首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluxes of carbon dioxide, water vapor, and heat were measured above crop canopy using the eddy covariance method during the 2008 maize growing season, over an agricultural field within an oasis located in the middle reaches of Heihe River basin, northwest China. The values for friction velocity, the Monin–Obukhov stability parameter, and energy balance closure indicated that the eddy covariance system at this study site provided reliable flux estimates. Results from measurements showed that the mean sensible heat flux was 70 W m−2 with a maximum value of 164 W m−2 (May) and a minimum value of 45 W m−2 (July) during the maize growing season. In contrast, the mean latent heat was 278 W m−2 with a maximum value of 383 W m−2 (July) and minimum of 101 W m−2 (May). The mean downward soil heat flux was 55 W m−2 with a maximum value of 127 W m−2 (May) and minimum of 49 W m−2 (July). The magnitude of mean daytime net CO2 uptake was −11.50 μmol m−2 s−1 with a maximum value of −28.32 μmol m−2 s−1 (18 and 19 July) and a minimum values of −0.32 μmol m−2 s−1 (18 and 19 May). Correlation was observed between daytime half-hourly carbon dioxide flux and canopy conductance. In addition, the relationship between carbon dioxide flux and photosynthetically active radiation for selected days during different stages of maize growing season indicated the carbon dioxide flux uptake by the canopy was controlled by actual photosynthetic activity related to the variation of green leaf area index for the different growing stages.  相似文献   

2.
A methodology is proposed to improve the groundwater budget model by determining the past, present, and future recharge and discharge rates. The model is applied to an increasingly urbanized and industrialized region with drying tendencies: the Toluca Valley, Mexico. This study includes spatially variable recharge determined from the historical climate data, the climate change predictions, and the multiple parameters used in the Hydrologic Evaluation of Landfill Performance (HELP3) model. Using HELP3 a spatial discretization for the average recharge is obtained and estimated at 376 million cubic meters per year (Mm3/year). When considering climate change predictions, by 2050 the average scenario projects recharge to decrease by 15 Mm3/year (from 376 to 361 Mm3/year), and in a worst case scenario up to a maximum decrease of 88 Mm3/year (from 376 to 288 Mm3/year). Groundwater pumping has increased steadily since 1970 and is estimated at 495 Mm3/year for 2010. The current average deficit estimated for 2010 is 172 Mm3/year with average projections increasing to over 292 Mm3/year by 2050. This study of two of the most important components of the water cycle (recharge and discharge) clearly shows that the decreasing water availability in the Toluca basin is due mainly to groundwater pumping and that the current pumping rates are not sustainable. The current deficit can be considered problematic and projections based on expected water consumption and climate change reinforce the need for management of the water resources to be addressed.  相似文献   

3.
Symptoms of dental fluorosis have been observed in rural communities located in the Sierras Pampeanas de Córdoba, a mountainous area in Central Argentina. The clinical assessment was performed in the Charbonier Department, where the fluoride (F) intake was determined to be 3.90 ± 0.20 mg day−1 (n = 16). In this community, mild and severe fluorosis reach an incidence of 86.7% (total teeth surface = 636 teeth) among the children population. To determine the origin and distribution of fluorine in natural waters from the Charbonier Department and nearby regions, sampling was performed in the area covering the San Marcos River basin. The obtained results show that F concentrations vary between ~1 to ~2.5 mg l−1, with an outlier value of 8 mg l−1. The spatial distribution of F shows that the lowest concentrations are found at the basin’s catchments. Maximum values are located in two sectors of the basin: the Charbonier depression in the eastern part and at the San Marcos village, downstream the main collector, in the western part of the basin. In these two regions, the F contents in ground- and surface waters are >2.0 mg l−1 and nearly constant. Dissolved F in natural waters from the study area has its origin in the weathering of F-bearing minerals present in the region’s dominant lithology. The extent of mineral weathering is mostly determined by the residence time of water within the aquatic reservoir. Longer residence times and a major solid–water interaction lead to enhanced release of F. This explains the higher F concentrations found in basin areas with lower run off. The removal of F from water appears to occur by neither fluorite precipitation, nor by adsorption. Hence, variations in F concentrations seem to be more related to regional hydrological conditions.  相似文献   

4.
Benthic oxygen, dinitrogen, and nutrient fluxes (NH4+, NO3, and PO43−) were measured monthly during a 1-year period at two locations in Weeks Bay, a shallow (1.4 m) and eutrophic estuary in Alabama. Gross primary productivity (GPP), ecosystem respiration (R), and net ecosystem metabolism were determined from high-frequency dissolved oxygen measurements. Peak water column NO3 (55 μM) and chlorophyll a (138 μg/l) concentrations were measured during spring and fall, respectively. Sediments were a net source of NH4+ (102 μmol m−2 h−1) and PO43− (0.9 μmol m−2 h−1) but a sink for NO3 (−30 μmol m−2 h−1). Benthic N2 fluxes indicated net N fixation (12 μmol N m−2 h−1). Sediment oxygen demand (0.55 g O2 m−2 day−1) accounted for <10% of R (7.3 g O2 m−2 day−1). Despite high GPP rates (4.7 g O2 m−2 day−1), the estuary was net heterotrophic. Benthic regeneration supplied, on average, 7.5% and 4% of primary productivity N and P demands, respectively. These results contrast with the conventional view that benthic regeneration accounts for a large fraction of phytoplankton nutrient demand in shallow estuaries.  相似文献   

5.
Gediz Basin is one of the regions where intense agricultural activities take place in Western Turkey. Erosion and soil degradation have long been causing serious problems to cultivated fields in the basin. This work describes the application of two different 137Cs models for estimating soil erosion rates in cultivated sites of the region. Soil samples were collected from five distinct cultivated regions subject to soil erosion. The variations of 137Cs concentrations with depth in soil profiles were investigated. Soil loss rates were calculated from 137Cs inventories of the samples using both proportional model (PM) and simplified mass balance model (SMBM). When PM was used, erosion and deposition rates varied from −15 to −28 t ha−1 year−1 and from +5 to +41 t ha−1 year−1, respectively; they varied from −16 to −33 t ha−1 year−1 and from +5 to +55 t ha−1 year−1 with SMBM. A good agreement was observed between the results of two models up to 30 t ha−1 year−1 soil loss and gain in the study area. Ulukent, a small representative agricultural field, was selected to compare the present data of 137Cs techniques with the results obtained by universal soil loss equation (USLE) applied in the area before.  相似文献   

6.
The Minqin Basin is at the lower reach of the Shiyang River of Gansu province in northwest China. Dramatic decline in groundwater level has resulted from over-abstraction of groundwater since the late 1950s to satisfy increasing irrigation and other demands. Severe water shortage led to environmental degradation. To better understand the spatial–temporal variation of groundwater levels and to evaluate the groundwater resources in the region, a three-dimensional regional groundwater flow model was built and calibrated under transient condition. The MODFLOW program was used and the research area was discretized as a square network with cell size of 400 × 400 m. The model showed that the aquifer was under destructive stress, with a groundwater resource deficit of 260 million cubic meters per year (Mm3/year) on average. Since the inflow of surface water from the upstream basin has declined to about 100–150 Mm3/year in recent decades, the irrigation return flow had become the main recharge and accounted for 60.6% of total recharge; meanwhile, abstraction by pumping wells took 99.2% from the total groundwater discharge.  相似文献   

7.
The Hanjiang River, the largest tributaries of the Changjiang (Yangtze) River, is the water source area of the Middle Route of China’s South-to-North Water Transfer Project. The chemical and strontium isotopic compositions of the river waters are determined with the main purpose of understanding the contribution of chemical weathering processes and anthropogenic inputs on river solutes, as well as the associated CO2 consumption in the carbonate-dominated basin. The major ion compositions of the Hanjiang River waters are characterized by the dominance of Ca2+ and HCO3 , followed by Mg2+ and SO4 2−. The increase in TDS and major anions (Cl, NO3 , and SO4 2−) concentrations from upstream to downstream is ascribed to both extensive influences from agriculture and domestic activities over the Hanjiang basin. The chemical and Sr isotopic analyses indicate that three major weathering sources (dolomite, limestone, and silicates) contribute to the total dissolved loads. The contributions of the different end-members to the dissolved load are calculated with the mass balance approach. The calculated results show that the dissolved load is dominated by carbonates weathering, the contribution of which accounts for about 79.4% for the Hanjiang River. The silicate weathering and anthropogenic contributions are approximately 12.3 and 6.87%, respectively. The total TDS fluxes from chemical weathering calculated for the water source area (the upper Hanjiang basin) and the whole Hanjiang basin are approximately 3.8 × 106 and 6.1 × 106 ton/year, respectively. The total chemical weathering (carbonate and silicate) rate for the Hanjiang basin is approximately 38.5 ton/km2/year or 18.6 mm/k year, which is higher than global mean values. The fluxes of CO2 consumption by carbonate and silicate weathering are estimated to be 56.4 × 109 and 12.9 × 109 mol/year, respectively.  相似文献   

8.
Under the influence of human activities, the differences in climate changes emerged obviously in the Aksu Oasis. The summer air temperature in Aksu City increased at a rate of 0.20°C·(10 annum)−1, while the air temperature in Aler in summer decreased at a rate of −0.27°C·(10 annum)−1. Human intervention has become the dominant factor in the the changes of water resources in the Aksu Oasis. Compared with the Xidaqiao hydrological station, which is located on the upper reaches of the Aksu River, the runoff ratio at the Aler hydrological station increased in summer and decreased in spring. Though the natural water inflow has increased in the last 50 years, irrigation diversion and water consumption for human activities have increased unceasingly due to the increased reclamation of land and the development of extensive agriculture. The water quality at the Xidaqiao station is in Grade I at different periods, and the water quality at the Aler station of the Tarim River is good because the river did not suffer from human disturbance before the large-scale development of oasis agriculture; but the salinity of river water increased from 0.67 g L−1 in 1960 to 5.27 g L−1 in 2000 at the Aler station after farmland development, reclamation and salt washing in the oasis. The geographic distribution of surface water resources has changed due to human activities and in turn affected groundwater replenishment, bringing about changes to groundwater table and quality.  相似文献   

9.
The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO3, SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.  相似文献   

10.
The effect of the source water quality on As(V) removal by coagulation/microfiltration (C/MF) was investigated systematically using a jar test and a lab-scale test; the results of the lab-scale test coincide with those of the jar test. It showed that the increase of dissolved organic carbon (DOC), HPO4 2− and HCO3 concentrations would moderately decrease As(V) removal, and the residual As(V) concentration in treated water is no more than 10 μg L−1 when the concentration of DOC, HPO4 2− and HCO3 in raw water is not beyond 9.22 mg L−1, 1.6 mg L−1 and 300 mg L−1, respectively. Other co-ions, such as Cl, NO3 , F, SO4 2−, and counter-ions including K+, Ca2+ and Mg2+, have little effect on As(V) removal. Both results of the jar test and the lab-scale test demonstrate that Fe3+ dose of 6 mg L−1 is enough to eliminate the influence of HCO3 whose concentration changes from 350 mg L−1 to 450 mg L−1. In the lab-scale test, As(V) removal ranged from 92.8 to 98.2% at Fe3+ dose of 4 mg L−1 and 5 mg L−1 when As(V) concentration in raw water was about 100 μg L−1. The results obtained in this study suggest that As(V) removal by C/MF process is sensitive to the quality of raw water, and a jar test needs to be done before C/MF process is used for arsenic removal from drinking water.  相似文献   

11.
The qanat water supply technology, which gravity drains mountain aquifers into valleys, is considered as a culturally appropriate and ecological sustainable design to meet northern Cyprus’ drinking water development needs. This research estimates the boundary and water budget for the proposed qanat recharge area of 370 km2, which is in the upper elevations of the limestone dominated Five Finger Mountain Range. The mountain drainage was analyzed using global elevation data from the Shuttle Ranging Topography Mission (SRTM). Efforts to use Tropical Rainfall Measuring Mission (TRMM) annual precipitation for water budget inputs failed due to extreme error when tested against 10–30 years of meteorological station data; TRMM under-estimated depths on the narrow mountain peaks. Gage records, while few in number, were area averaged to set average annual precipitation inputs at 530 mm year−1. Evaporation was estimated using a complementary relationship areal evapotranspiration (CRAE) model, setting average atmospheric outputs at 221 mm year−1. Recharge to the qanat aquifer was set by subtracting evaporation from precipitation, and then allocating 50% of the remaining water to environmental services. At 25% development, the qanat system supplies 14 mm3 year−1 of water, meeting the drinking water deficit of 13 mm3.  相似文献   

12.
The main ions were measured seasonally during two years at 13 sampling stations in the Salado River and its main tributaries. The importance of each ion was assessed by standard methods used to examine ionic composition and by multivariate methods. The K-means clustering and Principal Component Analysis were applied to the percentages of the major ions. The concentration of the major cations are in the order Na+ > Mg2+ > Ca2+ > K+ and the major anions, Cl > SO42− > HCO3 > CO32−, and the salinity was high (mean TDS 2,691 mg l−1) due to sodium chloride. Using the proportions of the ions was possible to identify seven types of water within the basin related to discharges of different river sub-catchments and from endorheic catchments (in a sand dune region) actually connected with the basin by canals. The chemical composition of the basin is consequence of surface waters receiving salts from groundwater, evaporation and weathering of Post-Pampeano materials, and of anthropogenic impact by diversion between subcatchments for flood control. These results allowed us to test the marked effects on the ionic balance of basin at the base of a diversion management from endorheic catchments characterized by high salinity waters.  相似文献   

13.
Groundwater plays an important role in the economic development and ecological balance of the arid area of northwest China. Unfortunately, human activity, for example groundwater extraction for irrigation, have resulted in excessive falls in groundwater level, and aquifer overdraft in the oasis, disrupting the natural equilibrium of these systems. A groundwater numerical model for Minqin oasis, an arid area of northwest China, was developed using FEFLOW software to simulate regional groundwater changes under transient conditions. The vertical recharge and discharge (source/sink terms) of the groundwater models were determined from land-use data and irrigation systems for the different crops in the different sub-areas. The calibrated model was used to predict the change for the period from 2000 to 2020 under various water resources management scenarios. Simulated results showed that under current water resources management conditions groundwater levels at Minqin oasis are in a continuous drawdown trend and groundwater depth will be more than 30 m by 2020. Reducing the irrigation area is more effective than water-saving irrigation to reduce groundwater decline at Minqin oasis and the annual groundwater budget would be −0.978 × 108 m3. In addition, water-diversion projects can also reduce the drawdown trend of groundwater at Minqin oasis, and the groundwater budget in the Huqu sub-area would be in zero equilibrium if the annual inflow into the oasis was enhanced to 2.51 × 108 m3. Furthermore, integrative water resources management including water-diversion projects, water-saving irrigation, and reducing the irrigation area are the most effective measures for solving groundwater problems at Minqin oasis.  相似文献   

14.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

15.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:5,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

16.
In 2005 and 2006, hydrogeochemical study was carried out in the bipartite Wiśniówka Mała pit lake of the Holy Cross Mountains (south-central Poland). This is the largest acidic water body in Poland. This report presents the element concentrations in the water and sediment, stable sulfur and oxygen isotope ratios in the soluble sulfates, and stable oxygen isotope ratio in the water. The scope of the investigation also encompassed mineralogical examinations (scanning electron microscope, X-ray diffraction) of the sediment. The results of this study show that there is a spatial and temporal variability in concentrations of most elements and sulfur isotope ratios in the examined pit lake. The water of the western pond displayed a lower pH with a mean of 3.73 and higher conductivity (390 μS cm−1) as well as higher concentrations of sulfates (156 mg L−1) and most of the cations and anions. The concentrations of Fe2+ and Fe3+ averaged 0.8 and 0.4 mg·L−1. In contrast, the eastern pond water revealed a higher pH (mean of 4.36), lower conductivity (293 μS cm−1) and lower sulfate (90 mg L−1) and trace metal levels. Similar variations were recorded in the stable sulfur isotope ratios. The δ34SV-CDT(SO4 2−) values in the water of the western pit pond were in the range of −6.7 to −4.6‰ (mean of −5.6‰), whereas that in the eastern pit pond ranged from −2.2 to −0.9‰ (−1.6‰). The alkalinity of the entire lake water was below 0.1 mg·L−1 CaCO3. No distinct difference in the δ18OV-SMOW(SO4 2−) was noted between the western and eastern pit ponds. Compared to the Purple Pond in the Sudetes (Poland) and similar sites throughout the world, the examined pit lake is highlighted by distinctly low concentrations of sulfates, iron and other trace metals. Based on this and other studies performed in the Holy Cross Mountains, a conclusion can be drawn that the SO4 2− in the Wiśniówka Mała pit lake water is a mixture of SO4 2− derived from the following sources: (1) pyrite oxidation (especially in the western pond water), (2) leaching of soluble sulfates from soils and waste material, as well as (3) subordinate deposition of airborne sulfate precipitation.  相似文献   

17.
This study analyzes the response of glacier to climate change during the past 49 years in Urumqi River source region, the Tianshan Mountains of China. The temporal and spatial variations of winter mass balance (bn-w) at different time scales were analyzed to identify their response to climate change during 1988–2006 (The observation of winter mass balance observation began in 1988) on the Glacier No.1 at the headwaters of the Urumqi River, Tianshan Mountains, China. The winter accumulation shows a significantly decreasing trend. The results show that the cumulative values on Glacier No.1 is 2,202 mm water equivalent during 1988–2006 and the mean values is 116 mm a−1. Furthermore, the trend analysis of the winter mass balance indicates a rapid decrease since 1990, and the mean mass balance is only 79 mm a−1 during 1997–2006. Winter mass balance correlates well negatively with the total evaporation from September to April (r = −0.68, α = 0.01), and positively with the total precipitation from September to April (r = 0.74, α = 0.01). However, winter mass balance shows a weak correlation with mean minimum air temperature during September to April (r = −0.35), and runoff on September (r = −0.13).  相似文献   

18.
Acid mine drainage (AMD) is a common pollution in mining areas due to the oxidation of pyrite and associated sulfide minerals at mines, tailings and mine dumps. Elevated metals (Fe, Mn, Al) and metalloids (As, Hg) in AMD would deteriorate the local aquatic environment and influence the water supply. A carbonate basin with deposits of high-arsenic coal in Xingren County, southwestern China, was chosen to study the behavior of As and other chemical constituents along a river receiving AMD. Heavy metals (Fe, Mn) and major ions such as (Ca2+, Mg2+, Cl, SO4 2−) in surface water, and As in sediment and surface water were analyzed. It was found that high concentrations of SO4 2− (1,324–7,560 mg/L) and Fe (369–1,472 mg/L) in surface water were mainly controlled by the interactions between water and rocks such as the oxidation of pyrite in the local coal seams, precipitation and adsorption of iron minerals. Although ubiquitous carbonate minerals in the bedrock and the riverbeds, low pH (<3) water was maintained until 2 km downstream from the AMD source due to the Fe(hydro)oxide minerals coating on the surface of carbonate minerals to restrain the neutralization of acidic water. Moreover, the formation of Fe(hydro)oxide precipitations absorbed As was dominated the attenuation of As from water to sediment. Whereas, the dilution also played an important role in decrease of As in river water.  相似文献   

19.
In order to assess the extent of groundwater contamination by nitrate (NO3 –N) and to provide information about the deterioration of the groundwater quality in Zhangye Oasis, Northwest China, a study was conducted in this area. The mean value of NO3 –N concentrations in groundwater samples was 10.66 ± 0.19 mg l−1. NO3 –N concentrations exceeding 10 mg l−1 (the threshold for drinking water set by the World Health Organization) were found in 32.4% of 71 wells, and were 13, 33.3, 52.4 and 50.0% in the groundwater samples from drinking wells, irrigation wells, hand-pumping wells and groundwater table observation wells, respectively. The result showed that the groundwater samples that had NO3 –N concentrations exceeding the threshold for drinking water were mostly collected from a depth of less than 20 m. Groundwater NO3 –N concentrations in areas used for the cultivation of vegetables, seed maize and intercropped maize were significantly higher than those in urban or paddy areas. NO3 –N contamination of groundwater in areas with sandy soil was more severe than in those with loam soil.  相似文献   

20.
The hydrogeochemical study of surface and subsurface water of Mahi River basin was undertaken to assess the major ion chemistry, solute acquisition processes and water quality in relation to domestic and irrigation uses. The analytical results show the mildly acidic to alkaline nature of water and dominance of Na+ and Ca2+ in cationic and HCO3 and Cl in anionic composition. In general, alkaline-earth elements (Ca2+ + Mg2+) exceed alkalis (Na+ + K+) and weak acids (HCO3 ) dominate over strong acids (SO4 2+ + Cl) in majority of the surface and groundwater samples. Ca2+–Mg2+–HCO3 is the dominant hydrochemical facies both in surface and groundwater of the area. The weathering of rock-forming minerals mainly controlled the solute acquisition process with secondary contribution from marine and anthropogenic sources. The higher concentration of sodium and dissolved silica, high equivalent ratios of (Na+ + K+/TZ+), (Na+ + K+/Cl) and low ratio of (Ca2+ + Mg2+)/(Na+ + K+) suggest that the chemical composition of the water is largely controlled by silicate weathering with limited contribution from carbonate weathering and marine and anthropogenic sources. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the chemistry of river water favors kaolinite formation. Assessment of water samples for drinking purposes suggests that the majority of the water samples are suitable for drinking. At some sites concentrations of TDS, TH, F, NO3 and Fe are exceeding the desirable limit of drinking. However, these parameters are well within the maximum permissible limit except for some cases. To assess the suitability for irrigation, parameters like SAR, RSC and %Na were calculated. In general, both surface and groundwater is of good to suitable category for irrigation uses except at some sites where high values of salinity, %Na and RSC restrict its uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号