首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for calculation of head displacement and rotation of laterally loaded rigid monopiles and poles in multilayered heterogeneous elastic soil is presented. The analysis considers the soil as a layered elastic continuum in which the modulus vary linearly with depth within each layer. Rational pile and soil displacement fields are assumed, and the interaction between the pile and soil is taken into account by using the principle of virtual work. Two sets of equilibrium equations, one describing the pile displacement and rotation and the other describing the displacements in the soil, are obtained and solved analytically and numerically following an iterative algorithm. The new method produces pile responses as accurate as those obtained from three-dimensional finite element analysis but does not require any elaborate input for geometry and mesh.  相似文献   

2.
The conventional approach in the design of laterally loaded piles with rectangular cross section involves the simplification of converting the rectangular cross section of the pile to an equivalent circular cross section. An analysis to determine the response of laterally loaded rectangular or circular piles in elastic soil is presented in which this simplification is not required. The analysis is based on the solution of differential equations governing the displacements of the pile–soil system derived using energy principles. The pile geometry and the elastic constants of the soil and pile are the input parameters to the analysis. Using this analysis, comparisons are made between the response of rectangular and circular piles in elastic soil. Based on the proposed solution scheme, a user-friendly spreadsheet program (LATPAXL) was developed that can be used to perform the analysis. In addition, simple equations obtained by regression analysis of the pile head deflection and bending moment profiles are proposed. Examples illustrate the use of the analysis.  相似文献   

3.
An analysis is developed to determine the response of laterally loaded piles in layered elastic media. The differential equations governing pile deflections in different layers due to a concentrated static force and/or moment acting at the pile head are obtained using the principle of minimum potential energy and calculus of variations. The differential equations are solved analytically using the method of initial parameters. Pile deflection, slope of the deformed axis of the pile, bending moment and shear force can be reliably obtained by this method for the entire pile length. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. It is observed that soil layering has a definite impact on pile response and must be taken into account for proper analysis and design. The analysis forms the basis for future formulations that can consider stress–strain nonlinearity.  相似文献   

4.
Within the framework of soil–pile interaction, a novel displacement scheme for the transverse kinematic response of single piles to vertically propagating S waves is proposed on the basis of the modified Vlasov foundation model. The displacement model contains a displacement function along the pile axis and an attenuation function along the radial direction. The governing equations and boundary conditions of the two undetermined functions are obtained in a coupled form by using Hamilton's principle. An iterative algorithm is adopted to decouple and solve the two unknown functions. In light of the governing equation of the pile kinematics, a mechanical model is proposed to evaluate the present method on a physical basis considering material damping. The coefficient of the equivalent Winkler spring is derived explicitly as function of the displacement decay parameter γ and soil Poisson's ratio. A parametric study is performed to investigate the effects of the soil–pile system properties on the kinematic response of single piles. The results show that the dimensionless pile length controls the transverse kinematics of piles. In terms of the theory of beams on elastic foundation, the classification limits of the dimensionless pile length may be π ∕ 4 and π, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
An analysis is developed to determine the response of laterally loaded rectangular piles in layered elastic media. The differential equations governing the displacements of the pile–soil system are derived using variational principles. Closed‐form solutions of pile deflection, the slope of the deflected curve, the bending moment and the shear force profiles can be obtained by this method for the entire pile length. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. The new analysis allows insights into the lateral load response of square, rectangular and circular piles and how they compare. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Most analytical or semi‐analytical solutions of the problem of load‐settlement response of axially loaded piles are based on the assumption of zero radial displacement. These solutions also are only applicable to piles embedded in either a homogeneous or a Gibson soil deposit. In reality, soil deposits consist of multiple soil layers with different properties, and displacements in the radial direction within the soil deposit are not zero when the pile is loaded axially. In this paper, we present a load‐settlement analysis applicable to a pile with circular cross section installed in multilayered elastic soil that accounts for both vertical and radial soil displacements. The analysis follows from the solution of the differential equations governing the displacements of the pile–soil system obtained using variational principles. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. We compare the results from the present analysis with those of an analytical solution that considers only vertical soil displacements. The analysis presented in this paper also provides useful insights into the displacement and strain fields around axially loaded piles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This article presents a method for the nonlinear analysis of laterally loaded rigid piles in cohesive soil. The method considers the force and the moment equilibrium to derive the system equations for a rigid pile under a lateral eccentric load. The system equations are then solved using an iteration scheme to obtain the response of the pile. The method considers the nonlinear variation of the ultimate lateral soil resistance with depth and uses a new closed‐form expression proposed in this article to determine the lateral bearing factor. The method also considers the horizontal shear resistance at the pile base, and a bilinear relationship between the shear resistance and the displacement is used. For simplicity, the modulus of horizontal subgrade reaction is assumed to be constant with depth, which is applicable to piles in overconsolidated clay. The nonlinearity of the modulus of horizontal subgrade reaction with pile displacement at ground surface is also considered. The validity of the developed method is demonstrated by comparing its results with those of 3D finite element analysis. The applications of the developed method to analyze five field test piles also show good agreement between the predictions and the experimental results. The developed method offers an alternative approach for simple and effective analysis of laterally loaded rigid piles in cohesive soil. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
考虑加筋与遮帘效应的层状地基群桩沉降计算   总被引:1,自引:0,他引:1  
桩群在土中的加筋与遮帘效应是客观存在的,但目前的理论与实践均未能或有效地考虑该效应.基于剪切变形法原理,在计算某一根桩沉降时,考虑了其他各相邻基桩的存在对该桩沉降的折减,即加筋与遮帘效应,得到了桩侧桩-土接触等效剪切弹簧刚度,建立了桩身位移微分方程,分别求得桩顶沉降-桩端沉降、桩顶荷载-桩端压力的递推关系,从而得到了各桩在自身荷载作用下引起自身沉降的柔度系数; 同理,也求得了各邻桩在其桩顶荷载下引起它桩沉降的柔度系数,最终建立了群桩沉降计算的柔度矩阵方程.推导过程中,考虑了地基土的成层性及桩端沉降的相互影响,并提出了基于一定深度内的Mindlin位移解且考虑桩径影响的桩端压力-桩端位移关系新模式.算例结果表明,本文方法与实测值较为接近,且按本文方法求得的群桩中基桩相互作用系数明显小于弹性理论计算结果,且与实测值吻合较好.  相似文献   

9.
An analytical approach using the three‐dimensional displacement of a soil is investigated to provide analytical solutions of the horizontal response of a circular pile subjected to lateral soil movements in nonhomogeneous soil. The lateral stiffness coefficient of the pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient that is obtained from the analytical solution, taking into account the three‐dimensional displacement represented in terms of scalar potentials in the elastic three‐dimensional analysis. The relationship between horizontal displacement, rotation, moment, and shear force of a pile subjected to lateral soil movements in nonhomogeneous soil is obtainable in the form of the recurrence equation. For the relationship between the lateral pressure and the horizontal displacement, it is assumed that the behavior is linear elastic up to lateral soil yield, and the lateral pressure is constant under the lateral soil yield. The interaction factors between piles subjected to both lateral load and moment are calculated, taking into account the lateral soil movement. The formulation of the lateral displacement and rotation of the pile base subjected to lateral loads in nonhomogeneous soils is presented by taking into account the Mindlin equation and the equivalent thickness for soil layers in the equivalent elastic method. For lateral movement, lateral pressure, bending moment, and interaction factors, there are small differences between results obtained from the 1‐D and the 3‐D displacement methods except a very flexible pile. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
费康  朱志慧  石雨恒  周莹 《岩土力学》2020,41(12):3889-3898
采用双曲线模型模拟桩土界面上的力学行为,利用剪切位移法反映剪应力在土层中的传递,考虑群桩之间的相互作用,建立了热?力耦合作用下能量桩群桩基础工作特性的简化分析方法。该方法能反映桩土界面上的非线性、桩顶的约束条件和能量桩位置的影响,可直接计算所有桩的位移和轴力。与现有方法相比,计算得到的双桩相互作用因子更加合理。通过与文献中试验数据的对比表明,若只有局部桩经历温度变化,能量桩运行过程中各桩之间存在差异变形,基础出现倾斜,桩顶荷载发生重分布。所建立方法计算方便,能合理模拟能量桩群桩基础的主要工作特性,可用于大规模能量桩群桩基础的设计计算。  相似文献   

11.
横向载荷作用下刚性桩变位规律研究   总被引:1,自引:0,他引:1  
崔新壮  丁桦  金青  李术才 《岩土力学》2006,27(7):1092-1096
目前对横向受载刚性桩的研究主要集中在其承载力方面,对变化规律研究很少。为此提出了利用刚性桩上两点位移求桩上任意一点位移、桩回转中心位置及转角的方法。通过对粉质黏土中的刚性桩进行模型试验与数值计算发现,回转中心位置随位移和载荷的增大,先是急剧下降,然后变缓,最后基本趋于稳定,而且桩埋置参数与土力学参数对回转中心位置的变化规律影响很小;而桩的转角随位移增大近似线性变化。比较发现,由试验和数值计算得到的回转中心极限位置与由极限地基反力法得到的结果相差不大  相似文献   

12.
An analytical approach using a Winkler model based on two lateral soil displacement components in a three‐dimensional soil is investigated to provide analytical solutions of horizontal response of a rectangular pile subjected to lateral loads in nonhomogeneous soil. The two lateral displacement components of a soil surrounding the rectangular pile are represented by the Fourier series of displacement potential functions in the elastic three‐dimensional analysis. The lateral stiffness coefficient of the rectangular pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force for the rectangular pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of lateral displacement and rotation for a rectangular pile subjected to lateral loads on the pile base in nonhomogeneous soil is proposed by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. The difference of lateral behavior between square and circular piles subjected to lateral loads is insignificant. The effect of aspect ratio of the rectangular pile on the lateral behavior is great for the lower stiffness ratio between pile and soil and the larger length–equivalent diameter ratio. The effect of the value of Poisson's ratio of soil on lateral stiffness coefficient is relatively small except Poisson's ratio close to 0.5. The comparison of the results calculated by the current method for a rectangular pile subjected to lateral loads in nonhomogeneous soil has shown good agreement with those obtained from the analytical methods and the finite element method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
考虑桩土效应的双排桩模型及参数研究   总被引:1,自引:0,他引:1  
刘泉声  付建军 《岩土力学》2011,32(2):481-486
双排桩作为一种新型的深基坑支护结构,目前尚无简单而有效的设计方法。首先,借助Winkler地基梁基本思想,在忽略桩土竖向摩擦效应及空间效应的前提下,对双排桩支护结构力学机制进行分析,建立了考虑桩土效应的双排桩平面杆系有限元模型。接着围绕双排桩平面杆系有限元模型的关键参数土压力分布及弹性抗力系数展开了研究,针对连梁拉力将使传统的坑后土体滑移面临界距离增加特征,利用滑动比例系数法获得了土压力分配规律;针对弹性抗力系数正分析取值不确定性,提出了采用位移反分析优化方法获得弹性抗力参数的取值。最后,根据杆系有限元及反分析中位移最优准则函数的求解步骤,分别编制了doublerowpile及doublerowpileparameter计算程序,并进行了相应的工程计算,工程计算结果表明,计算位移与监测位移趋势一致,计算内力符合规范要求,且能较准确获得弹性抗力系数取值。  相似文献   

14.
肖世国  何洪 《岩土力学》2015,36(2):376-380
双排抗滑桩是加固大型滑坡的常用工程措施之一,在实际工程设计计算中的关键环节在于简单且合理地确定作用于前后排桩上的滑坡推力。将抗滑桩受荷段前侧坡体视为水平向的温克勒(Winkler)地基,基于弹性地基梁模型,并充分考虑桩体受荷段与锚固段的变形连续性,通过迭代算法确定出后排抗滑桩受荷段前侧坡体抗力,进而可对排间坡体采用传递系数法计算出前排桩桩后滑坡推力,给出了相关的理论计算公式。通过室内模型试验验证了所提方法的合理性,并针对一大型基覆式滑坡实例,具体计算出了前后排桩上的设计滑坡推力荷载。所提计算方法可为实际工程的简化设计提供参考。  相似文献   

15.
张爱军  莫海鸿  向玮 《岩土力学》2012,33(9):2719-2723
在开挖、降雨或地震等外部因素作用下,边坡土体很容易进入局部或瞬态大变形乃至失稳滑动,使抗滑桩产生附加位移及弯矩。基于两阶段分析方法,采用Winkler模型模拟抗滑单桩与土之间的相互作用,建立单桩水平位移控制方程组,根据内力与位移的连续条件得到考虑不同土体侧移模式下求解桩身响应的矩阵解析表达式,并采用现场监测数据及Poulos弹性理论进行验证,证明该方法是合理可行的,并通过参数分析土体侧移对抗滑桩水平承载性状的影响程度。分析结果表明,土体侧移模式包括最大侧移值、分布形状及重心、侧移势等,对抗滑桩的挠度和弯矩均有显著影响,在工程设计中应予以充分重视。  相似文献   

16.
In this paper, a method is developed for nonlinear analysis of laterally loaded rigid piles in cohesionless soil. The method assumes that both the ultimate soil resistance and the modulus of horizontal subgrade reaction increase linearly with depth. By considering the force and moment equilibrium, the system equations are derived for a rigid pile under a lateral eccentric load. An iteration scheme containing three main steps is then proposed to solve the system equations to obtain the response of the pile. To determine the ultimate soil resistance and the modulus of horizontal subgrade reaction required in the analysis, related expressions are selected by reviewing and assessing the existing methods. The degradation of the modulus of horizontal subgrade reaction with pile displacement at ground surface is also considered. The developed method is validated by comparing its results with those of centrifugal tests and three-dimensional finite element analysis. Applications of the developed method to laboratory model and field test piles also show good agreement between the predictions and the experimental results.  相似文献   

17.
This article revisits the influences of axial load on the lateral response of single pile with integral equation method. The problem is formulated by decomposing the pile soil system into an extended elastic soil and a fictitious pile, the former of which is analyzed by making use of the fundamental Mindlin's solution for a concentrated horizontal load whereas the latter is modeled by the conventional beam bending theory. According to the rotation compatibility condition between the fictitious pile and the extended soil, a Fredholm integral equation of the second kind is established with the shear strain and rotation angle of the fictitious pile being the basic unknowns. The bending moment and displacement distribution along the pile are subsequently obtained. Comparison with existing solutions validates the accuracy and applicability of the present formulation. The results of parametric analysis indicate that the influences of axial load on the lateral response of single piles could be significant, and in general, the bending moment and horizontal displacement distributions along the pile increase considerably with the increase of axial load. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
An approximate static solution is derived for the elastic settlement and load-transfer mechanism in axially loaded end-bearing piles in inhomogeneous soil obeying a power law variation in shear modulus with depth. The proposed generalised formulation can handle different types of soil inhomogeneity by employing pertinent eigenexpansions of the dependent variables over the vertical coordinate, in the form of static soil “modes”, analogous to those used in structural dynamics. Contrary to available models for homogeneous soil, the associated Fourier coefficients are coupled, obtained as solutions to a set of simultaneous algebraic equations of equal rank to the number of modes considered. Closed-form solutions are derived for the (1) pile head stiffness; (2) pile settlement, axial stress, and side friction profiles leading to actual, depth-dependent Winkler moduli, (3) displacement and stress fields in the soil; and (4) average, depth-independent Winkler moduli to match pile head settlement. The predictive power of the model is verified via comparisons against finite element analyses. The applicability to inhomogeneous soil of an existing regression formula for the average Winkler modulus is explored.  相似文献   

19.
A numerical model for a laterally loaded pile in an elastic continuum is presented. The governing differential equations for vertical piles in a homogeneous and a layered soil are obtained by using variational calculus. Two parameters, k and t, are used in this approach to represent the elastic foundation, and an iterative technique is adopted to obtain a consistent energy solution. Both free and fixed headed piles have been considered. Two kinds of boundary conditions of practical interest at the pile tip, floating tip and clamped tip, are also considered. The proposed method has been validated by comparison of the results with those obtained by other available methods. Typical solutions are presented and recommendations are given for their use in design problems.  相似文献   

20.
非均质地基中群桩竖向荷载沉降关系分析   总被引:2,自引:0,他引:2  
江杰  黄茂松  顾倩燕 《岩土力学》2008,29(8):2092-2096
运用剪切位移法计算了桩轴向荷载传递因子。对于桩端采用线性的荷载传递函数,推导了基于弹塑性模型的单桩竖向荷载沉降的解析解。分析过程中考虑了土体强度沿深度线性变化的特性和桩土间的滑移现象,因此更符合大部分土体的实际性状。在此基础上,建立了考虑桩土滑移的桩-桩相互作用系数的计算公式,并将上述方法应用于群桩的分析,获得了群桩的荷载沉降特性。该分析方法克服了目前应用较多的弹性理论方法夸大桩土相互作用的缺点,单桩和群桩的荷载沉降曲线的分析结果和实测数据吻合,证明了该方法的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号