首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Rare metal mineralization of Sn, Nb-Ta and W is encountered in the Gebel Dihmit area (GDA), southeastern Aswan, Egypt. The mineralization is related to muscovite granites and their pegmatite derivatives. The pegmatites are divided into three types according to their main mineral assemblages: K-feldspar-muscovite-tourmaline, K-feldspar-albite-muscovite and albite-K-feldspar-lepidolite veins. Petrogenetic studies indicate that Sn and Nb-Ta mineralization extends from the late-magmatic stage to the pegmatite and hydrothermal stages of the (GDA) suite. The albite-K-feldspar-lepidolite granite is composed dominantly of albite, lepidolote, and quartz, with topaz, K-feldspar and amblygonite. The accessory minerals are zircon, monazite, pollucite, columbite-tantalite, microlite and Ta-rich cassiterite. Phenocrysts of quartz, topaz and K-feldspar contain abundant inclusions of albite laths and occasional lepidolite crystals along growth zones (snowball texture), indicating simultaneous crystallization from a subsolvus, residual magma. The origin of the pegmatites is attributed to extreme differentiation by fractional crystallization of a granitic magma. The economic potential for rare metals was evaluated in the geochemical discrimination diagrams. Accordingly, some of the pegmatites are not only highly differentiated in terms of alkalis, but also the promising targets for small-scale Ta and, to a less extent, Sn. The pegmatites also provide the first example of Fe-Mn and Nb-Ta fractionation in successive generations of granites to cassiterite-bearing pegmatites, which perfectly ex- hibit similar fractionation trends established for primary columbite-tantalite in the corresponding categories of pegmatites. Uranium and Th of magmatic origin are indicated by the presence of thorite and allanite, whereas evidence of hydrothermal mineralization is the alteration of rock- foring minerals such as feldspar and the formation of secondary minerals such as uranophane..  相似文献   

2.
The Shuiyindong and Yata Carlin-type gold deposits, located in Southwestern Guizhou, China, are hosted by Permianbioclastic limestone in the form of stratabound mineralization and Middle Triassic calcareous clastic rocks as fault-controlled mineralization, respectively. In these deposits, quartz crystals in the veins or veinlets associated with mineralization have contained several populations of fluid inclusions with relatively quite big size and clear paragenetic relationship of entrapment. Petrography, microthermometry, Raman and LA-ICPMS of fluid inclusions analyses are used to characterize fluids chemistry and their evolution of Carlin-type system in Guizhou.  相似文献   

3.
Characteristics of ore-forming fluids as inferred from detailed studies of inclusions indicate that pegmatites may have different origins.For example,the granitic pegmatite at Mufushan is originated from magma differentiation at 1100-200℃,while the No.3 Pegmatite Vein in Xinjiang may owe its origin to a pegmatitic magma produced via metamorphic anatexis at 1140-200℃.Pegmatite fluids of the above two types are a melt-liquid system and may evolve into a solid-melt or solid-liquid system that would have a critical bearing on metasomatism and intergranular solutions.The Minxi pegmatite,on the oter hand,resulted from metamorphic differentiation,with its fluid(formed at 400-180℃)exhibiting many features of metamorphism.Pegmatites of different origins are distributed in tectonic units of different characters and are different bot in the nature of ore-foming fluid and in the source of ore-metals.This concept of polygene launches a challenge to the traditional belief that pegmatite is exclusively originated from magma differentiation and may be helphfou for the establishment of a new theory of pegmatite genesis.  相似文献   

4.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

5.
According to the kinds of feldspar and rock associations in the Ai-rich gneisses, the low-pressure metamorphic crust of the Early Proterozoic granulite facies in central Inner Mongolia can be divided into southern and northern belts which are composed of six rock associations. They represent the relevant rock sequences of the layered metamorphic rock series formed under specific metamorphic temperature and pressure conditions as well as tectonic environments. Mineral inclusions and reaction texture have recorded that the medium-temperature high-pressure mineral assemblages are replaced by the high-temperature low-pressure mineral assemblages, thus, giving rise to: garnet+quartz→ hypersthene+plagioclase; kyanite→sillimanite and garnet+kyanite/sillimanite+quartz→cordierite. The deformation fabrics of the rocks, the change of mineral assemblages and the PTt path of metamorphism indicate that the contempranceous high-temperature normal-slip ductile shearing is the main cause of the formation of the low-pressure metamorphic crust of granulite facies. In the orogenic event, the co-action of thrusting and extension resulted in the change of a medium-temperature high-pressure metamorphic environment into the high-temperature low-pressure metamorphic conditions.  相似文献   

6.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

7.
The Kekesayi gold deposit is located in the Buergen ductile shear zone in the southern margin of Altay, Qinghe County, Xinjiang. The deposit consists of altered mylonite type and gold-bearing quartz veins type ores. The main ore-bearing rocks are gray metamorphic tuffs of the Tuoranggekuduke Formation. The ores are mostly lenticular and vein, and are strictly controlled by shear bands. Through field investigation, sample collection and laboratory identification, the structural alteration characteristics are studied in detail. The microstructure of quartz is analyzed by SEM cathodoluminescence (SEM-CL). The fluid inclusions of the deposit were studied by means of micro-temperature measurement and laser Raman analysis, and the tectonic-fluid evolution characteristics were discussed. Our results showed that: (1) The gold mineralization is closely related to the structural alteration of the ductile shear zone. The mylonitization, subgrain deformation and fluid structure are developed in the mining area. The recrystallized texture, dissolution structure and multistage composite shear structure characteristics of SEM-CL show that the deformation and metamorphism are very strong. The tectonic-hydrothermal activity resulted in strong silicification and pyritization and closely related to gold mineralization. (2) The fluid inclusions of quartz veins in the mineralized rocks are distributed in groups and the morphology of the fluid inclusions are mostly oval and tadpole in shape. The primary fluid inclusions are distributed in disorder, and the secondary fluid inclusions distribute linearly along the fissures mostly elongated owing to the strong tectonic deformation. Fluid inclusions are not of uniform size, generally are 8-20 μm. The types of inclusions can be classified according to the petrography and micro temperature measurement: two phase aqueous solution type (LH2O-VH2O), carbon-rich type (LH2O-LH2O) and single phase aqueous solution type (LH2O). The evolution of the fluid is characterized by high temperature, low salinity and rich CO2 in the early stage. As the deformation of the shear zone increases in the middle and late stages, the fluid evolved into low temperature, low salinity rich H2O. (3) The Kekesayi gold deposit has the characteristics of orogenic gold deposit, and the evolutionary characteristics of tectonic-ore forming fluids are consistent with the evolution of shear zones. Structural alteration of shear zone is the main controlling factor of mineralization. And magmatic hydrothermal alteration may also play an important role in mineralization. © 2018, Science Press. All right reserved.  相似文献   

8.
The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H2O-NaCl-CO2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.  相似文献   

9.
Metamorphic processes are closely associated with the formation and evolution of the crust and highly related to petrogenesis and mineralization processes. Dynamic systematic analysis indicates that regional metamorphism-migmatization-metamorphic anatexis process is a temperature-pressure progressive process. Metamorphic anatexis process is a critical part with its unique pressure/temperature and thermodynamic, dynamic and geochemical characteristics. The concept of metamorphic anatexis system (MAS) introduced by the author includes the essential factors of material resources, energy resources, process format, material transportation and concentration, occurring time and location. Based on the essential factors of MAS, metamorphic anatexis process-related granitic rocks and deposit cases are discussed on their petrogenesis and/or mineralizaion mechanisms. The discussion points out that granites in the Ailaoshan and Yunkai metamorphic zones are of metamorphic anatexis origin. The genesis of pegmatite ore deposits in metamorphic zones and shear zone gold deposits in shear zones are highly related to metamorphic anatexis process. The study of metamorphism process involved in ore formation and material transport is a hot subject concerned by the international geological circles. Thorough investigations into the relationships between metamorphic anatexis and petrogenesis-meneralization processes are of great importance not only in geological theory, but also in industrial practice.  相似文献   

10.
The Sin Quyen-Lung Po district is an important Cu metallogenic province in Vietnam, but there are few temporal and genetic constraints on deposits from this belt. Suoi Thau is one of the representative Cu deposits associated with granitic intrusion. The deposit consists of ore bodies in altered granite or along the contact zone between granite and Proterozoic meta-sedimentary rocks. The Cu-bearing intrusion is sub-alkaline I-type granite. It has a zircon U-Pb age of ~776 Ma, and has subduction-related geochemical signatures. Geochemical analysis reveals that the intrusion may be formed by melting of mafic lower crust in a subduction regime. Three stages of alteration and mineralization are identified in the Suoi Thau deposit, i.e., potassic alteration; silicification and Cu mineralization; and phyllic alteration. Two-phase aqueous fluid inclusions in quartz from silicification stage show wide ranges of homogenization temperatures(140–383℃) and salinities(4.18wt%–19.13wt%). The high temperature and high salinity natures of some inclusions are consistent with a magmatic derivation of the fluids, which is also supported by the H-O-S isotopes. Fluids in quartz have δD values of –41.9‰ to –68.8‰. The fluids in isotopic equilibrium with quartz have δ~(18)O values ranging from 7.9‰ to 9.2‰. These values are just plotted in the compositional field of magmatichydrothermal fluids in the δD_(water) versus δ~(18)O_(water) diagram. Sulfide minerals have relatively uniform δ~(34)S values from 1.84‰ to 3.57‰, which is supportive of a magmatic derivation of sulfur. The fluid inclusions with relatively low temperatures and salinities most probably represent variably cooled magmatic-hydrothermal fluids. The magmatic derivation of fluids and the close spatial relationship between Cu ore bodies and intrusion suggest that the Cu mineralization most likely had a genetic association with granite. The Suoi Thau deposit, together with other deposits in the region, may define a Neoproterozoic subduction-related ore-forming belt.  相似文献   

11.
In the Sanandaj-Sirjan zone of metamorphic belt of Iran, the area south of Hamadan city comprises of metamorphic rocks, granitic batholith with pegmatites and quartz veins. Alvand batholith is emplaced into metasediments of early Mesozoic age. Fluid inclusions have been studied using microthermometry to evaluate the source of fluids from which quartz veins and pegmatites formed to investigate the possible relation between host rocks of pegmatites and the fluid inclusion types. Host minerals of fluid inclusions in pegmatites are quartz, andalusite and tourmaline. Fluid inclusions can be classified into four types. Type 1 inclusions are high salinity aqueous fluids (NaCleq >12 wt%). Type 2 inclusions are low to moderate salinity (NaCleq <12 wt%) aqueous fluids. Type 3 and 4 inclusions are carbonic and mixed CO2-H2O fluid inclusions. The distribution of fluid inclusions indicate that type 1 and type 2 inclusions are present in the pegmatites and quartz veins respectively in the Alvand batholith. This would imply that aqueous magmatic fluids with no detectable CO2 were present during the crystallization of these pegmatites and quartz veins. Types 3 and 4 inclusions are common in quartz veins and pegmatites in metamorphic rocks and are more abundant in the hornfelses. The distribution of the different types of fluid inclusions suggests that CO2 fluids generated during metamorphism and metamorphic fluids might also contribute to the formation of quartz veins and pegmatites in metamorphic terrains.  相似文献   

12.
运用电子探针测定了云南哀牢山伟晶岩和新疆可可 托海伟晶岩矿物中熔融包裹体及流体-熔融包裹体子矿物成分。据73个包裹体中120个测 点分 析结果,鉴定出锌尖晶石、刚玉、磷灰石、磁铁矿、白云母、黑云母、钾长石、钠长石、绿 柱石和石英等10种 子矿物,并确定矿物组合27个。其中锌尖晶石、刚玉在两地区伟晶岩熔融包裹体中属首次发 现,磷灰石成分属首次测定。两地伟晶岩矿物的熔融及流体-熔融包裹体中子 矿 物成分及矿物组合各异,包裹体中子矿物与主矿物的化学成分存在一定演化规律,可作为了 解伟晶岩浆结晶分异作用、元素演化规律的依据。研究表明,伟晶岩存在局部岩浆分异作 用,岩浆具不混溶性及非均匀性。此成果对了解伟晶岩物质成分、形成机制及成因研究具重 要意义。对岩浆岩、地幔岩及陨石研究也有一定启迪。  相似文献   

13.
运用电子探针测定了云南哀牢山伟晶岩和新疆可可 托海伟晶岩矿物中熔融包裹体及流体-熔融包裹体子矿物成分。据73个包裹体中120个测 点分 析结果,鉴定出锌尖晶石、刚玉、磷灰石、磁铁矿、白云母、黑云母、钾长石、钠长石、绿 柱石和石英等10种 子矿物,并确定矿物组合27个。其中锌尖晶石、刚玉在两地区伟晶岩熔融包裹体中属首次发 现,磷灰石成分属首次测定。两地伟晶岩矿物的熔融及流体-熔融包裹体中子 矿 物成分及矿物组合各异,包裹体中子矿物与主矿物的化学成分存在一定演化规律,可作为了 解伟晶岩浆结晶分异作用、元素演化规律的依据。研究表明,伟晶岩存在局部岩浆分异作 用,岩浆具不混溶性及非均匀性。此成果对了解伟晶岩物质成分、形成机制及成因研究具重 要意义。对岩浆岩、地幔岩及陨石研究也有一定启迪。  相似文献   

14.
云南哀牢山变质流体特征   总被引:5,自引:0,他引:5  
李文  李光麟 《岩石学报》2000,16(4):649-654
对云南哀牢山的变质岩、混合岩及脉岩中包裹体的化学成分及碳、氢、氧进行研究,结果表明,哀牢山变质流体有多种来源,流体成分复杂,有互不混溶的流体水、CO2有机物。水主要来源于古海水和大气降水,少部分来源于深部岩降水;有机质来源于沉积岩生物质;CO2多数来源于碳酸盐岩,少数来源于有仙质的氧化分解,这些流体受构造运动的驱动而活化迁移,成为成矿物质的搬运介质,参与了本区岩石的改造,是形成本区伟晶岩的重要流体  相似文献   

15.
川西甲基卡二云母花岗岩和伟晶岩内发育大量原生熔体包裹体和富晶体流体包裹体。为了查明甲基卡成矿熔体、流体性质与演化特征,运用激光拉曼光谱和扫描电镜鉴定了甲基卡花岗伟晶岩型锂矿床中二云母花岗岩及伟晶岩脉不同结构带内的原生熔体、流体包裹体的固相物质。分析结果表明,甲基卡二云母花岗岩石英内熔体包裹体的矿物组合为磷灰石+白云母、白云母+钠长石、白云母+石墨;伟晶岩绿柱石内富晶体流体包裹体的矿物组合主要为刚玉、富铝铁硅酸盐+刚玉+锂辉石、锂辉石+石英+锂绿泥石;伟晶岩锂辉石内富晶体流体包裹体的矿物组合主要为磷灰石、锡石、磁铁矿、石英+钠长石+锂绿泥石、萤石、富钙镁硅酸盐+富铁铝硅酸盐+富铁硅酸盐+石英;花岗岩浆熔体与伟晶岩浆熔体(流体)具有一定的差异,成矿熔体、流体成分总体呈现出碱质元素(Na、Si、Al)、挥发分(F、P、CO_2)含量增高及基性元素(Fe、Mg、Ca)降低的特征;包裹体中子矿物与主矿物的化学成分具有一定的差别,揭示出伟晶岩熔体(流体)存在局部岩浆分异作用,具不混溶性及非均匀性。因此认为,伟晶岩熔浆(流体)为岩浆分异与岩浆不混溶共同作用的产物,挥发分含量的增高(F、P、CO_2)使伟晶岩能够与稀有金属组成各类络合物或化合物,这对于稀有金属成矿起到了至关重要的作用。  相似文献   

16.
铜绿山Fe-Cu(Au)矿床是长江中下游铁铜成矿带最重要的矽卡岩型矿床之一,矿床的形成与铜绿山石英闪长岩岩株有关.矿区东南部发育有花岗伟晶岩,其形成时间介于石英闪长岩和矽卡岩之间.花岗伟晶岩主要由钾长石、斜长石和石英组成;由石英和钾长石组成的文象结构非常发育.激光阶段加热40Ar/39Ar定年表明,花岗伟晶岩的侵位时间为136.5±0.7 Ma(2σ),与石英闪长岩的侵位时代和铜绿山矿床的成矿时代完全一致. 铜绿山石英闪长岩与花岗伟晶岩的钾长石具有非常相似的主量元素,平均组成分别为Or81Ab18和Or78Ab21.根据岩相学观察和地球化学分析认为,花岗伟晶岩中的文象结构是在快速冷却体系条件下、钾长石晶体生长边界层的SiO2和Al2O3浓度因生长不平衡发生周期性变化而导致石英和钾长石交替生长形成的.铜绿山石英闪长岩和花岗伟晶岩中钾长石的大离子亲石元素(LILE)含量均较高,但与前者相比,花岗伟晶岩中钾长石的Rb、Pb含量明显增加,Ba、Sr含量显著降低,Li、Cs含量略微降低.大离子亲石元素图解(Rb-Ba、La-Ba、K/Ba-Ba、Rb/Sr-Ba)指示花岗伟晶岩是铜绿山石英闪长岩岩浆晚期高度结晶分异演化的结果.但花岗伟晶岩钾长石中Pb、Li、Ga等元素的变化却与岩浆结晶分异演化趋势相悖,表明流体作用在花岗伟晶岩的形成过程中扮演了重要角色.花岗伟晶岩中的石英发育大量熔融包裹体和高盐度流体包裹体,后者的均一温度为260~435 ℃,进一步证实花岗伟晶岩是从流体-熔体共存体系中结晶的.   相似文献   

17.
《International Geology Review》2012,54(10):1133-1137
We studied distribution of vein formations (from quartz veins and pegmatites of different types to migmatites) in three regions with well-developed metamorphic zonation, with a similar temperature range of metamorphism but a variable total pressure. We considered the tectonic position of the metamorphic belts, the geochemical features of the progressive stage of metamorphism, granitization, and the formation of the pegmatite veins. After analyzing the geological and geochemical data, and physicochemical parameters (T, Ptotal, Pstress, and Pfl), we conclude that change in pressure and the composition of the volatile components plays the principal role in the degree of development of particular types of pegmatites in the various facies series of metamorphism, and that the distribution of pegmatites of different types is determined by the relationships between the temperature of crystallization of the melts and that of the surrounding rocks. —Authors.  相似文献   

18.
Pegmatite deposits commonly occur in the 1500 km long, N-S-trending, tungstentin-bearing granitoid belt in Myanmar. Pegmatites are emplaced as veins and dikes that cut granitoid, migmatite, granitoid gneiss, gneiss, and schist. The pegmatite veins and dikes are mostly 2 to 5 meters wide and 30 to 150 meters long, and some are traceable over a distance of 300 meters.

The pegmatites are composed of quartz, orthoclase, albite, microcline microperthite, and muscovite, with minor biotite, tourmaline, beryl, garnet, topaz, lepidolite, magnetite, wolframite, cassiterite, and rare columbite. They are commonly zoned, feldspars and muscovite being more abundant in the center and quartz more common at the margin. The zoning pattern is rather distinct in the pegmatite body, where tourmaline is present. The light-colored felsic minerals are confined to the core zone and the dark-colored tourmaline crystals to the outer zone.

Numerous fluid inclusions have been found in quartz, topaz, and beryl. Most of the inclusions are rounded to elliptical, with a variable degree of liquid filling. All inclusions are aqueous, two-phase (liquid and vapor) inclusions with no daughter minerals. Homogenization temperatures of 173 fluid inclusions were measured in this study.

Geothermometric studies indicate that the pegmatites were formed over a homogeniza-tion temperature range of 230° to 410°C. Salinities of fluid inclusions in pegmatite minerals yielded from 1.0 to 10.8 NaCl equiv. wt‰. Topaz and quartz single crystals (several cm across) from the Sakangyi pegmatite provide an opportunity to extract the fluids trapped in these minerals. The Na/K ratios of the fluid inclusions in two topaz samples were 3.0 to 4.9, and those of two quartz samples were 2.9 to 10.5, suggesting the presence of substantial potassium in the pegmatite-forming fluids. In this study, evidence for phase separation of the pegmatite-forming fluids was not observed. The post-magmatic, hydrothermal fluids responsible for the pegmatite veins evidently emanated from cooling S-type granitoids, with which they are spatially associated.  相似文献   

19.
陕西陈家庄铀矿床是我国北秦岭商州—丹凤伟晶岩型铀矿集区中一个重要的矿床,铀矿体均产于加里东期花岗岩体周边花岗伟晶岩脉与围岩(秦岭群变质杂岩)的接触部位。本文对矿区花岗岩体、花岗伟晶岩脉开展了详细的岩石学、岩石地球化学、锆石U-Pb年代学研究,进而对其成因、成岩构造环境和铀矿化机理进行了探讨。LA-ICP-MS锆石U-Pb年代学研究表明,黄龙庙黑云母花岗岩体,陈家庄二长花岗岩体和非矿、贫矿、富矿花岗伟晶岩脉的成岩年龄分别为(446±3) Ma、(419±2) Ma、(417±3) Ma、(414±4) Ma和(416±3) Ma。地球化学分析显示:黄龙庙黑云母花岗岩体具有Ⅰ型花岗岩、埃达克质岩特征,源自加厚下地壳的部分熔融,形成于块体碰撞构造环境;陈家庄二长花岗岩体也具有I型花岗岩特征,但源区深度略浅,形成于碰撞后的减压环境。花岗伟晶岩脉与陈家庄二长花岗岩体近于同时形成,且具有亲缘性。铀矿物及富铀黑云母均产于花岗伟晶岩脉中。对比研究揭示,非矿、贫矿、富矿花岗伟晶岩脉地球化学特征和铀赋存状况的差异由同化混染作用程度高低所致。在花岗伟晶岩脉与秦岭群变质杂岩的接触部位,同化混染作用较弱的部位形成的二云母花岗伟晶岩脉仅具有弱的铀富集,同化混染作用较强的部位所形成的富石英、黑云母花岗伟晶岩脉则高度富集铀且构成铀矿体。综合研究表明,花岗伟晶岩脉成岩期后的同化混染作用是铀富集成矿的主导因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号