value measured in unequilibrated chondrites and there is a positive correlation between Δ17O values of magnetite and silicates in each chondrule. These observations indicate that, during aqueous alteration in the Ningqiang parent asteroid, the water/rock ratio was relatively low and O-isotopic exchange between the fluid and chondrule silicates occurred on the scale of individual chondrules.  相似文献   

13.
We measured major, minor, and trace-element compositions for eleven Al-rich chondrules from unequilibrated ordinary chondrites to investigate the relationships between Al-rich chondrules, ferromagnesian chondrules, Ca-, Al-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs). Phase equilibrium considerations show that, for the most part, mineral assemblages in Al-rich chondrules are those expected from melts of the observed compositions. The diversity of mineral assemblages and Al-rich chondrule types arises mainly from the fact that the array of compositions spans both the spinel-saturated anorthite-forsterite reaction curve and a thermal divide defined by where the anorthite-forsterite join crosses the reaction curve. The reaction curve accounts for the two principal varieties of Al-rich chondrule, plagioclase-phyric and olivine-phyric, with or without aluminous spinel. The thermal divide influences the subsequent evolution of each variety. A third variety of Al-rich chondrule contains abundant sodium-rich glass; trace-element fractionation patterns suggest that these glassy Al-rich chondrules could have been derived from the other two by extensive alteration of plagioclase to nepheline followed by remelting. The bulk compositions of Al-rich chondrules (except sodium-rich ones) are intermediate in a volatility sense between ferromagnesian chondrules and type C CAIs. The combined trend of bulk compositions for CAIs, Al-rich chondrules, and ferromagnesian chondrules mirrors, but does not exactly match, the trend predicted from equilibrium condensation at PT ∼ 10-3 atm; the observed trend does not match the trend found for evaporation from a liquid of chondritic composition. We thus infer that the bulk compositions of the precursors to CAIs, Al-rich chondrules, were ferromagnesian chondrules were controlled primarily by vapor-solid reactions (condensation or sublimation) in the solar nebula. Some Al-rich chondrules are consistent with an origin by melting of a compound CAI-ferromagnesian chondrule hybrid; others cannot be so explained. Any hybrid model is restricted by the constraint that the CAI precursor consisted dominantly of pyroxene + plagioclase + spinel; melilite cannot have been a significant component. Amoeboid olivine aggregates also have the inferred mineralogical characteristics of Al-rich chondrule precursors—they are mixtures of olivine with plagioclase-spinel-pyroxene-rich CAIs—but the few measured bulk compositions are more olivine-rich than those of Al-rich chondrules.  相似文献   

14.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   

15.
We report in situ ion microprobe analyses of the oxygen isotopic composition of the major silicate phases (olivine, low-Ca pyroxene, silica, and mesostasis) of 37 magnesian porphyritic (type I) chondrules from CV (Vigarano USNM 477-2, Vigarano UH5, Mokoia, and Efremovka) and CR (EET 92042, EET 92147, EET 87770, El Djouf 001, MAC 87320, and GRA 95229) carbonaceous chondrites. In spite of significant variations of the modal proportions of major mineral phases in CR and CV chondrules, the same isotopic characteristics are observed: (i) olivines are isotopically homogeneous at the ‰ level within a chondrule although they may vary significantly from one chondrule to another, (ii) low-Ca pyroxenes are also isotopically homogeneous but systematically 16O-depleted relative to olivines of the same chondrule, and (iii) all chondrule minerals analyzed show 16O-enrichments relative to the terrestrial mass fractionation line, enrichments that decrease from olivine (±spinel) to low-Ca pyroxene and to silica and mesostasis. The observation that, in most of the type I chondrules studied, the coexisting olivine and pyroxene crystals and glassy mesostasis have different oxygen isotopic compositions implies that the olivine and pyroxene grains are not co-magmatic and that the glassy mesostasis is not the parent liquid of the olivine. The δ18O and δ17O values of pyroxene and olivine appear to be strongly correlated for all the studied CR and CV chondrules according to:
  相似文献   

16.
It has been recently suggested that (1) CH chondrites and the CBb/CH-like chondrite Isheyevo contain two populations of chondrules formed by different processes: (i) magnesian non-porphyritic (cryptocrystalline and barred) chondrules, which are similar to those in the CB chondrites and formed in an impact-generated plume of melt and gas resulted from large-scale asteroidal collision, and (ii) porphyritic chondrules formed by melting of solid precursors in the solar nebula. (2) Porphyritic chondrules in Isheyevo and CH chondrites are different from porphyritic chondrules in other carbonaceous chondrites ( [Krot et al., 2005], [Krot et al., 2008a] and [Krot et al., 2008b]). In order to test these hypotheses, we measured in situ oxygen isotopic compositions of porphyritic (magnesian, Type I and ferroan, Type II) and non-porphyritic (magnesian and ferroan cryptocrystalline) chondrules from Isheyevo and CBb chondrites MAC 02675 and QUE 94627, paired with QUE 94611, using a Cameca ims-1280 ion microprobe.On a three-isotope oxygen diagram (δ17O vs. δ18O), compositions of chondrules measured follow approximately slope-1 line. Data for 19 magnesian cryptocrystalline chondrules from Isheyevo, 24 magnesian cryptocrystalline chondrules and 6 magnesian cryptocrystalline silicate inclusions inside chemically-zoned Fe,Ni-metal condensates from CBb chondrites have nearly identical compositions: Δ17O = −2.2 ± 0.9‰, −2.3 ± 0.6‰ and −2.2 ± 1.0‰ (2σ), respectively. These observations and isotopically light magnesium compositions of cryptocrystalline magnesian chondrules in CBb chondrites (Gounelle et al., 2007) are consistent with their single-stage origin, possibly as gas-melt condensates in an impact-generated plume. In contrast, Δ17O values for 11 Type I and 9 Type II chondrules from Isheyevo range from −5‰ to +4‰ and from −17‰ to +3‰, respectively. In contrast to typical chondrules from carbonaceous chondrites, seven out of 11 Type I chondrules from Isheyevo plot above the terrestrial fractionation line. We conclude that (i) porphyritic chondrules in Isheyevo belong to a unique population of objects, suggesting formation either in a different nebular region or at a different time than chondrules from other carbonaceous chondrites; (ii) Isheyevo, CB and CH chondrites are genetically related meteorites: they contain non-porphyritic chondrules produced during the same highly-energetic event, probably large-scale asteroidal collision; (iii) the differences in mineralogy, petrography, chemical and whole-rock oxygen isotopic compositions between CH and CB chondrites are due to various proportions of the nebular and the impact-produced materials.  相似文献   

17.
We review two models for the origin of the calcium-, aluminum-rich inclusion (CAI) oxygen isotope mixing line in the solar nebula: (1) CO self-shielding, and (2) chemical mass-independent fractionation (MIF). We consider the timescales associated with formation of an isotopically anomalous water reservoir derived from CO self-shielding, and also the vertical and radial transport timescales of gas and solids in the nebula. The timescales for chemical MIF are very rapid. CO self-shielding models predict that the Sun has Δ17OSMOW ∼ −20‰ (Clayton, 2002), and chemical mass-independent fractionation models predict Δ17OSMOW ∼0‰. Preliminary Genesis results have been reported by McKeegan et al. (McKeegan K. D., Coath C. D., Heber, V., Jarzebinski G., Kallio A. P., Kunihiro T., Mao P. H. and Burnett D. S. (2008b) The oxygen isotopic composition of captured solar wind: first results from the Genesis. EOS Trans. AGU 89(53), Fall Meet. Suppl., P42A-07 (abstr)) and yield a Δ17OSMOW of ∼ −25‰, consistent with a CO self-shielding scenario. Assuming that subsequent Genesis analyses support the preliminary results, it then remains to determine the relative contributions of CO self-shielding from the X-point, the surface of the solar nebula and the parent molecular cloud.The relative formation ages of chondritic components can be related to several timescales in the self-shielding theories. Most importantly the age difference of ∼1-3 My between CAIs and chondrules is consistent with radial transport from the outer solar nebula (>10 AU) to the meteorite-forming region, which supports both the nebular surface and parent cloud self-shielding scenarios. An elevated radiation field intensity is predicted by the surface shielding model, and yields substantial CO photolysis (∼50%) on timescales of 0.1-1 My. An elevated radiation field is also consistent with the parent cloud model. The elevated radiation intensities may indicate solar nebula birth in a medium to large cluster, and may be consistent with the injection of 60Fe from a nearby supernova and with the photoevaporative truncation of the solar nebula at KBO orbital distances (∼47 AU). CO self-shielding is operative at the X-point even when H2 absorption is included, but it is not yet clear whether the self-shielding signature can be imparted to silicates. A simple analysis of diffusion times shows that oxygen isotope exchange between 16O-depleted nebular H2O and chondrules during chondrule formation events is rapid (∼minutes), but is also expected to be rapid for most components of CAIs, with the exception of spinel. This is consistent with the observation that spinel grains are often the most 16O-rich component of CAIs, but is only broadly consistent with the greater degree of exchange in other CAI components. Preliminary disk model calculations of self-shielding by N2 demonstrate that large δ15N enrichments (∼ +800‰) are possible in HCN formed by reaction of N atoms with organic radicals (e.g., CH2), which may account for 15N-rich hotspots observed in lithic clasts in some carbonaceous chondrites and which lends support to the CO self-shielding model for oxygen isotopes.  相似文献   

18.
We have conducted systematic investigations of formation age, chemical compositions, and mineralogical characteristics of ferromagnesian chondrules in Yamato-81020 (CO3.05), one of the most primitive carbonaceous chondrites, to get better understanding of the origin of chemical groups of chondrites. The 26Al-26Mg isotopic system were measured in fourteen FeO-poor (Type I), six FeO-rich (Type II) and two aluminum-rich (Al-rich) chondrules using a secondary ion mass spectrometer. Excesses of 26Mg in plagioclase (1.0-13.5‰) are resolved with sufficient precision (mostly 0.4-6.6‰ at 2σ level) in all the chondrules studied except one. Chemical zoning of Mg and Na in plagioclase were investigated in detail in order to evaluate the applicability of 26Al-26Mg chronometer. We conclude that the Al-Mg isotope system of the chondrules in Y-81020 have not been disturbed by parent-body metamorphism and can be used as chronometer assuming homogeneous distribution of 26Al. Assuming an initial 26Al/27Al ratio of 5 × 10−5 in the early solar system, 26Al-26Mg ages were found to be 1.7-2.5 Ma after CAI formation for Type I, 2.0-3.0 Ma for Type II and 1.9 and 2.6 Ma for Al-rich chondrules.The formation ages of ferromagnesian chondrules in Y-81020 are in good agreement with those of L and LL (type 3.0-3.1) chondrites in the literature, which indicates that common chondrules in the CO chondrite were formed contemporaneously with those in L and LL chondrites. The concurrent formation of chondrules of CO and L/LL chondrites suggests that the chemical differences between CO and L/LL chondrites might be caused by spatial separation of chondrule formation environments in the protoplanetary disk.  相似文献   

19.
The sulfur isotopic compositions of putative primary troilite grains within 15 ferromagnesian chondrules (10 FeO-poor and 5 FeO-rich chondrules) in the least metamorphosed ordinary chondrites, Bishunpur and Semarkona, have been measured by ion microprobe. Some troilite grains are located inside metal spherules within chondrules. Since such an occurrence is unlikely to be formed by secondary sulfidization processes in the solar nebula or on parent bodies, those troilites are most likely primary, having survived chondrule-forming high-temperature events. If they are primary, they may be the residues of evaporation at high temperatures during chondrule formation and may have recorded mass-dependent isotopic fractionations. However, the supposed primary troilites measured in this study do not show any significant sulfur isotopic fractionations (<1 ‰/amu) relative to large troilite grains in matrix. Among other chondrule troilites that we measured, only one (BI-CH22) apparently has a small excess of heavy isotopes (2.7 ± 1.4 ‰/amu) consistent with isotopic fractionation during evaporation. All other grains have isotopic fractionations of <1 ‰/amu. Because sulfur is so volatile that evaporation during chondrule formation is probably inevitable, non-Rayleigh evaporation most likely explains the lack of isotopic fractionation in putative primary troilite inside chondrules. Evaporation through the surrounding silicate melt would have suppressed the isotopic fractionation after silicate dust grains melted. At lower temperatures below extensive melting of silicates, a heating rate of >104-106 K/h would be required to avoid a large degree of sulfur isotopic fractionation in the chondrule precursors. This heating rate may provide a new constraint on the chondrule formation processes.  相似文献   

20.
The petrological properties, and O and Al-Mg isotopic compositions of two spinel-bearing chondrules from the Allende CV chondrite were investigated using scanning electron microscopy and secondary ion mass spectrometry. A coarse spinel grain in a barred-olivine (BO) chondrule is less enriched in 16O (Δ17O ∼ −5‰; Δ17O = δ17O - 0.52 δ18O), whereas smaller spinel grains in a plagioclase-rich chondrule member of a compound chondrule are extremely 16O-rich (Δ17O ∼ −17‰) and the spinels have a strongly serrated character. The petrological features and 16O-enrichments of the spinels in the plagioclase-rich chondrule indicate that spinels originating in coarse-grained Ca-Al-rich Inclusions (CAIs) were incorporated into chondrule precursors and survived the chondrule-forming event. The degree of 16O-excesses among minerals within each chondrule is correlated to the crystallization sequences. This evidence suggests that the O isotopic variation among minerals may have resulted from incomplete exchange of O isotopes between 16O-rich chondrule melt and 16O-poor nebular gas. Aqueous alteration also has changed the O-isotope compositions in the mesostasis. The feldspathic mesostasis in the BO chondrule shows a disturbed Mg-Al isochron indicating that the BO chondrule experienced secondary alteration. While plagioclase in the plagioclase-rich chondrule member of the compound chondrule shows slight 26Mg-excesses corresponding to (26Al/27Al)0 = [4.6±4.0(2σ)] × 10−6, nepheline formed by secondary alteration shows no detectable excess. The Al-Mg isotopic system of these chondrules was disturbed by aqueous alteration and thermal metamorphism on the Allende parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号