首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
萨北锡矿赋矿的富碱(A 型)花岗岩隶属于新疆东准噶尔地区卡拉麦里富碱花岗岩带,其中的萨北超单元可以划分为细粒钠铁闪石花岗岩、中细粒钠铁闪石花岗岩、中粗粒钠铁闪石花岗岩和斑状钠铁闪石花岗岩等四个单元。本次工作选择萨北超单元中的中细粒钠铁闪石花岗岩和中粗粒钠铁闪石花岗岩进行 SHRIMP 锆石 U—Pb 定年,所获得的两个样品加权平均年龄分别为313±2Ma 和314±5Ma,谐和年龄分别为310±7Ma 和314±10Ma。结合对中亚造山带东准噶尔晚古生代构造环境和萨北富碱花岗岩带花岗岩的地球化学特征,作者认为:该岩体侵位于晚石炭世(约310Ma),为晚古生代后碰撞岩浆活动的产物,与东准噶尔后碰撞深成岩浆活动的两个峰期(330~310Ma 和305~280Ma)中的前一个峰期相一致。  相似文献   

2.
新疆东准噶尔锡矿北花岗斑岩的锆石LA-ICP-MS U-Pb测年   总被引:5,自引:0,他引:5  
对东准噶尔锡矿北花岗斑岩进行锆石LA-ICP-MS U-Pb测年,获得206Pb/238U加权平均年龄为(281±10)Ma,MSWD=9.3,206Pb/238U-207Pb/235U谐和曲线图中下交点年龄为(278±11)Ma,MSWD=7.5,两者在误差范围内完全一致,时代属于早二叠世。结果表明,锡矿北花岗斑岩形成的时代属于东准噶尔后碰撞深成岩浆活动的范围(330~265Ma),晚于东准噶尔乌伦古河碱性花岗岩和卡拉麦里碱性花岗岩的形成时代(300Ma左右),以花岗斑岩为代表的晚古生代岩浆侵入活动延续到早二叠世晚期。  相似文献   

3.
新疆阿尔泰早古生代造山带侵入岩占构造带面积50%以上,近年大量高精度SHRIMP和LA-ICP-MS锆石U-Pb年代学资料反映其构造属性为奥陶纪碰撞前序列和中志留-早泥盆世后碰撞序列.碰撞前序列岩石组合为(石英)闪长岩-英云闪长岩/奥长花岗岩/花岗闪长岩-二长花岗岩序列,类似TTG组合,锆石U-Pb同位素年龄峰值为450~ 465Ma.后碰撞由二长花岗岩-正长花岗岩及少量碱长花岗岩组成,属于广义的GG组合,同位素年龄峰值390~ 415Ma.前者主要分布在中南部,后者主要分布中北部,分布的极性显示俯冲带在南侧.而区域南侧的阿尔曼太蛇绿岩带同位素年龄与北阿尔泰奥陶纪碰撞前序列时代相同,本文推测该蛇绿岩带与北阿尔泰岩浆链带构成洋脊俯冲带模式;其间的南阿尔泰晚古生代增生带、额尔齐斯强变形带、北准噶尔晚古生代洋内弧带都是后来的上叠产物.  相似文献   

4.
吴琪  屈迅  常国虎  张永  董连慧  徐兴旺 《岩石学报》2012,28(8):2331-2339
东准噶尔卡拉麦里蛇绿岩带是新疆一条重要的蛇绿岩带,地质学家对其所代表的准噶尔洋的闭合时限一直存在不同看法.我们在开展东准噶尔区域构造研究的过程中,发现红柳峡地区近东西向的片理带为韧性剪切带、且截切卡拉麦里蛇绿岩带.宏微观构造特征显示其为右旋韧性剪切带,形成于野马泉弧与准噶尔地块的碰撞过程.对韧性剪切带中的博尔羌吉糜棱岩化花岗岩和花岗质超糜棱岩开展了锆石SIMS U-Pb定年研究,结果显示糜棱岩化花岗岩锆石的谐和年龄为348.1±2.8Ma、206Pb/238U年龄的权平均年龄为348.2±2.7Ma,花岗质超糜棱岩锆石谐和年龄为343.2±2.6Ma、206Pb/238U年龄的加权平均年龄为为343.5±2.6Ma.超糜棱岩中的锆石多为新生锆石,其年龄可代表韧性剪切带的形成时间,即该韧性剪切带形成于343.2Ma.这意味着以卡拉麦里蛇绿岩带为代表的准噶尔洋在343Ma前已关闭、东准噶尔地区在早石炭世末期已进入碰撞造山阶段.  相似文献   

5.
东准噶尔萨北锡矿SHRIMP锆石U-Pb测年及地质意义   总被引:2,自引:1,他引:1  
萨北锡矿偏碱性黑云母花岗岩中锡石石英脉的SHRIMP锆石U—Pb测年表明,该矿床的锡成矿年龄为(324.2+3.4).Ma,与老鸦泉~红土井子和苏吉泉黑云母花岗岩体的成岩年龄(358.6 Ma-304+2 Ma)相当:明显早于萨北富碱花岗岩的成岩年龄(306+3 Ma-314+5 Ma)和富碱花岗岩体中的锡石(碱性角闪石)石英脉成矿年龄(263.6+3Ma-307+11 Ma).因此,萨北矿区至少存在两期锡矿化,而且这两期锡矿成矿时代与东准噶尔后碰撞深成岩浆活动的两个时段年龄(330-310 Ma和305-280 Ma)和新疆北部后碰撞3个成矿高峰期年龄(340~330 Ma,300-285 Ma,270-260 Ma)相吻合.由此可见,萨北锡矿具成矿多期性,并且与偏碱性黑云母花岗岩一富碱花岗岩岩浆演化关系密切,萨北锡矿区两类锡矿及其赋矿的碱性花岗岩都是新疆北部晚古生代后碰撞岩浆一成矿活动的产物:卡拉麦里地区可能存在与晚古生代后碰撞碱性花岗岩质岩浆有关的锡矿成矿系统.  相似文献   

6.
新疆东准噶尔(东准)构造带晚古生代地层广泛出露,其沉积时限的精确限定对理解该地区及中亚造山带的构造框架具有深远意义。然而东准构造带的地层时代标定存在多种划分方案,分歧较大。依据自测的5个安山岩和9个砂岩的锆石U-Pb年龄以及收集整理的岩浆岩和砂岩的锆石U-Pb年龄约束,认为东准噶尔构造带地质体的形成时代主要在336~268Ma,336Ma地质体沿额尔齐斯、阿尔曼太和卡拉麦里构造带零星分布。原前石炭纪和原石炭纪海相地层主体属于石炭系宾夕法尼亚亚系,部分层段应为同期异相;原石炭纪陆相地层属于二叠系乌拉尔统。东准构造带晚古生代洋盆在晚石炭世同期碰撞拼贴,将其演化阶段分为400~336Ma次生洋盆同期俯冲阶段、336~300Ma洋盆最终闭合消亡阶段、300~270Ma后碰撞伸展阶段及二叠纪中晚期南缘湖相沉积阶段。  相似文献   

7.
东准库布苏南岩体LA-ICP-MS锆石U-Pb测年   总被引:8,自引:0,他引:8  
LA-ICP-MS锆石U-Pb测年结果显示,库布苏南花岗闪长岩形成时代为(287±2)Ma,MSWD=0.15,包体年龄为(286±3)Ma,MSWl3=0.22,两者在误差范围内完全一致,表明花岗闪长岩和暗色微粒包体是同时代形成的.包体是岩浆混合作用的产物.是过冷的镁铁质岩浆混入到中酸性岩浆中经快速冷凝的结果.在岩浆混合过程中,基性的包体岩浆和中酸性的寄主岩浆通过化学扩散发生成分交换,使包体受到了花岗闪长质岩浆的改造和同化.这可能就是库布苏南花岗闪长岩及其包体LA-ICP-MS锆石U-Pb年龄相同的原因所在.库布苏南花岗闪长岩形成的时代属于东准噶尔后碰撞深成岩浆活动的范围330~265Ma,略晚于东准噶尔乌伦古河碱性花岗岩和卡拉麦里碱性花岗岩的形成时代(300 Ma左右),均为准噶尔周边地区后碰撞岩浆活动的产物,其形成和演化标志了准噶尔地区后碰撞幔源岩浆底侵作用导致大陆地壳垂向生长的过程.  相似文献   

8.
南天山:晚古生代还是三叠纪碰撞造山带?   总被引:56,自引:42,他引:56  
伊犁-哈萨克斯坦板块和塔里木-卡拉库姆板块之间的南天山造山带是‘中亚型造山带’的典型代表之一,经历了复杂的构造演化与地壳增生过程。传统上,它被视为华力西期褶皱带或晚古生代碰撞造山带。但近年来,部分学者提出它可能为三叠纪碰撞造山带。本文在综述南天山造山带的蛇绿岩、高压变质岩、花岗岩类等方面研究成果的基础上,讨论了其碰撞造山的时限。我国境内南天山西段碰撞造山可能开始于早石炭世(345Ma),结束于晚石炭世末(300Ma左右)。二叠纪时期,南天山至整个中亚地区进入后碰撞演化阶段。现有资料证实南天山为一晚古生代碰撞造山带,并非一三叠纪碰撞造山带。  相似文献   

9.
张喜  王信水  江拓  高俊 《地球科学》2022,47(3):1038-1058
位于中亚造山带西段和塔里木克拉通之间的天山造山带的古生代构造演化历史目前还存在很大争议,其广泛发育的古生代岩浆岩则是揭示俯冲增生过程和构造体制转换的重要岩石探针.本文对我国西天山巴仑台地区的7个古生代岩浆岩进行了系统的年代学和地球化学研究.LA-ICP-MS锆石U-Pb定年限定它们的结晶年龄在319~307 Ma之间,均形成于晚石炭世.地球化学特征显示晚石炭世的镁铁质岩浆岩主要起源于软流圈地幔或者受俯冲交代富集的岩石圈地幔;而同期花岗质岩石总体上均属于准铝质?弱过铝质的中钾钙碱性和高钾钙碱性I型花岗岩,主要起源于下地壳基性岩的部分熔融.根据西天山地区古生代岩浆岩的时空分布规律及变质岩、蛇绿岩和沉积岩的研究成果,本文提出320~310 Ma的岩浆岩形成于板片断离的构造背景,标志着由大陆碰撞向后碰撞的构造体制转换;而310~307 Ma的岩浆岩形成于后碰撞伸展的构造背景.   相似文献   

10.
老爷庙地区位于东准噶尔东部,是中亚造山带的重要组成部分。老爷庙流纹岩与典型A型花岗岩相似,成因类型上属A2型流纹岩,产于后碰撞环境。锆石U-Pb定年显示其形成于(311.6±3.1) Ma,属晚石炭世。综合文中数据及区域地质特征,老爷庙地区在晚石炭世已经拼贴到西伯利亚板块,进入后碰撞向板内转化的过渡期,结束了该区洋陆过渡环境。  相似文献   

11.
North Xinjiang, Northwest China, is made up of several Paleozoic orogens. From north to south these are the Chinese Altai, Junggar, and Tian Shan. It is characterized by widespread development of Late Carboniferous–Permian granitoids, which are commonly accepted as the products of post-collisional magmatism. Except for the Chinese Altai, East Junggar, and Tian Shan, little is known about the Devonian and older granitoids in the West Junggar, leading to an incomplete understanding of its Paleozoic tectonic history. New SHRIMP and LA-ICP-MS zircon U–Pb ages were determined for seventeen plutons in northern West Junggar and these ages confirm the presence of Late Silurian–Early Devonian plutons in the West Junggar. New age data, combined with those available from the literature, help us distinguish three groups of plutons in northern West Junggar. The first is represented by Late Silurian–Early Devonian (ca. 422 to 405 Ma) plutons in the EW-striking Xiemisitai and Saier Mountains, including A-type granite with aegirine–augite and arfvedsonite, and associated diorite, K-feldspar granite, and subvolcanic rocks. The second is composed of the Early Carboniferous (ca. 346 to 321 Ma) granodiorite, diorite, and monzonitic and K-feldspar granites, which mainly occur in the EW-extending Tarbgatay and Saur (also spelled as Sawuer in Chinese) Mountains. The third is mainly characterized by the latest Late Carboniferous–Middle Permian (ca. 304 to 263 Ma) granitoids in the Wuerkashier, Tarbgatay, and Saur Mountains.As a whole, the three epochs of plutons in northern West Junggar have different implications for tectonic evolution. The volcano-sedimentary strata in the Xiemisitai and Saier Mountains may not be Middle and Late Devonian as suggested previously because they are crosscut by the Late Silurian–Early Devonian plutons. Therefore, they are probably the eastern extension of the Early Paleozoic Boshchekul–Chingiz volcanic arc of East Kazakhstan in China. It is uncertain at present if these plutons might have been generated in either a subduction or post-collisional setting. The early Carboniferous plutons in the Tarbgatay and Saur Mountains may be part of the Late Paleozoic Zharma–Saur volcanic arc of the Kazakhstan block. They occur along the active margin of the Kazakhstan block, and their generation may be related to southward subduction of the Irtysh–Zaysan Ocean between Kazakhstan in the south and Altai in the north. The latest Late Carboniferous–Middle Permian plutons occur in the Zharma–Saur volcanic arc, Hebukesaier Depression, and the West Junggar accretionary complexes and significantly postdate the closure of the Irtysh–Zaysan Ocean in the Late Carboniferous because they are concurrent with the stitching plutons crosscutting the Irtysh–Zaysan suture zone. Hence the latest Late Carboniferous–Middle Permian plutons were generated in a post-collisional setting. The oldest stitching plutons in the Irtysh–Zaysan suture zone are coeval with those in northern West Junggar, together they place an upper age bound for the final amalgamation of the Altai and Kazakhstan blocks to be earlier than 307 Ma (before the Kaslmovian stage, Late Carboniferous). This is nearly coincident with widespread post-collisional granitoid plutons in North Xinjiang.  相似文献   

12.
新疆克孜尔河流经南天山造山带南缘,其河流沉积物中记录了流域内地质体的重要信息。为进一步约束南天山造山带的构造演化历史,探讨该造山带古生代地壳生长与演化,对克孜尔河沉积物中的碎屑锆石进行U‐Pb定年。结果表明锆石年龄主要集中分布在460~390 Ma和310~260 Ma,少量分布在前寒武纪,暗示南天山造山带在古生代期间发生了强烈的岩浆活动。物源分析表明克孜尔河沉积物中的碎屑锆石主要源于南天山造山带和塔里木克拉通北部,年龄为460~390 Ma的碎屑锆石很可能记录了南天山洋在晚奥陶—早泥盆世期间向南俯冲到塔里木克拉通之下的弧岩浆作用。南天山洋闭合以及塔里木克拉通与伊犁—中天山地块的最终碰撞可能发生在晚石炭世,随后发生同碰撞和后碰撞岩浆作用,以样品中大量310~260 Ma的碎屑锆石为代表。结合南天山造山带内已有的古生代岩浆岩锆石的Hf同位素数据分析表明,晚奥陶—早泥盆世南天山造山带的大陆地壳演化主要以古老地壳的再造和部分新生地幔物质的加入为主,晚石炭—早二叠世该造山带地壳演化则以前寒武纪古老基底岩石的改造为主,仅有限的新生组分加入到岩浆的形成过程中。  相似文献   

13.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

14.
西准噶尔成矿带夹持在天山断裂与额尔齐斯断裂之间,是中亚成矿域西部的核心区域之一,广泛发育晚古生代深成岩浆活动、走滑断裂构造和斑岩铜矿、造山型金矿成矿作用。本文在西准噶尔成矿带包古图岩体、康德岩体、加曼岩体、库鲁木苏岩体、别鲁阿嘎希岩体、哈图岩体、阿克巴斯套岩体、庙尔沟岩体、克拉玛依岩体及红山岩体采集12个样品,通过黑云母和钾长石(40)~Ar/(39)~Ar阶段升温测年,给出了该地区(40)~Ar/(39)~Ar冷却年龄。其中,黑云母(40)~Ar/(39)~Ar年龄处在326~302 Ma范围内,钾长石(40)~Ar/(39)~Ar年龄为297~264 Ma,反映了西准噶尔地区晚石炭世-中二叠世的区域中温冷却历史。结合前人报道的锆石U-Pb、角闪石(40)~Ar/(39)~Ar、辉钼矿Re-Os、磷灰石裂变径迹等年龄数据,构建了西准噶尔成矿带晚古生代岩浆侵入,成矿作用与构造抬升,以及晚中生代剥露过程的整个热历史;并与区域左行走滑断裂活动的时间进行了对比,讨论了(40)~Ar/(39)~Ar冷却年龄的构造意义。  相似文献   

15.
西准噶尔成矿带晚古生代花岗岩类岩浆活动及其构造意义   总被引:1,自引:0,他引:1  
中亚造山带是晚古生代地壳显著生长与大规模成矿的重要地区。本文采集了中亚造山带西部的西准噶尔成矿带哈图-别鲁阿嘎希及其附近地区11个岩体共33件花岗岩类样品,对其开展了岩石地球化学与同位素示踪等研究,厘定了该地区晚古生代岩浆活动的特点与大地构造环境,并与哈萨克斯坦境内的巴尔喀什成矿带晚古生代岩浆活动进行了对比。研究表明,哈图地区晚石炭世花岗岩类主要为后碰撞伸展构造环境的A型花岗岩类,别鲁阿嘎希等地区存在洋内俯冲与岛弧环境的埃达克岩,显示了西准噶尔晚古生代构造环境时空变化的复杂性。该地区花岗岩类εNd(t)值较高(+4.62~+7.53)、εSr(t)值为(-57.61~+18.21),具有中亚造山带花岗岩类的共同特征,为古生代增生的新生陆壳,其源区与亏损地幔组分具有亲缘关系,这与巴尔喀什成矿带东段的花岗岩类具有一致性。花岗岩的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值范围分别为18.2776~19.1677、15.5260~15.5796和38.2080~39.0821,为造山带花岗岩类。  相似文献   

16.
“钉合岩体”与新疆北部主要缝合带的形成时限   总被引:42,自引:15,他引:27  
韩宝福  郭召杰  何国琦 《岩石学报》2010,26(8):2233-2246
本文介绍了钉合岩体的概念,强调钉合岩体在造山带研究中具有重要的大地构造意义。在科迪勒拉增生造山带中,钉合岩体是在增生事件之后形成的;而在喜马拉雅碰撞造山带中,钉合岩体是在碰撞事件之后形成的。因此可以区分后增生和后碰撞两类钉合岩体,它们可以为限定增生或碰撞事件的时间上限提供年代学约束。特别是在缝合带被钉合岩体侵入的情况下,缝合带的形成时限(即增生或碰撞事件的起止时间)可以根据缝合带中最年轻的蛇绿岩质岩石和最老的钉合岩体给予严格限定。应用这种方法,能够限定新疆北部的主要缝合带(如额尔齐斯-斋桑缝合带、北天山缝合带和南天山缝合带等,东准噶尔和西准噶尔的蛇绿岩带)最晚是在晚石炭世形成的。西准噶尔增生杂岩也是在在晚石炭世形成的,但当时是否存在洋壳俯冲还需要进一步研究。目前的资料显示,虽然新疆北部各主要缝合带的形成时限存在一定差异,但没有三叠纪形成的缝合带。特别是南天山缝合带内发育的钉合岩体不但有效地限定了缝合带的时间上限,而且还从地质上约束了受到质疑的晚二叠世放射虫化石的可靠性和高压-超高压变质岩中三叠纪锆石U-Pb年龄的解释的合理性。  相似文献   

17.
West Junggar (NW China) and East Kazakhstan are situated in the southwest of the Central Asian orogenic belt (CAOB). Tectonic entities in the two areas share the same tectonic evolution history and make up the famous horseshoe-shaped orocline in Central Asia. This paper presents a newly compiled cross-border tectonic sketch map of West Junggar and East Kazakhstan and proposes the extension of the Chingiz–Tarbagatai belt and the North Balkhash-West Junggar belt.The Chingiz–Tarbagatai Belt in East Kazakhstan consists mainly of Middle-Late Ordovician differentiated volcanic rocks, pyroclastic sediments and flysch; while in the Tarbagatai Mountain in China, Tarbagatai (Kujibai) ophiolite is newly found with zircon (gabbro) age of 478 ± 3 Ma and the Ordovician flysch metamorphosed to a greenschist facies is distinguished from Devonian–Carboniferous rock associations. Therefore, the Early Paleozoic Chingiz–Tarbagatai belt of East Kazakhstan evidently extends to the northern part of West Junggar along the Tarbagatai orogenic belt.The North Balkhash-West Junggar belt lying south to the Chingiz–Tarbagatai belt is separated by the EW-trending Baiyanghe–Heshituoluogai depression in West Junggar. Early Ordovician–Early Silurian ophiolitic fragments and related pyroclastic sediments are widely exposed in Tekturmas, North Balkhash and Agadyr of East Kazashtan. Similarly, Early Paleozoic ophiolites have also been verified in Tangbale, Mayile, Baerluke, Darbut and Karamay of West Junggar in recent years. Therefore, nearly all ophiolites in West Junggar and East Kazakhstan are proved to have formed in Early Paleozoic, which suggests that the evolution of the paleo-ocean in the two areas reached its peak in the Early Paleozoic. Based on the ages of the Tangbale, Karamay and Hongguleleng ophiolites, an Early Paleozoic continental accretionary belt extending from Tangbale to Hongguleleng is determined at the NW margin of the Junggar basin for the first time. According to spatiotemporal comparison, ophiolites exposed in West Junggar and East Kazakhstan might originate from the same paleo-ocean tectonic region, and then the North Balkhash in East Kazakhstan and the West Junggar were offset for a long distance with respect to each other by the major Junggar dextral fault.Because of the large-scale accretion of continental crust before Silurian, the Late Paleozoic ocean in West Junggar and East Kazakhstan became smaller with residual nature, and extensive arc-basin-trench systems might be absent during the closure of this residual ocean.  相似文献   

18.
《China Geology》2018,1(1):84-108
There are large volumes of the Phanerozoic granitoid rocks in China and neighboring areas. In recent years, numerous new and precise U-Pb zircon ages have been published for these granitoids, and define many important magmatic events, such as ca. 500 Ma granitoid events in the West Junggar, Altai orogens in the NW China, and Qinling orogen in the central China. These ages accurately constrain the time of important Early Paleozoic, Late Paleozoic, Early Mesozoic and Late Mesozoic magmatic events of the northern, central, western, southern and eastern orogenic Mountains in China. There occur various types of granitoids in China, such as calc-alkaline granite, alkali granite, highly-fractionated granite, leucogranite, adakite, and rapakivi granite. Rapakivi granites are not only typical Proterozoic as in the North China Craton, but were also emplaced during Paleozoic and Mesozoic in the Kunlun-Qinling orogen, a part of the China Central Orogenic Belt (CCOB). Nd-Hf isotopic tracing and mapping show that granitoids in the southern Central Asian Orogenic Belt (CAOB) in China (or the Northern China Orogenic Belt) are characterized predominantly by juvenile sources. The juvenile crust in this orogenic domain accounts for over 50% by area, distinguishing it from other orogenic belts in the world, and those in central (e.g., Qinling), southwestern and eastern China. Based on a large amount of new age data, a preliminary granitoid and granitoid-tectonic maps of China have been preliminarily compiled, and an evolutionary framework of Phanerozoic granitoids in China and neighboring areas has been established from the view of assembly and breakup of continental blocks. Research ideas on granitoid tectonics has also been proposed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号