首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Coesite is typically found as inclusions in rock‐forming or accessory minerals in ultrahigh‐pressure (UHP) metamorphic rocks. Thus, the survival of intergranular coesite in UHP eclogite at Yangkou Bay (Sulu belt, eastern China) is surprising and implies locally “dry” conditions throughout exhumation. The dominant structures in the eclogites at Yangkou are a strong D2 foliation associated with tight‐to‐isoclinal F2 folds that are overprinted by close‐to‐tight F3 folds. The coesite‐bearing eclogites occur as rootless intrafolial isoclinal F1 fold noses wrapped by a composite S1–S2 foliation in interlayered phengite‐bearing quartz‐rich schists. To evaluate controls on the survival of intergranular coesite, we determined the number density of intergranular coesite grains per cm2 in thin section in two samples of coesite eclogite (phengite absent) and three samples of phengite‐bearing coesite eclogite (2–3 vol.% phengite), and measured the amount of water in garnet and omphacite in these samples, and also in two samples of phengite‐bearing quartz eclogite (6–7 vol.% phengite, coesite absent). As coesite decreases in the mode, the amount of primary structural water stored in the whole rock, based on the nominally anhydrous minerals (NAMs), increases from 107/197 ppm H2O in the coesite eclogite to 157–253 ppm H2O in the phengite‐bearing coesite eclogite to 391/444 ppm H2O in the quartz eclogite. In addition, there is molecular water in the NAMs and modal water in phengite. If the primary concentrations reflect differences in water sequestered during the late prograde evolution, the amount of fluid stored in the NAMs at the metamorphic peak was higher outside of the F1 fold noses. During exhumation from UHP conditions, where NAMs became H2O saturated, dehydroxylation would have generated a free fluid phase. Interstitial fluid in a garnet–clinopyroxene matrix at UHP conditions has dihedral angles >60°, so at equilibrium fluid will be trapped in isolated pores. However, outside the F1 fold noses strong D2 deformation likely promoted interconnection of fluid and migration along the developing S2 foliation, enabling conversion of some or all of the intergranular coesite into quartz. By contrast, the eclogite forming the F1 fold noses behaved as independent rigid bodies within the composite S1–S2 foliation of the surrounding phengite‐bearing quartz‐rich schists. Primary structural water concentrations in the coesite eclogite are so low that H2O saturation of the NAMs is unlikely to have occurred. This inherited drier environment in the F1 fold noses was maintained during exhumation by deformation partitioning and strain localization in the schists, and the fold noses remained immune to grain‐scale fluid infiltration from outside allowing coesite to survive. The amount of inherited primary structural water and the effects of strain partitioning are important variables in the survival of coesite during exhumation of deeply subducted continental crust. Evidence of UHP metamorphism may be preserved in similar isolated structural settings in other collisional orogens.  相似文献   

2.
Intergranular coesite is extremely rare in, and bears crucial information on the formation and preservation of, ultrahigh‐pressure (UHP) rocks. Here, we report the first occurrence of intergranular coesite in a metasedimentary rock, which occurs in the Ganjialing area in the Dabie Shan, east‐central China, and contains abundant coesite inclusions in both garnet and dolomite. We investigated the content of structural water in these minerals with Fourier transform infrared spectroscopy. Our new results undermine the ubiquity of the “pressure‐vessel” model and highlight the role of reaction kinetics in preserving coesite due to the availability of water in UHP rocks.  相似文献   

3.
超高压——高压剪切带   总被引:4,自引:2,他引:4  
超高压-高压剪切带是大陆碰撞造山过程中变质-变形分解作用形成的一类特殊的剪切带。剪切带内的构造以含柯石英、金刚石等超高压-高压矿物的榴辉岩、面理化超基性-基性岩、片麻岩、大理岩为特征,具有复杂的变形组构和变形历史。最终形成布丁-基质或残斑-基质结构。深入研究超高压-高压剪切带的几何学、运动学和流变学特征,对分析超高压-高压变质岩石的形成-折返过程及碰撞造山动力学,具有重要的实际和理论意义。  相似文献   

4.
Geothermometry of eclogites and other high pressure (HP)/ultrahigh‐pressure (UHP) rocks has been a challenge, due to severe problems related to the reliability of the garnet–clinopyroxene Fe–Mg exchange thermometer to omphacite‐bearing assemblages. Likewise, reliable geobarometers for eclogites and related HP/UHP rocks are scarce. In this paper, a set of internally consistent geothermobarometric expressions have been formulated for reactions between the UHP assemblage garnet–clinopyroxene–kyanite–phengite–coesite, and the corresponding HP assemblage garnet–clinopyroxene–kyanite–phengite–quartz. In the system KCMASH, the end members grossular (Grs) and pyrope (Prp) in garnet, diopside (Di) in clinopyroxene, muscovite (Ms) and celadonite (Cel) in phengite together with kyanite and coesite or quartz define invariant points in the coesite and quartz stability field, respectively, depending on which SiO2 polymorph is stable. Thus, a set of net transfer reactions including these end members will uniquely define equilibrium temperatures and pressures for phengite–kyanite–SiO2‐bearing eclogites. Application to relevant eclogites from various localities worldwide show good consistency with petrographic evidence. Eclogites containing either coesite or polycrystalline quartz after coesite all plot within the coesite stability field, while typical quartz‐bearing eclogites with no evidence of former coesite fall within the quartz stability field. Diamondiferous coesite–kyanite eclogite and grospydite xenoliths in kimberlites all fall into the diamond stability field. The present method also yields consistent values as compared with the garnet–clinopyroxene Fe–Mg geothermometer for these kinds of rocks, but also indicates some unsystematic scatter of the latter thermometer. The net transfer geothermobarometric method presented in this paper is suggested to be less affected by later thermal re‐equilibration than common cation exchange thermometers.  相似文献   

5.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   

6.
刘鹏雷  章军锋  金振民 《地球科学》2019,44(12):4028-4033
了解柯石英的产出并制约其保存机制对于深入认识超高压变质岩的形成和演化具有重要的启示意义.早期的研究发现超高压变质岩中的柯石英主要以包裹体的形式产在刚性寄主矿物中,而粒间柯石英之前仅在苏鲁仰口的超高压双矿物榴辉岩中有过发现.目前提出的柯石英保存机制主要包括以下两种:涉及"构造超压"的"高压釜"模型和较干的变质演化环境.新近报道的大别山甘家岭超高压变沉积岩中的粒间柯石英和白云石中的大量柯石英包裹体肯定了较干的变质演化环境而削弱了传统的"高压釜"模型在保存柯石英方面所起的作用.   相似文献   

7.
High‐ to ultrahigh‐pressure (HP‐UHP) metamorphic rocks that resulted from deep continental subduction and subsequent exhumation in the Sulu orogenic belt, China, have experienced multiphase deformation and metamorphic overprint during its long journey to the mantle and return to the surface. HP‐UHP shear zones are strain‐localized weak zones on which the UHP slab is transported over long distances. HP‐UHP shear zones are well exposed along a 200‐km belt in the Sulu UHP metamorphic belt. The shear zones lie structurally below the UHP rocks and above the non‐UHP rocks, suggesting the early exhumation of the UHP rocks by thrusting. The large area distribution, HP‐UHP nature, high strain and structural association of the shear zones with the UHP rocks suggest that the shear zones are probably a regional detachment developed during the early stage of exhumation of the UHP rocks. Kinematic indicators suggest top‐to‐the N–NW motion of the UHP slab during the exhumation, which, combined with isotope signature in Mesozoic igneous rocks, leads us to the interpretation that the subduction polarity is the North China plate down to the south rather than the Yangtze plate down to the north in the Sulu region.  相似文献   

8.
Detailed X‐ray compositional mapping and microtomography have revealed the complex zoning and growth history of garnet in a kyanite‐bearing eclogite. The garnet occurs as clusters of coalesced grains with cores revealing slightly higher Ca and lower Mg than the rims forming the coalescence zones between the grains. Core regions of the garnet host inclusions of omphacite with the highest jadeite, and phengite with the highest Si, similar to values in the cores of omphacite and phengite located in the matrix. Therefore, the core compositions of garnet, omphacite, and phengite have been chosen for the peak pressure estimate. Coupled conventional thermobarometry, average P–T, and phase equilibrium modelling in the NCKFMMnASHT system yields P–T conditions of 26–30 kbar at 800–930°C. Although coesite is not preserved, these P–T conditions partially overlap the coesite stability field, suggesting near ultra‐high–pressure (UHP) conditions during the formation of this eclogite. Therefore, the peak pressure assemblage is suggested to have been garnet–omphacite–kyanite–phengite–coesite/quartz–rutile. Additional lines of evidence for the possible UHP origin of the Mi?dzygórze eclogite are the presence of rod‐shaped inclusions of quartz parallel to the c‐axis in omphacite as well as relatively high values of Ca‐Tschermak and Ca‐Eskola components. Late zoisite, rare diopside–plagioclase symplectites rimming omphacite, and minor phlogopite–plagioclase symplectites replacing phengite formed during retrogression together with later amphibole. These retrograde assemblages lack minerals typical of granulite facies, which suggests simultaneous decompression and cooling during exhumation before the crustal‐scale folding that was responsible for final exhumation of the eclogite.  相似文献   

9.
The Flatraket Complex, a granulite facies low strain enclave within the Western Gneiss Region, provides an excellent example of metastability of plagioclase‐bearing assemblages under eclogite facies conditions. Coesite eclogites are found <200 m structurally above and <1 km below the Flatraket Complex, and are separated from it by amphibolite facies gneisses related to pervasive late‐orogenic deformation and overprinting. Granulites within the Flatraket Complex equilibrated at 9–11 kbar, 700–800°C. These predate eclogite facies metamorphism and were preserved metastably in dry undeformed zones under eclogite facies conditions. Approximately 5% of the complex was transformed to eclogite in zones of fluid infiltration and deformation, which were focused along lithological contacts in the margin of the complex. Eclogitisation proceeded by domainal re‐equilibration and disequilibrium breakdown of plagioclase by predominantly hydration reactions. Both hydration and anhydrous plagioclase breakdown reactions were kinetically linked to input of fluid. More pervasive hydration of the complex occurred during exhumation, with fluid infiltration linked to dehydration of external gneisses. Eclogite facies shear zones within the complex equilibrated at 20–23 kbar, 650–800°C, consistent with the lack of coesite and with the equilibration conditions of external HP eclogites. If the complex experienced pressures equivalent to those of nearby coesite eclogites (> 28 kbar), unprecedented metastability of plagioclase and quartz is implied. Alternatively, a tectonic break exists between the Flatraket Complex and UHP eclogites, supporting the concept of a tectonic boundary to the UHP zone of the Western Gneiss Region. The distribution of eclogite and amphibolite facies metamorphic overprints demonstrates that the reactivity of the crust during deep burial and exhumation is strongly controlled by fluid availability, and is a function of the protolith.  相似文献   

10.
After the discovery of metamorphic coesite in crustal rocks from the Western Alps (Italy) and the Western gneiss region (Norway) in the mid 1980s of the last century, metamorphic diamond was observed only a few years later “in situ” in the Kokchetav Massif (Kazakhstan). Findings of such coesite- and diamond-bearing ultrahigh pressure metamorphic (UHP) rocks with protoliths formed or embedded in crustal levels and subsequently experienced PT-conditions within or even higher than the coesite stability field have dramatically changed our geodynamic view of orogenetic processes. These occurrences provide evidence that crustal rocks were subducted into mantle depths and exhumed to the surface. Recent studies even suggest continental subduction to depths exceeding 300 km. These rocks have been extensively studied and many new and important observations have been made. Thus far, more than 350 papers have been published on various aspects of Kokchetav UHP rocks.The Kokchetav Massif of northern Kazakhstan is part of one of the largest suture zones in Central Asia and contains slices of HP and UHP metamorphic rocks. Classical UHP rocks mainly occur in the Kumdy Kol, Barchi Kol and Kulet areas, and include a large variety of lithologies such as calcsilicate rocks, eclogite, gneisses, schists, marbles of various compositions, garnet–pyroxene–quartz rocks, and garnet peridotite. Most of them contain microdiamonds; some of which reach a grain size of 200 μm. Most diamond grains show cuboid shapes but in rare cases, diamonds within clinozoisite gneiss from Barchi Kol occur as octahhedral form. Microdiamonds contain highly potassic fluid inclusions, as well as solid inclusions like carbonates, silicates and metal sulfides, which favour the idea of diamond formation from a C–O–H bearing fluid. Nitrogen isotope data and negative δ13C values of Kokchetav diamonds indicate a metasedimentary origin.PT-estimates of Kokchetav UHP rocks yield peak metamorphic conditions of at least 43 kbar at temperatures of about 950–1000 °C. Some zircon separates show inherited Proterozoic cores and 537–530 Ma UHP metamorphic mantle zones. Several Ar–Ar-ages on micas scatter around 529–528 and 521–517 Ma and reflect different stages of the exhumation history. Migmatization occurred during exhumation at about 526–520 Ma.Isotopic studies on calcsilicate rocks confirm a metasedimentary origin: δ18O values of garnet and clinopyroxene of a layered calcsilicate rock rule out the possibility having a primitive mantle protolith. Similar studies on eclogites indicate their basaltic protolith having experienced water–rock interaction prior to UHP metamorphism.A number of unique mineralogical findings have been made on Kokchetav UHP rocks. K-feldspar exsolutions in clinopyroxene demonstrate that potassium can be incorporated into the cpx-structure under upper mantle pressures. Other significant observations are coesite exsolutions in titanite, quartz-rods in cpx, the discovery of K-tourmaline as well as new minerals like kokchetavite, a hexagonal polymorph of K-feldspar and kumdykolite, an orthorhombic polymorph of albite.The Kokchetav UHP rocks represent a unique and challenging stomping ground for geoscientists of various disciplines. From crystallography, petrology and geochemistry to geophysics and geodynamics/geotectonics – it concerns all who are interested in the diverse metamorphic processes under upper mantle conditions.  相似文献   

11.
Monocrystalline quartz inclusions in garnet and omphacite from various eclogite samples from the Lanterman Range (Northern Victoria Land, Antarctica) have been investigated by cathodoluminescence (CL), Raman spectroscopy and imaging, and in situ X‐ray (XR) microdiffraction using the synchrotron. A few inclusions, with a clear‐to‐opalescent lustre, show ‘anomalous’ Raman spectra characterized by weak α‐quartz modes, the broadening of the main α‐quartz peak at 465 cm?1, and additional vibrations at 480–485, 520–523 and 608 cm?1. CL and Raman imaging indicate that this ‘anomalous’α‐quartz occurs as relicts within ordinary α‐quartz, and that it was preserved in the internal parts of small quartz inclusions. XR diffraction circular patterns display irregular and broad α‐quartz spots, some of which show an anomalous d‐spacing tightening of ~2%. They also show some very weak, hazy clouds that have d‐spacing compatible with coesite but not with α‐quartz. Raman spectrometry and XR microdiffraction characterize the anomalies with respect to α‐quartz as (i) a pressure‐induced disordering and incipient amorphization, mainly revealed by the 480–485 and 608‐cm?1 Raman bands, together with (ii) a lattice densification, evidenced by d‐spacing tightening; (iii) the cryptic development of coesite, 520–523 cm?1 being the main Raman peak of coesite and (iv) Brazil micro‐twinning. This ‘anomalous’α‐quartz represents the first example of pressure‐induced incipient amorphization of a metastable phase in a crustal rock. This issue is really surprising because pressure‐induced amorphization of metastable α‐quartz, observed in impactites and known to occur between 15 and 32 GPa during ultrahigh‐pressure (UHP) experiments at room temperature, is in principle irrelevant under normal geological P–T conditions. A shock (due to a seism?) or a local overpressure at the inclusion scale (due to expansion mismatch between quartz and its host mineral) seem the only geological mechanisms that can produce such incipient amorphization in crustal rocks. This discovery throws new light on the modality of the quartz‐coesite transition and on the pressure regimes (non‐lithostatic v. lithostatic) during high‐pressure/UHP metamorphism. In particular, incipient amorphization of quartz could favour the quartz‐coesite transition, or allow the growth of metastable coesite, as already experimentally observed.  相似文献   

12.
INTRODUCTIONIn recent years a num ber of detailed m ineralogical- petro-logical studies have been carried out on the UHP and HPmetamorphic belts in the Dabie- Sulu region,central China(see review papers by Jahn,1999;Ernst and L iou,1999;Wallis et al.,1999;Hacker et al.,1996 ;L iou et al.,1996 ;Cong et al.,1994) . Various tectonic evolution models for theUHP belt in the Dabie- Sulu region have been constructed(e.g.,Webb etal.,1999;Hacker et al.,1996 ;Cong et al.,1994) .However,as …  相似文献   

13.
New petrographic evidence and a review of the latest radiometric age data are taken to indicate that formation of the ultra‐high pressure (UHP) eclogites within the Western Gneiss Region of Norway probably occurred within the 400–410 Ma time frame. Thus, this event took place significantly later than the previous, widely accepted age of c. 425 Ma for the timing of the high pressure metamorphism in this part of the Scandinavian Caledonides. Garnet growth under UHP (coesite‐stable) conditions is recognised as a discrete, younger event following on from earlier garnet formed under firstly amphibolite facies then quartz‐stable, eclogite facies conditions. Currently, the best constrained and most precise age, specifically for UHP mineral growth, is the 402 ± 2 Ma U–Pb age for metamorphic zircon (some of which retain coesite inclusions) from the Hareidland eclogite. Exhumation must have followed shortly thereafter and, based on synoptic pressure–temperature and depth–time curves, must have been very fast. Our data and those of others indicate an initial fast exhumation to about 35 km depth by about 395 Ma at a mean rate of about 10 mm a?1. This rapid exhumation rate may have been driven by the appreciable residual buoyancy of the deeply subducted continental crustal slab due to incomplete eclogitization of the dominant Proterozoic orthogneisses during the short‐lived UHP event. Subsequent exhumation to 8–10 km depth by about 375 Ma occurred at a much slower mean rate of about 1.3 mm a?1 with the late‐stage extensional collapse of the Caledonian orogen playing an increasingly important role, especially in the final unroofing of the Western Gneiss Region with some remarkably preserved UHP rocks.  相似文献   

14.
追溯和重塑超高压变质岩由100多千米地幔深度折返至上地壳及地表的过程,对理解会聚板块边缘及大陆碰撞带的运动学和动力学是极为重要的.主要依据构造学、岩石学、地球化学和可利用的地质年代学资料,结合区域多期变形分析,大别-苏鲁区超高压变质岩的折返过程至少可分解出4个大的阶段.块状榴辉岩记录了三叠纪(约250~230 Ma)大陆壳岩石的深俯冲/碰撞作用.超高压变质岩早期迅速折返发生于超高压峰期变质作用(P>3.1~4.0 GPa,T≈800±50 ℃)之后,处于地幔深度和柯石英稳定域,相当于区域D2变形期阶段.分别与区域变形期D3、D4和D5对应的折返过程,以及后成合晶、冠状体等卸载不平衡结构发育和减压部分熔融作用2个中间性构造热事件,均发生在地壳层次. 网络状剪切带在折返过程的不同阶段和不同层次均有发育,标志着在超高压变质带内的变质和变形分解作用曾重复进行.着重指出,超高压变质岩的折返,主要是由大陆壳的深俯冲/碰撞和伸展作用控制的构造过程,且受到俯冲带内、带外诸多因素的约束,其中水流体就起关键作用.   相似文献   

15.
赵中岩  方爱民 《岩石学报》2005,21(4):1109-1116
超高压变质岩是大陆深俯冲作用的产物。超高压变质岩在深俯冲和快速折返过程中,经历了长距离地构造搬运和构造力的作用。其构造变形主要集中在韧性剪切带中,并发生强烈地塑性流变。研究超高压变质构造岩的显微构造及其变形机制对于深入了解大陆壳岩石在深俯冲过程中的流变学行为有十分重要的意义,山东仰口的超高压韧性剪切带中榴辉岩质和花岗质糜棱岩记录了超高压变形的历史。在超高压条件下的稳定矿物绿辉石、多硅白云母、兰晶石和钾长石具有不规则波状消光、亚晶界、核幔构造和动态重结晶等显微构造特征,TEM 研究揭示了大量的位错构造,表明位错蠕变是其主要的变形机制。在花岗质糜棱岩中,金红石在刚性矿物的压力影中沉积,细粒的石榴石条带平行片理延伸,都说明超高压变形过程中有流体存在,流体助力的物质扩散迁移是又一个重要的变形机制。依据现有的流变学定律估算的流变应力应该在几十兆帕以上。  相似文献   

16.
Metamorphic zircon from coesite‐bearing eclogites in the Dabie Mountains encloses high‐P phases, and may have formed at the peak of ultrahigh‐pressure (UHP) metamorphism. Morphologically, the metamorphic zircon typically occurs as small, multi‐faceted, near‐spherical grains with homogeneous internal structure and weak backscattered electron (BSE) luminescence. Geochemically, it is characterized by extremely high and relatively constant contents of hafnium (Hf) and very low contents of Y, U and Th, reflecting the contraction of the zircon lattice under the UHP conditions. High contents of Hf may be characteristic of zircon formed during UHP metamorphism, which has important consequences for interpretation of geochronological results. We propose that the metamorphic zircon extremely enriched in Hf may be used to date the peak of UHP metamorphism that produced the coesite‐bearing eclogites in the Dabie Mountains, and potentially in other UHP terranes.  相似文献   

17.
Ultrahigh‐pressure (UHP) rocks from the Western Gneiss Region (WGR) of Norway record subduction of Baltican continental crust during the Silurian to Devonian Scandian continental collision. Here, we report a new coesite locality from the island of Harøya in the Nordøyane UHP domain, the most northerly yet documented in the WGR, and reconstruct the P–T history of the host eclogite. The coesite–eclogite lies within migmatitic orthogneiss, interpreted as Baltica basement, that underwent multiple stages of deformation and partial melting during exhumation. Two stages of metamorphism have been deduced from petrography and mineral chemistry. The early (M1) assemblage comprises garnet (Pyr38–41Alm35–37Grs23–26Spss1) and omphacite (Na0.35–0.40Ca0.57–0.60Fe2+0.08–0.10Mg0.53Fe3+0.01AlVI0.40–0.42)2(AlIV0.03–0.06Si1.94–1.97)2O6, with subordinate phengite, kyanite, rutile, coesite and apatite, all present as inclusions in garnet. The later (M2) assemblage comprises retrograde rims on garnet (Pyr38–40Alm40–44Grs16–21Spss1), diopside rims on omphacite (Na0.04–0.06Ca0.88–0.91Fe2+0.09–0.13Mg0.81–83Fe3+0.08AlVI0.03)2(AlIV0.07–0.08Si1.92–1.93)2O6, plagioclase, biotite, pargasite, orthopyroxene and ilmenite. Metamorphic P–T conditions estimated using thermocalc are ~3 GPa and 760 °C for M1, consistent with the presence of coesite, and ~1 GPa and 813 °C for M2, consistent with possible phengite dehydration melting during decompression. Comparison with other WGR eclogites containing the same assemblage shows a broad similarity in peak (M1) P–T conditions, confirming suggestions that large portions of the WGR were buried to depths of ~100 km during Scandian subduction. Field relations suggest that exhumation, accompanied by widespread partial melting, involved an early phase of top‐northwest shearing, followed by subhorizontal sinistral shearing along northwest‐dipping foliations, related to regional transtension. The present results add to the growing body of data on the distribution, maximum P–T conditions, and exhumation paths of WGR coesite–eclogites and their host rocks that is required to constrain quantitative models for the formation and exhumation of UHP metamorphic rocks during the Scandian collision.  相似文献   

18.
Eclogite, orthogneiss and, by association, metapelite from an island at 78°N in North‐East Greenland experienced ultrahigh‐pressure (UHP) metamorphism at approximately 970 °C and 3.6 GPa, at the end of the Caledonian collision, 360–350 Ma. Hydrous metapelites contain abundant leucocratic layers and lenses composed of medium‐grained, anhedral, equigranular quartz, antiperthitic plagioclase and K‐feldspar with minor small garnet and kyanite crystals. Leucosomes are generally parallel to the matrix foliation, are interlayered with residual quartz bands, anastomose around residual garnet and commonly cross‐cut micaceous segregations. Textures suggest that the leucosomes crystallized from a syntectonic melt, but crystallized at the end of local high‐grade deformation. The metapelite outcrop is < 1.5 km from kyanite eclogites with confirmed coesite, but the metapelites lack coesite and palisade textures diagnostic of coesite pseudomorphs. They do contain highly fractured garnet megacrysts with polycrystalline quartz inclusions (some surrounded by radial fractures) and Ti‐rich phengite inclusions that suggest the former presence of coesite. Polyphase inclusions in garnet contain reactants and products of the inferred dehydration melting reaction: Phe + Qtz = Ky + Kfs + Rt + melt. The reactants are thought to have been early inclusions of hydrous phases within garnet that melted and then crystallized new phases. Garnet surrounding these inclusions has patchy zoning with elevated Ca, consistent with experiments that produced similar patchy microstructures in garnet around inclusions with an unequivocal melt origin. The peak UHP metamorphic assemblage in these rocks is inferred to have been phengite, coesite, garnet, kyanite, rutile, fluid ± omphacite ± epidote. Phase diagrams indicate that dehydration melting of phengite in this assemblage would have occurred after decompression from peak pressure, but still above the coesite to quartz transition. Unusual crown‐ and moat‐like textures in garnet around some polycrystalline quartz inclusions are also consistent with the inference that melting took place at UHP conditions.  相似文献   

19.
Eclogites from the Jæren nappe in the Caledonian orogenic belt of SW Norway contain aragonite, magnesite and dolomite in quartz‐rich layers. The carbonates comprise composite grains that occur interstitially between phases of the eclogite facies assemblage: garnet + omphacite + zoisite + clinozoisite + quartz + apatite + rutile ± dolomite ± kyanite ± phengite. Pressure and temperature conditions for the main eclogite stage are estimated to be 2.3–2.8 GPa and 585–655 °C. Published ultrahigh pressure (UHP) experiments on CaO‐, MgO‐ and CO2‐bearing systems have shown that equilibrium assemblages of aragonite and magnesite form as a result of dolomite breakdown at pressures >5 GPa. As a result, recognition of magnesite and aragonite in eclogite facies rocks has been used as an indicator for UHP conditions. However, petrological testing showed that the samples studied here have not experienced such conditions. Aragonite and magnesite show disequilibrium textures that indicate replacement of magnesite by aragonite. This process is inferred to have occurred via a coupled dissolution–precipitation reaction. The formation of aragonite is constrained to eclogite facies conditions, which implies that the studied rocks have experienced metasomatic, reactive fluid flow during their residence at high pressure (HP) conditions. During decompression, the bimineralic carbonate aggregates were overgrown by rims of dolomite, which partially reacted with aragonite to form Mg‐calcite. The well‐preserved carbonate assemblages and textures observed in the studied samples provide a detailed record of the reaction series that affected the rocks during and after their residence at P–T conditions near the coesite stability field. Recognition of the HP mechanism of magnesite replacement by aragonite provides new insight into metasomatic processes that occur in subduction zones and illustrates how fluids facilitate HP carbonate reactions that do not occur in dry systems at otherwise identical physiochemical conditions. This study documents that caution is warranted in interpreting aragonite‐magnesite associations in eclogite facies rocks as evidence for UHP metamorphic conditions.  相似文献   

20.
Metapelite is one of the predominant rock types in the high-pressure–ultrahigh-pressure(HP–UHP) metamorphic belt of western Tianshan, NW China; however, the spatial and temporal variations of this belt during metamorphism are poorly understood. In this study, we present comparative petrological studies and 40Ar/39 Ar geochronology of HP and UHP pelitic schist exposed along the Habutengsu valley. The schist mainly comprises quartz, white mica, garnet, albite and bluish amphibole. In the Mn O–Na2O–Ca O–K2O–Fe O–Mg O–Al2O3–Si O2–H2O(Mn NCKFMASH) system, P–T pseudosections were constructed using THERMOCALC 333 for two representative pelitic schists. The results demonstrate that there was a break in the peak metamorphic pressures in the Habutengsu area. The northern schist has experienced UHP metamorphism, consistent with the presence of coesite in the same section, while the southern one formed at lower pressures that stabilized the quartz. This result supports the previous finding of a metamorphic gradient through the HP–UHP metamorphic belt of the Chinese western Tianshan by the authors. Additionally, phengite in the northern schist was modelled as having a Si content of 3.55–3.70(a.p.f.u.) at the peak stage, a value much higher than that of oriented matrix phengite(Si content 3.32–3.38 a.p.f.u.). This indicates that the phengite flakes in the UHP schist were subjected to recrystallization during exhumation, which is consistent with the presence of phengite aggregates surrounding garnet porphyroblast. The 40Ar/39 Ar age spectra of white mica(dominantly phengite) from the two schists exhibit similar plateau ages of ca. 315 Ma, which is interpreted as the timing of a tectonometamorphic event that occurred during the exhumation of the HP–UHP metamorphic belt of the Chinese western Tianshan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号