首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Models of factors controlling late Pleistocene pluvial lake-level fluctuations in the Great Basin are evaluated by dating lake levels in Jakes Valley. “Jakes Lake” rose to a highstand at 13,870 ± 50 14C Yr B.P., receded to a stillstand at 12,440 ± 50 14C yr B.P., and receded steadily to desiccation thereafter. The Jakes Lake highstand is roughly coincident with highstands of lakes Bonneville, Lahontan and Russell. The rise to highstand and recession of Jakes Lake were most likely controlled by a storm track steered by the polar jet stream. The final stillstand of Jakes Lake helps constrain timing of northward retreat of the polar jet stream during the Pleistocene-Holocene transition.  相似文献   

2.
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.  相似文献   

3.
Increased flooding caused by global warming threatens the safety of coastal and river basin dwellers, but the relationship of flooding frequency, human settlement and climate change at long time scales remains unclear. Paleolithic, Neolithic and Bronze Age cultural deposits interbedded with flood sediments were found at the Shalongka site near the north bank of the upper Yellow River, northeastern Tibetan Plateau. We reconstruct the history of overbank flooding and human occupation at the Shalongka site by application of optically stimulated luminescence and radiocarbon dating, grain size, magnetic susceptibility and color reflectance analysis of overbank sediment and paleosols. The reliability of OSL dating has been confirmed by internal checks and comparing with independent 14C ages; alluvial OSL ages have shown a systematic overestimation due to poor bleaching. Our results indicate that the Yellow River episodically overflowed and reached the Shalongka site from at least ~ 16 ka and lasting until ~ 3 ka. Soil development and reduced flooding occurred at ~ 15, ~ 8.3–5.4, and after ~ 3 ka, and prehistoric populations spread to the Shalongka site area at ~ 8.3, ~ 5.4, and ~ 3 ka. We suggest that climate change influenced the overbank flooding frequency and then affected prehistoric human occupation of the Shalongka site.  相似文献   

4.
The early Holocene final drainage of glacial Lake Minong is documented by 21 OSL ages on quartz sand from parabolic dunes and littoral terraces and one radiocarbon age from a lake sediment core adjacent to mapped paleoshorelines in interior eastern Upper Michigan. We employ a simple model wherein lake-level decline exposes unvegetated littoral sediment to deflation, resulting in dune building. Dunes formed subsequent to lake-level decline prior to stabilization by vegetation and provide minimum ages for lake-level decline. Optical ages range from 10.3 to 7.7 ka; 15 ages on dunes adjacent to the lowest Lake Minong shoreline suggest final water-level decline ∼ 9.1 ka. The clustering of optical ages from vertically separated dunes on both sides of the Nadoway-Gros Cap Barrier around 8.8 ka and a basal radiocarbon date behind the barrier (8120 ± 40 14C yr BP [9.1 cal ka BP]) support the hypothesis that the barrier was breached and the final lake-level drop to the Houghton Low occurred coincident with (1) high meltwater flux into the Superior basin and (2) an abrupt, negative shift in oxygen isotope values in Lake Huron.  相似文献   

5.
New accelerator mass spectrometer radiocarbon ages from gastropods in shore deposits within the pluvial Lake Chewaucan basin, combined with stratigraphical and geomorphological evidence, identify an abrupt rise and fall of lake level at ca. 12 14C ka. The lake‐level high is coeval with lake‐level lows in the well‐dated records of palaeolakes Bonneville and Lahontan, and with a period of relatively wet conditions in the more southerly Owens Lake basin. This spatial pattern of pluvial lake levels in the western USA at 12 14C ka indicates a variable synoptic response to climate forcing at this time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The ‘Mystery Interval’ (MI, 17.5−14.5 ka) was the first stage of the last deglaciation, a key interval for understanding mechanisms of glacial–interglacial cycles. To elucidate possible causes of the MI, here we present three high-resolution, precisely dated oxygen-isotope records of stalagmites from Qingtian and Hulu Caves in China, reflecting changes in the East Asian summer monsoon (EASM) then. Based on well-established chronologies using precise 230Th dates and annual-band counting results, the two-cave δ18O profiles of ~ 7-yr resolution match well at decadal timescales. Both of the two-cave records document an abrupt weakening (2‰ of δ18O rise within 20 yr) in the EASM at ~ 16.1 ka, coinciding with the transition of the two-phased MI reconstructed from New Mexico's Lake Estancia. Our results indicate that the maximum southward displacement of the Intertropical Convergence Zone and associated southward shift of polar jet stream may generate this two-phase feature of the MI during that time. We also discover a linear relationship among decreasing EASM intensity, rising atmospheric CO2 and weakening Atlantic Meridional Overturning Circulation between the MI and Younger Dryas episodes, suggesting a strong coupling of atmospheric/oceanic circulations in response to the millennial-scale forcing, which in turn regulates global climate changes and carbon cycles.  相似文献   

7.
Here we provide three new Holocene (11–0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50–53°S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past ~ 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5°C and a cooling centered at ~ 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at ~ 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords.  相似文献   

8.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

9.
Geochemical methods (major elements and Sr, Nd isotopes) have been used to (1) characterize Lake Le Bourget sediments in the French Alps, (2) identify the current sources of the clastic sediments and estimate the source variability over the last 600 years. Major element results indicate that Lake Le Bourget sediments consist of 45% clastic component and 55% endogenic calcite. In addition, several individual flood levels have been identified during the Little Ice Age (LIA) on the basis of their higher clastic content (> 70%).Potential sources of Lake Le Bourget clastic sediments have been investigated from Sr and Nd isotope compositions. The sediments from the Sierroz River and Leysse River which are mainly derived from the Mesozoic Calcareous Massifs are characterised by lower 87Sr/86Sr ratios and slightly lower ?Nd(0) ratios than the Arve River sediments which are derived from the Palaeozoic Mont-Blanc External Crystalline Massifs. The Rhône River appears to have been the main source of clastic sediments into the lake for the last 600 years, as evidenced by a similar Sr and Nd isotopic compositions analyzed in core B16 sediments (87Sr/86Sr = 0.719, ?Nd(0) = − 10) and in the sediments of the Rhône River (87Sr/86Sr = 0.719, ?Nd(0) = − 9.6).The isotopic signatures of flood events and background samples from core B16 in Lake Le Bourget are also similar. This indicates that prior to ∼ 1800, the inputs into the lake have remained relatively homogeneous with the proportion of clastic component mainly being a function of the palaeohydrology of the Rhone River. Early human modification (deforestation and agriculture) of the lake catchment before the 1800s appears to have had little influence on the source of clastic sediments.  相似文献   

10.
Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880–1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.  相似文献   

11.
The concentration and composition of lignin-derived phenols, which are often used as biomarkers for terrigenous organic matter (OM) inputs, were examined in North Atlantic Ocean sediments from IODP core U1302A (50°9.985′N, 45°38.271′W, 3568 m water depth), Orphan Knoll, 650 km NE of St. John’s, Newfoundland, Canada for the period of ca. 1100–810 ka BP. Lignin-derived phenols were extracted from sediments using CuO oxidation which yielded eight characteristic phenols. The majority of sediments have low syringyl phenol to vanillyl phenol (S/V) ratios and high cinnamyl phenol to vanillyl phenol (C/V) ratios, suggesting predominant concentrations of gymnosperm-derived organic matter inputs from adjacent continents (most likely eastern Canada and possibly southern Greenland). The S/V values were lower for the period of ca. 958–840 ka BP relative to ca. 1090–1078, 1042–958 and 840–818 ka BP, indicating fluctuations in the proportion of angiosperm- and gymnosperm-derived lignin delivery to the ocean. The greater fraction of gymnosperms for the period of 958–840 ka BP likely reflects the response of vegetation in source regions to climate cooling in the early part of the mid-Pleistocene. Lignin-derived phenol concentrations also displayed high variability during the investigated period, which did not show positive correlations with magnetic susceptibility or Gamma Ray Attenuation density. Considering that a fundamental climate change (41–100 ka cyclicity) occurred within the mid-Pleistocene, large variations in abundance and composition of lignin-derived phenols in core U1302A is likely indicative of dynamic environmental conditions, reflected by the variability in both concentrations and types of vegetation on adjacent continents and/or different mechanisms to transport terrigenous organic matter to the deep ocean.  相似文献   

12.
南四湖3000年来南北沉积差异   总被引:4,自引:2,他引:2       下载免费PDF全文
南四湖是华北地区最大的淡水湖泊,其形成演化与黄河泛滥、开挖运河、蓄水济运和泄洪保运等自然和人为的因素密切相关。本文对南四湖沉积物环境指标,如岩性、沉积速率、沉积物磁化率、总有机碳、总氮及碳氮比(C/N)和色素等进行了分析。结果表明0.62 ka BP前,南四湖南部微山湖和北部独山湖沉积物各环境指标同步变化,0.62 ka BP后,南四湖南北环境分异。3000年来该地区古环境变化经历下列过程:2.45 ka BP前有河流沉积环境的特点:色素指标为零,C/N比值高达60~80等;2.45 ka~1.3 ka BP,2.45 ka BP前后色素指标迅速上升,表明为还原环境,叶绿素及其衍生物、总类胡萝卜素保存较好C/N比值下降,内源有机质增加,频率磁化率升高,沉积的细颗粒成分增加,为南四湖形成发展时期;1.3 ka~0.62 ka BP,CDTC大幅度下降,而颤藻黄素、蓝藻叶黄素变化不大,藻类繁盛,表明这一时期水体较稳定;0.62 ka BP后,独山湖更多地接受入湖河流带来的碎屑物质,沉积速率加快,环境指标更具有河流环境的特点,而微山湖仍受黄泛影响,更具有湖相特点。上述南四湖南北沉积差异,将为分析研究南四湖的演化历史,确定该地区黄泛的影响程度和范围,为判别3000年来该地区人类活动的强度和对湖泊发展的影响提供依据。  相似文献   

13.
We have developed an 87Sr/86Sr, 234U/238U, and δ18O data set from carbonates associated with late Quaternary paleolake cycles on the southern Bolivian Altiplano as a tool for tracking and understanding the causes of lake-level fluctuations. Distinctive groupings of 87Sr/86Sr ratios are observed. Ratios are highest for the Ouki lake cycle (120-95 ka) at 0.70932, lowest for Coipasa lake cycle (12.8-11.4 ka) at 0.70853, and intermediate at 0.70881 to 0.70884 for the Salinas (95-80 ka), Inca Huasi (~ 45 ka), Sajsi (24-20.5 ka), and Tauca (18.1-14.1 ka) lake cycles. These Sr ratios reflect variable contributions from the eastern and western Cordilleras. The Laca hydrologic divide exerts a primary influence on modern and paleolake 87Sr/86Sr ratios; waters show higher 87Sr/86Sr ratios north of this divide. Most lake cycles were sustained by slightly more rainfall north of this divide but with minimal input from Lake Titicaca. The Coipasa lake cycle appears to have been sustained mainly by rainfall south of this divide. In contrast, the Ouki lake cycle was an expansive lake, deepest in the northern (Poópo) basin, and spilling southward. These results indicate that regional variability in central Andean wet events can be reconstructed using geochemical patterns from this lake system.  相似文献   

14.
We document frequent, rapid, strong, millennial-scale paleovegetation shifts throughout the late Pleistocene, within a 100,000+ yr interval (~ 115–15 ka) of terrestrial sediments from the mid-Atlantic Region (MAR) of North America. High-resolution analyses of fossil pollen from one core locality revealed a continuously shifting sequence of thermally dependent forest assemblages, ranging between two endmembers: subtropical oak-tupelo-bald cypress-gum forest and high boreal spruce-pine forest. Sedimentary textural evidence indicates fluvial, paludal, and loess deposition, and paleosol formation, representing sequential freshwater to subaerial environments in which this record was deposited. Its total age–depth model, based on radiocarbon and optically stimulated luminescence ages, ranges from terrestrial oxygen isotope stages (OIS) 6 to 1. The particular core sub-interval presented here is correlative in trend and timing to that portion of the oxygen isotope sequence common among several Greenland ice cores: interstades GI2 to GI24 (≈ OIS2–5 d). This site thus provides the first evidence for an essentially complete series of ‘Dansgaard–Oeschger’ climate events in the MAR. These data reveal that the ~ 100,000 yr preceding the Late Glacial and Holocene in the MAR of North America were characterized by frequently and dynamically changing climate states, and by vegetation shifts that closely tracked the Greenland paleoclimate sequence.  相似文献   

15.
Jensen, J. B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. 1997 (September): The Baltic Ice Lake in the southwestern Baltic: sequence-, chrono- and biostratigraphy. Boreas , Vol. 26, pp. 217–236. Oslo. ISSN 0300–9483.
This multidisciplinary study focuses on late-glacial deposits in the Mecklenburg Bay -Arkona Basin area. The sequence stratigraphical method has been used on shallow seismic and lithological data, in combination with biostratigraphical work and radiocarbon dating. Glacial-till deposits underlie sediments from two Baltic Ice Lake phases. Varved clay deposits from the initial phase cover the deepest parts of the basins. A prograding delta is observed at the western margin of the Arkona Basin, prograding from the Darss Sill area. The delta system is possibly related to a highstand dated at 12.8 ka. A maximum transgression level around 20 m below present sea level (b.s.l.) is inferred, followed by a drop in water level and formation of lowstand features. The final ice lake phase is characterized by a new transgression. The transgression maximum as observed in the Mecklenburg Bay is represented by transgressive and highstand deltaic deposits. These also indicate a maximum shore level of 20 m b.s.l. The deltaic sediments that contain macroscopic plant remains and diatoms have yielded Younger Dryas ages. Mapping of the late-glacial morphology of the Darss Sill area reveals a threshold at 23 to 24 m b.s.l. This means that the Baltic Ice Lake highstand phases inundated the Darss Sill, which implies that the westernmost extension of the Baltic Ice Lake reached as far as Kiel Bay. Forced regressive coastal deposits at the western margin of the Arkona Basin mark a lowstand level of around 40 m b.s.l. caused by the final drainage of the Baltic Ice Lake. The lowstand deposits predate lacustrine deposits from the Ancylus Lake, which date to approximately 9.6 ka BP.  相似文献   

16.
The transitional character of climatic conditions confers great relevance to paleoclimate studies in the semiarid region where glacial and Holocene geomorphologic records are scarce. Here we present the paraglacial and fluvial evolution of the Turbio valley (30°S) using both field observations and 14C AMS chronology. Two key sites at the uppermost Turbio valley show glacial margins which likely formed during the 17-12 ka Central Andean Pluvial Event and earlier 37-27 ka episodes associated with glacial advances reported elsewhere in the semiarid Andes. Likewise, two episodes of subsequent paraglacial response are identified: a first episode corresponds to early Holocene fine-grained deposits (~ 11,500-7800 cal yr BP) extending far downstream (> 40 km) from the glacial margins. These deposits and coeval debris cones (~ 11,000-5500 cal yr BP) are the result of arid conditions with occasional runoffs that were unable to export sediments along the trunk valley. The second episode corresponds to disconformably overlying fluvial gravels extending ~ 70 km downstream from the glacial margin, indicative of an increase in the fluvial transport capacity occurring not long after 5500 cal yr BP. Fluvial transport increase resulted from a late Holocene shift to wetter climate conditions, representing a forcing factor which enhanced the paraglacial response.  相似文献   

17.
Tufa domes and towers are common around the margins of Winnemucca Dry Lake, Nevada, USA, a desiccated sub‐basin of pluvial Lake Lahontan. A 2·5 m diameter concentrically‐layered tufa mound from the southern end of the playa was sampled along its growth axis to determine timing, rate and geochemical conditions of tufa growth. A radiocarbon‐based age model indicates an 8200‐year tufa depositional record that begins near the end of the Last Glacial Maximum (ca 23 400 cal yr bp ) and concludes at the end of the most recent Lahontan highstand (ca 15 200 cal yr bp ). Petrography, stable isotopes and major and minor elemental compositions are used to evaluate the rate and timing of tufa growth in the context of the depositional environment. The deposit built radially outward from a central nucleation point, with six decimetre‐scale layers defined by variations in texture. Two distinct tufa types are observed: the inner section is composed of two layers of thinolite pseudomorphs after ikaite, with the innermost layer comprised of very small pseudomorphs (<0·25 cm) and an outer layer composed of larger, ca 3 cm long pseudomorphs, followed by a transitional layer where thinolite pseudomorphs grade into calcite fans. The outer section consists of three distinct layers of thrombolitic micrite with a branching mesofabric. The textural change occurred as lake levels began to rise towards the most recent Lahontan highstand interval and probably was prompted by warming of lake waters caused by increased groundwater flux during highstand lake levels. The Mg/Ca and Sr/Ca variations suggest a warming trend in the tufa growth environment and may also reflect increasing growth rates of tufa associated with increased fluxes of groundwater. This systematic study of tufa deposition indicates the importance of the hydrology of the lacustrine tufa system for reconstructing palaeoenvironmental records, and particularly the interaction of ground and surface waters.  相似文献   

18.
Glaciated alpine landscapes are sensitive to changes in climate. Shifts in temperature and precipitation can cause significant changes to glacier size and terminus position, the production and delivery of organic mass, and in the hydrologic energy related to the transport of water and sediment through proglacial environments. A sediment core representing a 12,900-yr record collected from Swiftcurrent Lake, located on the eastern side of Glacier National Park, Montana, was analyzed to assess variability in Holocene and latest Pleistocene environment. The spectral signature of total organic carbon content (%TOC) since ~ 7.6 ka matches that of solar forcing over 70-500 yr timescales. Periodic inputs of dolomite to the lake reflect an increased footprint of Grinnell Glacier, and occur during periods when sediment sinks are reduced, glacial erosion is increased, and hydrologic energy is increased. Grain size, carbon/nitrogen (C/N) ratios, and %TOC broadly define the termination of the Younger Dryas chronozone at Swiftcurrent Lake, as well as major Holocene climate transitions. Variability in core parameters is linked to other records of temperature and aridity in the northern Rocky Mountains over the late Pleistocene and Holocene.  相似文献   

19.
Dating and geomorphology of shoreline features in the Qinghai Lake basin of northwestern China suggest that, contrary to previous interpretations, the lake likely did not reach levels 66-140 m above modern within the past ∼ 90,000 yr. Maximum highstands of ∼ 20-66 m above modern probably date to Marine Isotope Stage (MIS) 5. MIS 3 highstands are undated and uncertain but may have been at or below post-glacial highs. The lake probably reached ∼ 3202-3206 m (+ 8-12 m) during the early Holocene but stayed below ∼ 3202 m after ∼ 8.4 ka. This shoreline history implies significantly different hydrologic balances in the Qinghai Lake basin before ∼ 90 ka and after ∼ 45 ka, possibly the result of a more expansive Asian monsoon in MIS 5.  相似文献   

20.
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号