首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
Palaeoproterozoic (ca 2,480 Ma) felsic magmatism of Malanjkhand region of central Indian Precambrian shield, referred to as Malanjkhand granitoids (MG), contain xenoliths of country rocks and mesocratic to melanocratic, fine-grained porphyritic microgranular enclaves (ME). The shape of ME is spheroidal, ellipsoidal, discoidal, elongated, and lenticular, varying in size from a few centimeters to about 2 m across. The contact of ME with the host MG is commonly sharp, crenulate, and occasionally diffuse, which we attribute to the undercooling and disaggregation of ME globules within the cooler host MG. The ME as well as MG show hypidiomorphic texture with common mineral Hbl-Bt-Kfs-Pl-Qtz assemblage, but differ in modal proportions. The variation in minerals' composition, presence of apatite needles, elongated biotites, resorbed plagiclase, ocellar quartz, and other mafic–felsic xenocrysts strongly oppose the restite and cognate origins of ME. Compositions of plagioclases (An3–An29), amphiboles (Mg/Mg+Fe2+=0.55–0.69), and biotites (Mg/Mg+Fe2+=0.46–0.60) of ME are slightly distinct or similar to those of MG, which suggest partial to complete equilibration during mafic–felsic magma interactions. Al-in-amphibole estimates the MG pluton emplacement at ca 3.4 ± 0.5 kbar, and therefore, magma mixing and mingling must have occurred at or below this level. The substitution in biotites of ME and MG largely suggests subduction-related, calc–alkaline metaluminous (I-type) nature of felsic melts. Most major and trace elements against SiO2 produce near linear variation trends for ME and MG, probably generated by the mixing of mafic and felsic magmas in various proportions. Trace including rare earth elements patterns of ME–MG pairs, however, show partial to complete equilibration, most likely governed by different degrees of elemental diffusion. The available evidence supports the model of ME origin that coeval mafic (enclave) and felsic (MG) magmas produced a hybrid (ME) magma layer, which injected into cooler, partly crystalline MG, and dispersed, mingled, and undercooled as ME globules in a convectively dynamic magma chamber.  相似文献   

2.
Felsic magmatisms in the north of Indus-Tsangpo Suture Zone (ITSZ) in Ladakh range of northwest Indian Himalaya, referred herein Ladakh granitoids (LG), and associated magmatic rocks constitute the bulk of the Ladakh batholith. They have been characterized as Andean-type, calc-alkaline, largely metaluminous (I-type) to a few peraluminous (S-type) granitoids derived from partial melting of subducting materials. The LG can be broadly classified into coarsegrained facies with abundant mafics (hbl-bt), medium-grained facies with low content of mafics, and fine-grained leucocratic facies with very low amount of mafics. Mesocratic to melanocratic, rounded to elliptical, fine to medium grained, mafic to hybrid microgranular enclaves (ME) are ubiquitous in medium to coarse-grained LG. ME are absent or rare in the leucocratic variety of LG. In this paper different types of ME, and their field relation and microstructures with respect to felsic host LG are documented from northwestern, central, southeastern parts of the Ladakh batholith. Rounded to elongate ME of variable sizes (a few cm to metres across, mostly d<30 cm) commonly having sharp, crenulate, and occasionally diffuse contacts of ME with felsic host LG suggest that several pulses of crystal-charged mafic and felsic magmas coexisted, hybridized, and co-mingled into subvolcanic settings. Occurrence of composite ME (several small mafic ME enclosed into large porphyritic ME) strongly point to multiple mafic to hybrid magma intrusions into partly crystalline LG magma chambers. Synplutonic mafic dykes disrupted to form subrounded to angular (brecciated) mafic ME swarms commonly disposed in strike-length suggest mafic magma injections at waning stage of felsic magma evolution with large rheological contrasts. Pillowing of mafic melt against leucocratic (aplitic) residual melt strongly suggests mafic magma intrusion in nearly-crystallized condition of pluton. Although common mineral asemblages (hblbt-pl-kfs-qtz-ap-zrn-mt±ilm) of ME (diorite, quartzdiorite) and host LG (granodiorite, monzogranite) may relate to their cogenetic relation, fine to medium grained porphyritic (hybrid) nature and lack of cumulate texture of ME strongly oppose cognate origin for ME. Presence of plagioclase xenocrysts, quartz ocelli and accicular apatite in porphyritic ME strongly indicate mingling and undercooling of hybridized ME globules into relatively crystal-charged cooler host LG magma. Grain size differences of some ME, except to those of porphyritic ones, appear related to varying degrees of undercooling of ME most likely controlled by their variable sizes. Several smaller ME, however, lack fine-grained chilled margin probably because of their likely disaggregation from a large size ME during the course of progressive hybridization (mingling to mixing) leaving behind trails of mafic schlieren. Field and microstructural evidences at least suggest that Ladakh granitoids and their microgranular enclaves are products of multistage magma mingling and mixing processes concomitant fractional differentiation of several batches of mafic and felsic magmas formed in open magma chamber(s) of subduction setting.  相似文献   

3.
Neoproterozoic (690±19 Ma) felsic magmatism in the south Khasi region of Precambrian northeast Indian shield, referred to as south Khasi granitoids (SKG), contains country-rock xenoliths and microgranular enclaves (ME). The mineral assemblages (pl-hbl-bt-kf-qtz-mag) of the ME and SKG are the same but differ in proportions and grain size. Modal composition of ME corresponds to quartz monzodiorite whereas SKG are quartz monzodiorite, quartz monzonite and monzogranite. The presence of acicular apatite, fine grains of mafic-felsic minerals, resorbed maficfelsic xenocrysts and ocellar quartz in ME strongly suggest magma-mixed and undercooled origin for ME. Molar Al2O3/CaO+Na2O+K2O (A/CNK) ratio of ME (0.68–0.94) and SKG (0.81–1.00) suggests their metaluminous (I-type) character. Linear to sub-linear variations of major elements (MgO, Fe2O3 t, P2O5, TiO2, MnO and CaO against SiO2) of ME and SKG and two-component mixing model constrain the origin of ME by mixing of mafic and felsic magmas in various proportions, which later mingled and undercooled as hybrid globules into cooler felsic (SKG) magma. However, rapid diffusion of mobile elements from felsic to mafic melt during mixing and mingling events has elevated the alkali contents of some ME.  相似文献   

4.
Calc-alkaline, metaluminous granitoids in the north of Jonnagiri schist belt (JSB) are associated with abundant mafic rocks as enclave. The enclaves represent xenoliths of the basement, mafic magmatic enclaves (MME) and synplutonic mafic dykes. The MME are mostly ellipsoidal and cuspate shape having lobate margin and diffuse contact with the host granitoids. Sharp and crenulated contacts between isolated MME and host granitoids are infrequent. The MME are fine-grained, slightly dark and enriched in mafic minerals compare to the host granitoids. MME exhibits evidences of physical interaction (mingling) at outcrop scale and restricted hybridization at crystal scale of mafic and felsic magmas. The textures like quartz ocelli, sphene (titanite) ocelli, acicular apatite inclusion zone in feldspars and K-feldspar megacrysts in MME, megacrysts across the contact of MME and host and mafic clots constitute textural assemblages suggestive of magma mingling and mixing recorded in the granitoids of the study area. The quartz ocelli are most likely xenocrysts introduced from the felsic magma. Fast cooling of mafic magma resulted in the growth of prismatic apatite and heterogeneous nucleation of titanite over hornblende in MME. Chemical transfer from felsic magma to MME forming magma envisage enrichment of silica, alkalis and P in MME. The MME show low positive Eu anomalies whereas hybrid and host granitoids display moderate negative Eu-anomalies. Synplutonic mafic dyke injected at late stage of crystallising host felsic magma, display back veining and necking along its length. The variable shape, dimensions, texture and composition of MME, probably are controlled by the evolving nature and kinematics of interacting magmas.  相似文献   

5.
Microgranular enclaves from the Los Pedroches granodiorite (LPG) (Los Pedroches Batholith, Iberian Massif, Spain) have Sr-Nd isotopic and mineral chemical compositions close to those of their host. This similarity is not related to restite unmixing, as indicated by the igneous textures of the enclaves. A number of other geological and geochemical lines of evidence, including the high REE and HFSE contents of the microgranular enclaves relative to the host granitoid, strongly suggest that this similarity cannot be explained by magma mixing. Alternatively, a crystallization process by rapid cooling within the host granitoid magma could explain the geochemical and textural characteristics of the microgranular enclaves, including shape, grain size, mineralogy, texture, chemistry and Sr-Nd isotopic composition. Such a crystallization occurred at the walls of the magma conduits through which the granitic magmas were emplaced in the upper crust. This process should be considered as an alternative hypothesis to magma mixing for the generation of some microgranular enclaves, especially where no direct evidence exists for the presence of basic magmas coeval with granitoids, and where there is a lack of isotopic contrast between hosts and enclaves. As the process is favoured by feeder-dyke related emplacement, we suggest that abundance of microgranular enclaves can be related to the mechanism of emplacement of granitoid bodies.This revised version was published online in March 2005 with corrections to the accepted date.
Teodosio DonaireEmail:
  相似文献   

6.
Abstract  Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdisê giant magmatic belt, within which the Qüxü batholith is the most typical MME‐bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U‐Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±1 Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions. Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge‐scale magma mixing in the Gangdisê belt took place 15–20 million years after the initiation of the India‐Asia continental collision, genetically related to the underplating of subduction‐collision‐induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass‐energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.  相似文献   

7.
西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据   总被引:5,自引:3,他引:5  
西藏曲水碰撞花岗岩地处冈底斯构造-岩浆带中部,呈东西向平行雅鲁藏布缝合带分布.该岩体以花岗闪长岩、石英闪长岩为主,其次为石英二长闪长岩.岩体内普遍发育微粒镁铁质包体.对花岗闪长岩、石英闪长岩及微粒镁铁质包体的成因矿物学研究结果显示:(1)斜长石发育环带且边缘和核部偏基性,幔部酸性;(2)斜长石斑晶边缘常含有角闪石、黑云母等暗色矿物包体;(3)钾长石X射线结构分析显示自核部向边缘温度呈现逐渐升高的特点;(4)长石矿物中普遍含有较高的Cr、Ni、Co元素,明显不同于壳熔花岗岩;(5)角闪石、黑云母矿物MgO含量高于典型壳熔花岗岩;(6)包体中发育针状磷灰石和角闪石,显示为岩浆淬冷的结果.上述特征不可能用正常岩浆分异作用来解释,而更可能是壳-幔岩浆混合作用的结果.采用矿物温压计所得到的结果也符合混合后的岩浆演化特征.  相似文献   

8.
《International Geology Review》2012,54(10):1150-1162
Late Cretaceous calc-alkaline granites in the Gyeongsang Basin evolved through the mixing of mafic and felsic magmas. The host granites contain numerous mafic magmatic/microgranular enclaves of various shapes and sizes. New SHRIMP-RG zircon U–Pb ages of both granite and mafic magmatic/microgranular enclaves are 75.0?±?0.5 Ma and 74.9?±?0.6 Ma, respectively, suggesting that they crystallized contemporaneously after magma mixing. The time of injection of mafic melt into the felsic magma chamber can be recognized as approximately 75 Ma by field relations, petrographic features, geochemical evolution, and SHRIMP-RG zircon dating. This Late Cretaceous magma mixing event in the Korean Peninsula was probably related to the onset of subduction of the Izanagi (Kula)–Pacific ridge.  相似文献   

9.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   

10.
Summary ¶Mafic microgranular enclaves occur in most calc-alkaline granitoids, and it is widely accepted that they represent the remnants of basic magmas that interacted with more acid magmas. In this work we present new data on mafic microgranular enclaves occurring in the granodiorites of the Sithonia Plutonic Complex (Northern Greece). Enclave properties have been studied using different methods. Quantitative textural analysis has been carried out in order to decipher the crystallization history of enclaves once they have been entrained in the more acid and cooler host magma. In particular, the nucleation density (C), the mode (M) and the crystal index (n) of enclaves has been measured. Along with textural analysis, the size of enclaves has also been estimated using a method that, based on two-dimensional sections of enclaves, allows the estimation of volume of enclaves. Geochemical analyses have been performed to investigate the degree of chemical interaction that enclaves suffered from the host acid magma. The different data sets have been utilized to furnish a general evolutionary model of the magmatic interaction process between the basic and the acid magmas that led to the formation of the granodioritic host rock and related mafic microgranular enclaves. It is concluded that, as the magmatic interaction process proceeded, the crystallization of enclaves involved the nucleation of apatite and epidote (first stage of crystallization) followed by biotite, ± hornblende, plagioclase, and titanite (second stage of crystallization); the last minerals that nucleate were quartz and K-feldspar. During crystallization enclaves underwent contamination by the host acid magma through flow channels opened during the transfer of mineral phases from the host magma to the enclaves. When the two magmas attained similar rheological behaviour a two-end member mixing process was favoured inducing progressively more vigorous mixing dynamics. Volumetric analysis of enclaves indicates that the smaller ones suffered a more intense geochemical interaction compared to the larger ones. We interpret this evidence as being strictly related to the kinematics of the mixing process, the latter governed by chaotic dynamics. Enclaves are viewed as portions of the basic magma that did not mix completely with the acid host magma and survived the mixing process. Host rocks are considered as volumes of the magmatic system where the more efficient mixing dynamics produced different, generally higher, degrees of hybridisation.Received May 22, 2002; revised version accepted November 5, 2002 Published online February 24, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号