首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Early Eocene Oxisol in the Ione Formation of California formed in a coastal continental weathering environment at a paleolatitude of ∼38°N. The dominant minerals in the Oxisol are goethite, quartz, and kaolinite. Material balance calculations were applied to new measurements of chemical composition, D/H, and 18O/16O ratios of Oxisol samples to determine the δD (−150 ± 3‰) and δ18O (−2.4 ± 0.3‰) values of the goethite (α-FeOOH). These data, in combination with the global meteoric water line (MWL), yielded an isotopic temperature of 21(±4) °C. The nominal value of 21 °C contrasts with the modern mean annual temperature (MAT) of 16 °C in that area. The warmer temperature is consistent with formation of the goethite during the Early Eocene climatic optimum. The isotopic composition of the goethite and a temperature of 21 °C imply ancient water with a δD value of −61(±4)‰ and a δ18O value of −8.9(±0.5)‰. This Early Eocene δ18O (or δD) value is more negative than values in the range of isotopic scatter observed for modern global precipitation at sites with a MAT of 21 °C.At times of warm global climates, the location of a near-surface atmospheric isotherm would generally shift relative to its location under modern climatic conditions. A simple Rayleigh-type condensation model indicates that, if one “follows the isotherm”, the associated scatter in δD and δ18O of precipitation in very warm global climates should shift (for a given isotherm) to more negative values that may be detectable in proxy records. The isotopic results from the goethite of the Early Eocene Oxisol appear to add to evidence in support of this idea.  相似文献   

2.
Goethite (Ax-2) from Axel Heiberg Island (∼80°N) on the margin of the Arctic Ocean is the dominant mineral in a sample of “petrified” Eocene wood, but U, Th, and He measurements suggest that the goethite (α-FeOOH) crystallized in the latest Miocene/Pliocene (ca. 5.5 to 2.8 Ma). Measured δD and δ18O values of Ax-2 are −221 (±6)‰ and −9.6 (±0.5)‰, respectively. The inferred δD and δ18O values of the ancient water were about −139‰ and −18.6‰, respectively, with a calculated temperature of crystallization of 3 (±5)°C, which compares with the modern summer (J-J-A) temperature of 3 °C and contrasts with a modern MAT of −19 °C. Published results from various biological proxies on nearby Ellesmere Island indicate a Pliocene (∼4 Ma) MAT of either −6 or −0.4 °C and corresponding seasonal amplitudes of about 18 or 13 °C. A conductive heat flow model suggests that a temperature of 3 °C could represent goethite crystallization at depths of ∼100-200 cm (for MAT = −6 °C) or ∼250-450 cm (for MAT = −0.4 °C) over seasonally restricted intervals of time.The δ18O value of the Ax-2 water (−18.6‰) is more positive than the modern J-J-A precipitation (−22‰). In combination, the paleotemperatures and δ18O values of ancient waters (from Ax-2 and published results from three Eocene or Pliocene proxy sites on Axel Heiberg and Ellesmere Islands) are consistent with a warm season bias in those isotopic proxies. The results are also consistent with higher proportions of J-J-A precipitation in the annual total. If so, this emphasizes the importance of seasonality at high latitudes even in times of warmer global climates, and suggests that the Arctic hydrologic cycle, as expressed in the seasonal distribution and isotopic composition of precipitation (perhaps modified by a warmer Arctic Ocean), differed from modern.The δ13C value of the Fe(CO3)OH component in the Ax-2 goethite is +6.6‰, which is much more positive than expected if crystallizing goethite incorporated CO2 derived primarily from oxidation of relict Eocene wood with δ13C values of about −24‰. This apparent paradox may be resolved if the goethite is a product of oxidation of 13C-rich siderite, which had previously replaced wood in an Eocene methanogenic burial environment. Thus, the goethite retains a carbon isotope “memory” of a diagenetic Eocene event, but a δD and δ18O record of the latest Miocene/Pliocene Arctic climate.  相似文献   

3.
Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between −2.3‰ and +1.3‰. Primary hematite (δ56Fe: −0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe (δ56Fe: −0.5‰) leached from the crystalline basement. Occasional input of CO2-rich waters resulted in precipitation of isotopically light siderite (δ56Fe: −1.4 to −0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.  相似文献   

4.
A combined in situ SIMS and LA-(MC)-ICPMS study of U-Pb ages, trace elements, O and Lu-Hf isotopes was conducted for zircon from eclogite-facies metamorphic rocks in the Sulu orogen. The two microbeam techniques sampled various depths of zircon domains, revealing different element and isotope relationships between residual magmatic cores and new metamorphic rims and thus the geochemical architecture of metamorphic zircons which otherwise cannot be recognized by the single microbeam technique. This enables discrimination of metamorphic growth from different subtypes of metamorphic recrystallization. Magmatic cores with U-Pb ages of 769 ± 9 Ma have positive δ18O values of 0.1-10.1‰, high Th/U and 176Lu/177Hf ratios, high REE contents, and steep MREE-HREE patterns with negative Eu anomalies. They are interpreted as crystallizing from positive δ18O magmas during protolith emplacement. In contrast, newly grown domains have concordant U-Pb ages of 204 ± 4 to 252 ± 7 Ma and show negative δ18O values of −10.0‰ to −2.2‰, low Th/U and 176Lu/177Hf ratios, low REE contents, and flat HREE patterns with weak to no Eu anomalies. They are interpreted as growing from negative δ18O fluids that were produced by metamorphic dehydration of high-T glacial-hydrothermally altered rocks during continental subduction-zone metamorphism. Differences in δ18O between different domains within single grains vary from 0.8‰ to 12.5‰, suggesting different degrees of O isotope exchange between the positive δ18O magmatic core and the negative δ18O metamorphic fluid during the metamorphism. The magmatic zircons underwent three subtypes of metamorphic recrystallization, depending on their accessibility to negative δ18O fluids. The zircons recrystallized in solid-state maintained positive δ18O values, and REE and Lu-Hf isotopes of protolith zircon, but their U-Pb ages are lowered. The zircons recrystallized through dissolution exhibit negative δ18O values similar to the metamorphic growths, almost completely reset U-Pb ages, and partially reset REE systems. The zircons recrystallized through replacement show variably negative δ18O values, and partially reset REE, and U-Pb and Lu-Hf isotopic systems. Therefore, this study places robust constraints on the origin of metamorphic zircons in eclogite-facies rocks and provides a methodological framework for linking the different types of metamorphic zircons to petrological processes during continental collision.  相似文献   

5.
Ultramafic rocks of the Duke Island Complex in southeastern Alaska crystallized in a supra-subduction zone setting, but the serpentinization of olivine-bearing rocks involved the incursion of late-stage meteoric waters. Three textural types of serpentine (primarily lizardite) have been identified which in part reflect progress in reactions during multiple stages of fluid infiltration. The overall mesh texture of serpentine has been subdivided into a massive-type, found in dunites and wehrlites, and a dendritic-type found in wehrlites and olivine clinopyroxenites. Serpentine veins represent a late-stage in the hydrothermal alteration process. Both FeO contents and δ18O values of the three textural types of serpentine are variable at the centimeter scale. Magnetite abundance in association with serpentine is also variable with up to 5 vol% of magnetite found in samples with dendritic serpentine. Continued reaction of FeO-bearing serpentine with fluid appears to control the formation of most magnetite. Oxygen isotope ratios of the three textural types of serpentine are distinct, with the massive variety characterized by δ18O values between −3‰ and 3‰, the dendritic variety showing values between 2‰ and 6‰ and the veins having the highest values between 4‰ and 10‰. Although the δ18O values may vary by as much as 5‰ on the centimeter scale, δD values tend to show relatively less variation with over 90% of the measured values between −100‰ and −120‰. The O and H isotopic values are consistent with the involvement of meteoric water that had undergone variable degrees of isotopic exchange with country rocks prior to reacting with olivine in the Duke Island Complex. Small-scale variability in both serpentine FeO content and δ18O values suggests that chemical and isotopic equilibria may have not been attained at larger than centimeter scales. Oxygen isotopic variability in serpentine produced during relatively low-temperature hydrothermal alteration is in large part a function of exchange mediated via fluid flow through microfractures.  相似文献   

6.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

7.
Trace element and isotopic compositions of carbonate from ore bodies, country rock which hosts the ore bodies (H8 dolomite), a carbonatite dyke exposed in Dulahala near Bayan Obo, and rare earth element (REE)-rich dolomite in Bayan Obo have been determined to understand the genesis of the Bayan Obo Fe-Nb-REE ore deposit, the world’s largest resource of REE. The REE and trace element distribution patterns of samples from the REE-rich carbonatite dykes are identical to those of mineralized carbonate rocks, indicating a genetic linkage between the REE-rich carbonatite and mineralization in this region. By contrast, carbon and oxygen isotopes in the mineralized carbonate varied significantly, δ13C = −7.98‰ to −1.12‰, δ18O = 8.60-25.69‰, which are distinctively different from those in mantle-derived carbonatite. Abnormal isotopic fractionations between dolomite and calcite suggest that these two minerals are in disequilibrium in the carbonatite dyke, ore bodies, and H8 marble from Bayan Obo. This isotopic characteristic is also found in mineralized sedimentary marine micrite from Heinaobao, ∼25 km southeast of the Bayan Obo Fe-Nb-REE ore deposit. These facts imply that the carbonate minerals in the Bayan Obo deposit have resulted from sedimentary carbonate rocks being metasomatised by mantle-derived fluids, likely derived from a REE-enriched carbonatitic magma. The initial Nd isotope values of ore bodies and carbonatite dykes are identical, indicating that ore bodies, carbonatite dykes and veins may have a similar REE source.  相似文献   

8.
Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43°N, long. 122°W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing.Sulfur isotope analyses of climactic rhyodacitic whole rocks yield δ34S values of 2.8-14.8‰ with corresponding matrix glass values of 2.4-13.2‰. δ34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in δ34S from −0.4‰ to 5.8‰ and from −0.1‰ to 3.5‰, respectively. Initial δ34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0‰. Hydrogen isotope (δD) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values οf −103 to −53‰ and 0.23-1.74 wt%, respectively. Values of δD and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted δD, and mantle δ18O values, have elevated δ34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth’s atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14‰ (to δ34S values of 14‰ or more here) and hydrogen isotopic compositions by 90‰ (to δD values of −127‰ in this case).  相似文献   

9.
Unusual 18O depletion, with δ18O values as negative as −10‰ to −4‰ relative to VSMOW, was reported in zircons from ultrahigh-pressure eclogite-facies metamorphic rocks in the Dabie-Sulu orogenic belt, China. But it is critical for the negative δ18O zircons to be distinguished between magmatic and metamorphic origins, because the 18O depletion can be acquired by high-T eclogite-facies metamorphism of meteoric-hydrothermally altered low δ18O rocks. While zircon O diffusion kinetics has placed a reasonable constraint on this, zircon trace element compositions can provide a straightforward distinction between the magmatic and metamorphic origins. This paper reports our finding of unusual 18O depletion in zircon from granitic gneiss in the northeastern end of the Sulu orogen. Zircon δ18O values vary from −7.8‰ to −3.1‰ along a profile of 50 m length at Zaobuzhen. They are close to extremely low δ18O values of −9.0‰ to −5.9‰ for metagranite at Qinglongshan and adjacent areas in the southwestern end of the Sulu orogen. CL imaging suggests that the low δ18O zircons at Zaobuzhen are primarily of magmatic origin, but underwent different degrees of metamorphic modification. Zircon U-Pb dating yields middle Neoproterozoic ages of 751 ± 27 to 779 ± 25 Ma for protolith crystallization and Triassic ages of 214 ± 10 to 241 ± 33 Ma for metamorphic resetting. However, no metamorphic modification occurs in zircon REE patterns that only indicate magmatic recrystallization and hydrothermal alteration, respectively. Thus, the negative δ18O zircons are interpreted as crystallizing from negative δ18O magmas due to melting of meteoric-hydrothermally altered negative δ18O rocks in an active rift setting at about 780 Ma. The variation in zircon δ18O values indicates considerable O isotope heterogeneity in its granitic protolith. Zircon Lu-Hf isotope analyses give positive εHf(t) values of 1.6-4.1 and Hf model ages of 1.18-1.30 Ga. This suggests that the granitic protolith was derived from the mid-Neoproterozoic reworking of late Mesoproterozoic juvenile crust. The metagranites at Zaobuzhen and Qinglongshan, about 450 km apart, are two known occurrences of the unusually low δ18O zircons below −6‰ so far reported in the Sulu orogen. They are similar to each other in both protolith and metamorphic ages, so that they share the same nature of both Neoproterozoic protolith and Triassic metamorphism. Therefore, the locally negative δ18O zircons may register centers of low δ18O magmatism during the supercontinental rifting.  相似文献   

10.
In the Schwarzwald area, southwest Germany, more than 400 hydrothermal veins hosting different gangue and ore mineral assemblages cross-cut the crystalline basement rocks. Many of the post-Variscan fluorite-barite-quartz veins are considered to have precipitated through mixing of a deep saline brine with meteoric, low salinity waters. This hypothesis was tested using carbon, sulfur, and oxygen isotope data of sulfides, sulfates and calcite, coupled with fluid inclusion studies. Primary hydrothermal calcites from the deposits show a positive correlation of their δ13C (V-PDB) and δ18O (V-SMOW) values, which range from −12 to −3‰ and from 12 to 18.5‰, respectively. Carbon and oxygen isotope compositions of paragenetically young, remobilized calcite types are shifted towards higher values and range from −12 to −1‰ and from 20 to 25‰, respectively. We developed an improved calculation procedure for modeling the covariation of carbon and oxygen isotopes in calcite resulting from mixing of two fluids with different isotopic compositions and total carbon concentrations. In our model, the carbon speciation in the two model fluid end-members and the fluid mixtures are calculated using a speciation and reaction path code. The carbon and oxygen isotope covariation of primary Schwarzwald calcites can effectively be modeled by a mixing trend of a deep saline brine and a meteoric, low salinity water. Sulfur isotope data of barites from 44 hydrothermal fluorite-barite-quartz veins vary from 9 to 18‰ (CDT), sulfide ore minerals show δ34S values between −14.4 and 2.9‰. Calculated sulfide-sulfate equilibrium temperatures are in the range between 300 and 350 °C. These temperatures differ significantly from the formation temperatures of 150 to 200 °C of most of the deposits as estimated from fluid inclusions, and are interpreted as preserved paleotemperatures of the deep aquifer. This assumption has been carefully checked against possible contamination of an equilibrated sulfide-sulfate system from the deep aquifer with sulfate from surface-derived sources, considering also the kinetics of the sulfide-sulfate isotope exchange. A combination of the S isotopic results with microthermometric fluid inclusion data and constraints on the temperature of the meteoric water was used to calculate mixing ratios of the two fluid end-members. The results indicate that mass fractions of the deep saline brine in the mixed fluid were between 0.5 and 0.75. Considering all geologic, geochemical and isotopic information, we propose that the majority of the post-Variscan hydrothermal veins in the Schwarzwald area were precipitated by district-scale mixing of a homogeneous deep saline brine with meteoric waters.  相似文献   

11.
A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (<1 km) quartz arenites of the St. Peter Sandstone (in SW Wisconsin) constrains temperature and fluid sources during diagenesis. Quartz overgrowths are syntaxial (optically continuous) and show complex luminescent zonation by cathodoluminescence. Detrital quartz grains were separated from 53 rocks and analyzed for oxygen isotope ratio by laser fluorination, resulting in an average δ18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ18O between 9.8‰ and 16.7‰ (n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ18O = 29.3 ± 1.0‰ (1SD, n = 161).Given the similarity, on average, of δ18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from <1 to 21 vol.% cement, with one outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement.Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ18O values of −10‰ to −5‰ at 10-30 °C. This interpretation runs counter to conventional wisdom based on fibrous or opaline silica cements suggesting that the formation of syntaxial quartz overgrowths requires higher temperatures. While metastable silica cements commonly form at high degrees of silica oversaturation following rapid break-down reactions of materials such as of feldspars or glass, the weathering of a clean quartz arenite is slower facilitating chemical equilibrium and precipitation of crystallographically oriented overgrowths of α-quartz.  相似文献   

12.
We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using two different separation chemistries and three different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (δ25Mg = −0.14 ± 0.06; δ26Mg = −0.27 ± 0.12‰, 2SD), but our enstatite chondrite samples have lighter δ7Li (by up to ∼3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2SD), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = −0.10 ± 0.03‰ and δ26Mg = −0.21 ± 0.07‰. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk δ7Li and δ26Mg, which vary from −3.7‰ to +14.5‰, and −0.36‰ to + 0.06‰, respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ∼5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  相似文献   

13.
The Western Slope of the Songliao Basin is rich in heavy oil resources (>70 × 108 bbl), around which there are shallow gas reservoirs (∼1.0 × 1012 m3). The gas is dominated by methane with a dryness over 0.99, and the non-hydrocarbon component being overwelmingly nitrogen. Carbon isotope composition of methane and its homologs is depleted in 13C, with δ13C1 values being in the range of −55‰ to −75‰, δ13C2 being in the range of −40‰ to −53‰ and δ13C3 being in the range of −30‰ to −42‰, respectively. These values differ significantly from those solution gases source in the Daqing oilfield. This study concludes that heavy oils along the Western Slope were derived from mature source rocks in the Qijia-Gulong Depression, that were biodegraded. The low reservoir temperature (30–50 °C) and low salinity of formation water with neutral to alkaline pH (NaHCO3) appeared ideal for microbial activity and thus biodegradation. Natural gas along the Western Slope appears mainly to have originated from biodegradation and the formation of heavy oil. This origin is suggested by the heavy δ13C of CO2 (−18.78‰ to 0.95‰) which suggests that the methane was produced via fermentation as the terminal decomposition stage of the oil.  相似文献   

14.
This paper presents the results of an isotopic study of spring waters in ?wi?tokrzyski (Holy Cross Mountain) National Park (?NP), south-central Poland. The δ34SV-CDT and δ18OV-SMOW of soluble sulfates (n = 40) varied from 0.5‰ to 18.1‰ and from 3.5‰ to 12.2‰, respectively. The average δ34S values are closely similar to those of rainwater, soils and rocks (comprising scattered pyrite). This suggests that soluble sulfates in the springs originated from mixing of recent and historic deposition, sulfates derived from pyrite oxidation, and CS-mineralization in soils and debris. An additional anthropogenic sulfur input (inorganic fertilizer) occurs in the water of spring S-61 located in the ?wi?tokrzyski National Park buffer zone. The δ18OV-SMOW of spring waters (n = 4) were in the range of −10.6‰ to −10.2‰ indicating that they are derived from vadose groundwater in ?NP. This was the first isotope study of spring waters in the national parks of Poland. It enabled the determination of sulfur pathways and discrimination between natural and anthropogenic sources of this element in a relatively pristine area.  相似文献   

15.
Aqueous alteration of primitive meteorites was among the earliest geological processes during the evolution of our solar system. ‘Clumped-isotope’ thermometry of carbonates in the CM chondrites, Cold Bokkeveld, Murray, and Murchison, demonstrates that they underwent aqueous alteration at 20-71 °C from a fluid with δ18OVSMOW of 2.0‰ to 8.1‰ and δ17OVSMOW of −0.1‰ to 3.0‰. The δ13CVPDB values of these carbonates exhibit a negative correlation with the δ18OVSMOW of their formation waters, consistent with formation and escape of 13C-depleted CH4 during aqueous alteration. Methane generation under these conditions implies that the alteration fluid was characterized by an Eh ? −0.67 and pH ? 12.5 (or lower at the highest alteration temperatures). Our findings suggest that methane generation may have been a widespread consequence of planetesimal and planetary aqueous alteration, perhaps explaining the occurrence of methane on Titan, Triton, Pluto, and other Kuiper-belt objects.  相似文献   

16.
The carbon, oxygen, and strontium isotope compositions of carbonate rocks from the upper Miocene Kudankulam Formation, southern India, were measured to understand palaeoenvironment and carbonate diagenesis of this formation. Both carbon and oxygen isotope ratios of various carbonate phases including whole rocks, ooids, molluscan mold-fill and sparry pore-fill calcite cements are depleted in 18O and 13C compared to those of contemporaneous seawater, indicating that the Kudankulam carbonates underwent extensive meteoric diagenesis. Based on δ13C and δ18O values for sparry calcite cements (pore-fill and molluscan mold-fill) formed in the meteoric diagenetic realm (δ13C from −7.8‰ to −6.0‰ and −9.0‰ to −7.0‰; δ18O from −9.2‰ to −6.5‰ and −9.4‰ to −2.6‰, respectively), it is interpreted that the diagenetic system was open and was proximal to the vadose water recharge zone. The negative δ18O values of various carbonate components (about −9.4‰ to −4.1‰ for whole rocks; about −8.4‰ to −2.6‰ for ooids) suggest that during the late Miocene the paleoclimate of the study area was humid, unlike today, probably due to the intense Indian monsoon system. The carbon isotope compositions (−7.9‰ to −3.6‰ for whole rocks; −4.9‰ to −1.5‰ for ooids) are consistent with the interpretation that the paleo-ecosystem comprised a significant proportion of C4 type plants, supporting a scenario of expansion of C4 plants during the late Miocene in the Indian subcontinent as far south as the southern tip of India. The 87Sr/86Sr ratios of the Kudankulam carbonates (0.70920 to 0.72130) are much greater than those of the contemporaneous or modern seawater (between 0.7089 and 0.7091) and show a general decrease up-sequence. Such high Sr isotope ratios indicate significant radiogenic 87Sr influx to the system from the Archean rocks exposed in the drainage area, implying that the deep-seated Archean rocks were already exposed in southern India by the late Miocene.  相似文献   

17.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

18.
19.
Holocene sediments from the Gotland Deep basin in the Baltic Sea were investigated for their Fe isotopic composition in order to assess the impact of changes in redox conditions and a transition from freshwater to brackish water on the isotope signature of iron. The sediments display variations in δ56Fe (differences in the 56Fe/54Fe ratio relative to the IRMM-14 standard) from −0.27 ± 0.09‰ to +0.21 ± 0.08‰. Samples deposited in a mainly limnic environment with oxygenated bottom water have a mean δ56Fe of +0.08 ± 0.13‰, which is identical to the mean Fe isotopic composition of igneous rocks and oxic marine sediments. In contrast, sediments that formed in brackish water under periodically euxinic conditions display significantly lighter Fe isotope signatures with a mean δ56Fe of −0.14 ± 0.19‰. Negative correlations of the δ56Fe values with the Fe/Al ratio and S content of the samples suggest that the isotopically light Fe in the periodically euxinic samples is associated with reactive Fe enrichments and sulfides. This is supported by analyses of pyrite separates from this unit that have a mean Fe isotopic composition of −1.06 ± 0.20‰ for δ56Fe. The supply of additional Fe with a light Fe isotopic signature can be explained with the shelf to basin Fe shuttle model. According to the Fe shuttle model, oxides and benthic ferrous Fe that is derived from dissimilatory iron reduction from shelves is transported and accumulated in euxinic basins. The data furthermore suggest that the euxinic water has a negative dissolved δ56Fe value of about −1.4‰ to −0.9‰. If negative Fe isotopic signatures are characteristic for euxinic sediment formation, widespread euxinia in the past might have shifted the Fe isotopic composition of dissolved Fe in the ocean towards more positive δ56Fe values.  相似文献   

20.
Silicon (Si) isotope variability in Precambrian chert deposits is significant, but proposed explanations for the observed heterogeneity are incomplete in terms of silica provenance and fractionation mechanisms involved. To address these issues we investigated Si isotope systematics, in conjunction with geochemical and mineralogical data, in three well-characterised and approximately contemporaneous, ∼3.5 Ga chert units from the Pilbara greenstone terrane (Western Australia).We show that Si isotope variation in these cherts is large (−2.4‰ to +1.3‰) and was induced by near-surface processes that were controlled by ambient conditions. Cherts that formed by chemical precipitation of silica show the largest spread in δ30Si (−2.4‰ to +0.6‰) and are characterised by positive Eu, La and Y anomalies and overall depletions in lithophile trace elements. Silicon isotope systematics in these orthochemical deposits are explained by (1) mixing between hydrothermal fluids and seawater, and/or (2) fractionation of hydrothermal fluids by subsurface losses of silica due to conductive cooling. Rayleigh-type fractionation of hydrothermal fluids was largely controlled by temperature differences between these fluids and seawater. Lamina-scale Si isotope heterogeneity within individual chemical chert samples up to 2.2‰ is considered to reflect the dynamic nature of hydrothermal activity. Silicified volcanogenic sediments lack diagnostic REE+Y anomalies, are enriched in lithophile elements, and exhibit a much more restricted range of positive δ30Si (+0.1‰ to +1.1‰), which points to seawater as the dominant source of silica.The proposed model for Si isotope variability in the Early Archaean implies that chemical cherts with the most negative δ30Si formed from pristine hydrothermal fluids, whereas silicified or chemical sediments with positive δ30Si are closest to pure seawater deposits. Taking the most positive value found in this study (+1.3‰), and assuming that the Si isotope composition of seawater is governed by input of fractionated hydrothermal fluids, we infer that the temperature of ∼3.5 Ga seawater was below ∼55 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号