首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The presence and levels of major nutrients in the water from Vondo and Albasini Dams and their water treatment plants have been assessed to determine trophic status of the dams and impacts on aquatic ecosystems and drinking water. Water quality parameters particularly phosphates and nitrates are critical in assessing the trophic status. Water quality parameters linked to eutrophication and agrochemicals were analyzed. Phosphate was undetectable in both dams. The nitrate levels in Albasini and Vondo Dams which were from 1.16 to 6.65?mg/L and 0.46 to 4.19?mg/L, respectively, were within and above the South African guideline for aquatic ecosystems of 2?mg/L. The raw water pH for Vondo and Albasini Dams were from 6.20 to 7.46 and 6.35 to 8.70, respectively, and were mostly within acceptable guidelines for aquatic ecosystems. The water transparency for Vondo and Albasini Dams were from 0.5 to 4.2?m and 0.4 to 0.9?m, respectively. The levels of all other water quality parameters investigated in both dams and their WTPs mostly indicate low, rarely high and no water quality problems in aquatic ecosystems and drinking water. The low levels of total suspended solids and water transparency, the pH range, low to high electrical conductivity, low to acceptable dissolved oxygen levels, acceptable to high biological oxygen demand and nitrate levels for both dams indicate oligotrophic to eutrophic states. Though oligotrophic state dominates, the mixture of trophic states has been attributed to increase in urbanization and intensive agriculture.  相似文献   

2.
The Enxoé Reservoir was built in 1998. Since 2000, it has exhibited frequent high chlorophyll-a concentrations, reaching a geometric mean three times higher than the national limit for eutrophication, presenting the reservoir with the highest eutrophic state in Portugal. Toxic algal blooms have also often been observed, which pose serious challenges to water managers, as the reservoir is used for potable water production (25,000 inhabitants). The objective of this study was to implement a reservoir model (CE-QUAL-W2), with inputs from a watershed model (SWAT), in order to represent the actual reservoir state and to test management measures to reduce its trophic level and algal bloom concentration peaks. The integrated model was used to depict the origin of its trophic status. Simulations were also compared to measured data at the reservoir surface (water level, nitrate, orthophosphate, suspended solids, and oxygen) and in water profiles (temperature, oxygen). The model was able to represent stratification and thermocline depths, as well as the actual chlorophyll-a and dissolved oxygen concentrations. The model results showed that internal phosphorus load from deposited sediments was an important factor in fuelling the algal blooms. This process occurs predominantly in summer, when stratification takes place and aeration is reduced, promoting anoxic conditions in the bottom waters. Since the reservoir is relatively shallow (average 5 m), released phosphorus is then easily able to reach the photic zone in most parts of the reservoir, where it is consumed. Different management scenarios were tested, suggesting that a mesotrophic level could barely be reached and maintained simply by reducing the nutrient loads (both external and internal). It is suggested that only an increase in the reservoir dam height could produce a mesotrophic level, averting anoxia by blocking the release of phosphorus from sediments to the photic zone. Future work should focus on a cost–benefit analysis to test the feasibility of each of the proposed scenarios, taking advantage of the integration strategy to assess where in the watershed load reductions would be most effective.  相似文献   

3.
高雅玉  张新民  田晋华  钱鞠 《水文》2013,33(2):70-74
选取1993~2008年瓜州县人类活动数据及双塔水库水质指标年平均值进行主成分分析,去除冗余信息后进行多元线性回归分析,得到四组反映人类活动对水库水环境影响情况的回归方程。说明对双塔水库水质起主要影响作用的是农业活动和因农业活动引起的土地利用变化,农业活动的非点源污染是水库水质的主要污染源,水库水质仍存在富营养化的风险;工业活动对水库水质的影响没有在回归方程中体现出来。在农业活动过程中,耕地面积每增加10 000亩促使pH值上升0.062、溶解氧值下降0.046、高锰酸钾指数上升0.103、COD值上升0.617;而每增加10 000t的氮肥施用量会引起pH值升高1.837;总人口每增加1万人,COD值上升0.798。  相似文献   

4.
We determined fluxes of oxygen and nutrients between water and sediments at 21 sites primarily in Virginia and North Carolina estuaries, over the past 15 yr. These sites represented broad ranges in salinity, tidal amplitude, hydrology, nutrient availability, turbidity, light availability, depth, sediment grain size, and anthropogenic disturbance. In general, we found that heterotrophically dominated sediments had the potential to degrade water quality, whereas photoautotrophy in the sediments ameliorated this impact. We propose a benthic trophic state index as a management tool to make general assessments of the degree to which sediments support ecological processes related to photoautotrophy. The index can be based on simple measurements of metabolic parameters. We also evaluated the relative significance of variability in the index across a number of spatial and temporal scales. Reduced photoautotrophy and/or enhanced heterotrophy tended to be associated with finer-grained, organic-rich sediments. This sediment type was common in oligohaline areas at water depths exceeding 2 m. Temporally, autotrophy declined from winter to spring particularly at sandy sites, while interannual variability was more pronounced for mud sites. *** DIRECT SUPPORT *** A01BY074 00011  相似文献   

5.
Rates of diel (24-h) biogeochemical processes in rivers and their effect on daily changes in the concentration of metals and metalloids have been well documented in the literature over the last 20 years. Investigations into the effects of these processes on aquatic systems and the underlying mechanisms that control the processes can significantly improve our understanding of how natural aquatic environments function and will respond to changing environmental conditions and anthropogenic impacts. Daily changes in the rates of biogeochemical processes have, more recently, been shown to influence the stable isotope composition of dissolved oxygen and dissolved inorganic carbon in natural waters. Here we present a comprehensive picture of the persistence and reproducibility of diel cycles of the 18O composition of dissolved molecular oxygen (δ18O-DO) and the 13C composition of dissolved inorganic carbon (δ13C-DIC) across five Montana, USA rivers investigated over a 4-year period. A mesocosm experiment showed the same behavior in δ18O-DO and δ13C-DIC as seen in riverine settings across light and dark periods.A cross plot of δ18O-DO and δ13C-DIC from each stream exhibits a clockwise elliptical pattern which is attributed to the daily changes in the balance of metabolic rates as well as air–water gas exchange. The amplitude of the change in the isotope composition is shown to be directly related to the trophic state of the river and a relationship between net productivity and diel changes in δ18O-DO and δ13C-DIC is presented. This relationship between trophic status with δ18O-DO, δ13C-DIC and production emphasizes the significance of how rates of biogeochemical processes in natural systems can influence the daily changes in the composition of surface waters.  相似文献   

6.
水气混合洞塞泄流溶解氧输移扩散的数值计算   总被引:1,自引:0,他引:1  
为研究水气二相混合洞塞泄流欠饱和溶解氧输移扩散行为特性,揭示气体体积分数、进口溶解氧浓度、雷诺数等流动特征参数和洞塞尺寸等几何参数对溶解氧浓度恢复的影响规律,开展了水气二相混合洞塞泄流溶解氧输移扩散的室内模型试验,观测流速、压力和溶解氧浓度分布。建立了水气二相混合洞塞泄流溶解氧输移扩散数学模型,并利用物理模型试验数据对数学模型进行了验证。利用验证后的数学模型,分别计算不同进口气体体积分数、溶解氧浓度、雷诺数、洞塞长度和洞塞直径条件下水气二相混合洞塞泄流溶解氧浓度恢复情况。结果发现:气体体积分数越大,进口溶解氧浓度与饱和溶解氧浓度差值越大,雷诺数越小,溶解氧浓度增量越大;洞塞长度越长,洞塞直径越小,溶解氧浓度增量越大。  相似文献   

7.
A combination of both water chemistry and sedimentological information was used to investigate the carbonate-producing mechanism in Littlefield Lake, a small lake located in Isabella County, central Michigan. Data on temperature, dissolved oxygen, pH, calcium carbonate (CaCO3) saturation, alkalinity, calcium, and magnesium were obtained on a monthly basis over a 13-month period, with each parameter determined at 1m intervals over a depth range of 20m. The loss of dissolved carbon dioxide (CO2) from warm surface waters during direct degassing, and to a lesser extent during photosynthetic uptake by lacustrine macrophytes and phytoplankton during the summer, results in massive precipitation of the low-magnesium calcite which predominates in all Littlefield Lake sedimentary facies However, despite the fact that carbonate precipitation in this rather typical temperate-region marl lake is directly related to, and may be driven by, seasonal variation in these physiochemical parameters, most calcite forms as encrustations around cyanophytic and chlorophytic macrophytes. Such relationships demonstrate that carbonate precipitation in marl lakes may result from complex interactions between both biochemical and physiochemical processes. As such, marl formation in this, and probably many other calcareous lake systems, can not be simply ascribed to one or the other of these two general mechanisms.  相似文献   

8.
Sulfate and water from experiments in which pyrite was oxidized at a pH of 2.0 were analyzed for sulfur and oxygen stable isotopes. Experiments were conducted under both aerobic and anaerobic sterile conditions, as well as under aerobic conditions in the presence of Thiobacillus ferrooxidans, to elucidate the pathways of oxidation. Oxygen isotope fractionation between SO2?4 and H2O varied from +4.0 %. (anaerobic, sterile) to + 18.0 %. (aerobic, with T. ferrooxidans.). The oxygen isotope composition of dissolved oxygen utilized in both chemical and microbially-mediated oxidation was also determined (+11.4 %., by T. ferrooxidans; +18.4 %., chemical). Contributions of water-derived oxygen and dissolved oxygen to the sulfate produced in the oxidation of pyrite could thus be estimated. Water-derived oxygen constituted from 23 to ~ 100 percent of the oxygen in the sulfate produced in the experiments, and this closely approximates the range of contribution in natural acid mine drainage. Oxidation of sulfides in anaerobic, water-saturated environments occurs primarily by chemical oxidation pathways, whereas oxidation of sulfides in well-aerated, unsaturated zone environments occurs dominantly by microbially mediated pathways.  相似文献   

9.
A tandem deployment system was used to critically evaluate relationships between important water chemistry parameters (pH, salinity, dissolved oxygen) and biotic performance based on clam growth. The effects of environmental conditions on growth of juvenile clams,Mercenaria mercenaria, were determined after 7-day field deployments in cages at reference sites from 1998 to 2000. Continuous measurements of the overlying water chemistry parameters were monitored by deploying an in situ water quality instrument (Hydrolab Datasonde) at the same time. While salinity was identified as an important determinant of clam growth over wide salinity ranges (10–35‰), pH was also found to be a very important parameter, especially in low-salinity regimes (<25‰). Average pH measurements ranged from 7.2 to 7.8; minimal pHs ranged from 6.9 to 7.6. The results indicated that when average pH levels fell below 7.5 or minimum pH levels fell below 7.2, growth rates were <50% that of clams deployed under higher pH conditions. Estuarine systems are generally perceived as being well-buffered so pH is frequently assumed to be unimportant, but our results suggest that pH levels can decline in estuarine systems to levels that can adversely affect biological responses. The potential impacts on biological resources of even moderate decreases in pH, particularly in systems that naturally tend to have lower pH conditions, may be more important than previously realized.  相似文献   

10.
Bulk nitrogen (N) isotope signatures have long been used to investigate organic N source and food web structure in aquatic ecosystems. This paper explores the use of compound-specific δ15N patterns of amino acids (δ15N-AA) as a new tool to examine source and processing history in non-living marine organic matter. We measured δ15N-AA distributions in plankton tows, sinking particulate organic matter (POM), and ultrafiltered dissolved organic matter (UDOM) in the central Pacific Ocean. δ15N-AA patterns in eukaryotic algae and mixed plankton tows closely resemble those previously reported in culture. δ15N differences between individual amino acids (AA) strongly suggest that the sharply divergent δ15N enrichment for different AA with trophic transfer, as first reported by [McClelland, J.W. and Montoya, J.P. (2002) Trophic relationships and the nitrogen isotopic composition of amino acids. Ecology83, 2173-2180], is a general phenomenon. In addition, differences in δ15N of individual AA indicative of trophic transfers are clearly preserved in sinking POM, along with additional changes that may indicate subsequent microbial reworking after incorporation into particles.We propose two internally normalized δ15N proxies that track heterotrophic processes in detrital organic matter. Both are based on isotopic signatures in multiple AA, chosen to minimize potential problems associated with any single compound in degraded materials. A trophic level indicator (ΔTr) is derived from the δ15N difference between selected groups of AA based on their relative enrichment with trophic transfer. We propose that a corresponding measure of the variance within a sub-group of AA (designated ΣV) may indicate total AA resynthesis, and be strongly tied to heterotrophic microbial reworking in detrital materials. Together, we hypothesize that ΔTr and ΣV define a two dimensional trophic “space”, which may simultaneously express relative extent of eukaryotic and bacterial heterotrophic processing.In the equatorial Pacific, ΔTr indicates an average of 1.5-2 trophic transfers between phytoplankton and sinking POM at all depths and locations. The ΣV parameter suggests that substantial variation may exist in bacterial heterotrophic processing between differing regions and time periods. In dissolved material δ15N-AA patterns appear unrelated to those in POM. In contrast to POM, δ15N-AA signatures in UDOM show no clear changes with depth, and suggest that dissolved AA preserved throughout the oceanic water column have undergone few, if any, trophic transfers. Together these data suggest a sharp divide between processing histories, and possibly sources, of particulate vs. dissolved AA.  相似文献   

11.
To better understand reaction pathways of pyrite oxidation and biogeochemical controls on δ18O and δ34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying δ18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ∼2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ∼2.7. The δ34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (∼−0.7‰) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (ε18OSO4-H2O) of ∼3.5‰ was determined for the anaerobic (biological and abiotic) experiments. This measured value was then used to estimate the oxygen isotope fractionation effects between sulfate and dissolved oxygen in the aerobic experiments which were −10.0‰, −10.8‰, and −9.8‰ for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between δ18OSO4 values in the biological and abiotic experiments, it is suggested that δ18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions.  相似文献   

12.
A study was carried out in Malawi to assess the extent of chemical pollution in a receiving river as affected by industrial effluents. Both the effluents and the water at selected points in the river were analysed for pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, suspended solids, nitrate, alkalinity, hardness, chloride and phosphate in the dry and rainy seasons. The results showed that the effluents were acidic in both the dry season (range: 4.2 ± 0.02–6.5 ± 0.02) and in the rainy season (range: 4.2 ± 0.05–5.6 ± 0.01). While the levels of dissolved oxygen, biological oxygen demand, electrical conductivity, suspended solids, alkalinity and chloride were relatively high in the dry and rainy seasons, the concentration of phosphate and nitrate were low in both seasons. The water upstream was neutral (average pH, 7.40 ± 0.04) with high dissolved oxygen but low in the levels of the other parameters in both seasons. The water after the effluent receiving points was acidic and the levels of the other parameters were high, especially downstream. The results suggested that the water in the river was polluted and not good for human consumption. It is therefore recommended that the careless disposal of the wastes should be discouraged and although the values in some cases were lower than the allowable limits, the continued discharge of the effluents in the river may result in severe accumulation of the contaminants and, unless the authorities implement the laws governing the disposal of wastes, this may affect the lives of the people.  相似文献   

13.
The influence of NaCl, CaCl2, and dissolved minerals on the oxygen isotope fractionation in mineral-water systems at high pressure and high temperature was studied experimentally. The salt effects of NaCl (up to 37 molal) and 5-molal CaCl2 on the oxygen isotope fractionation between quartz and water and between calcite and water were measured at 5 and 15 kbar at temperatures from 300 to 750°C. CaCl2 has a larger influence than NaCl on the isotopic fractionation between quartz and water. Although NaCl systematically changes the isotopic fractionation between quartz and water, it has no influence on the isotopic fractionation between calcite and water. This difference in the apparent oxygen isotope salt effects of NaCl must relate to the use of different minerals as reference phases. The term oxygen isotope salt effect is expanded here to encompass the effects of dissolved minerals on the fractionations between minerals and aqueous fluids. The oxygen isotope salt effects of dissolved quartz, calcite, and phlogopite at 15 kbar and 750°C were measured in the three-phase systems quartz-calcite-water and phlogopite-calcite-water. Under these conditions, the oxygen isotope salt effects of the three dissolved minerals range from ∼0.7 to 2.1‰. In both three-phase hydrothermal systems, the equilibrium fractionation factors between the pairs of minerals are the same as those obtained by anhydrous direct exchange between each pair of minerals, proving that the use of carbonate as exchange medium provides correct isotopic fractionations for a mineral pair.When the oxygen isotope salt effects of two minerals are different, the use of water as an indirect exchange medium will give erroneous fractionations between the two minerals. The isotope salt effect of a dissolved mineral is also the main reason for the observation that the experimentally calibrated oxygen isotope fractionations between a mineral and water are systematically 1.5 to 2‰ more positive than the results of theoretical calculations. Dissolved minerals greatly affect the isotopic fractionation in mineral-water systems at high pressure and high temperature. If the presence of a solute changes the solubility of a mineral, the real oxygen isotope salt effect of the solute at high pressure and high temperature cannot be correctly derived by using the mineral as reference phase.  相似文献   

14.
Ocean acidification is a global phenomenon with highly regional spatial and temporal patterns. In order to address the challenges of future ocean acidification at a regional scale, it is necessary to increase the resolution of spatial and temporal monitoring of the inorganic carbon system beyond what is currently available. One approach is to develop empirical regional models that enable aragonite saturation state to be estimated from existing hydrographic measurements, for which greater spatial coverage and longer time series exist in addition to higher spatial and temporal resolution. We present such a relationship for aragonite saturation state for waters off Northern California based on in situ bottle sampling and instrumental measurements of temperature, salinity, and dissolved oxygen. Application of this relationship to existing datasets (5 to 200 m depth) demonstrates both seasonal and interannual variability in aragonite saturation state. We document a deeper aragonite saturation horizon and higher near surface aragonite saturation state in the summers of 2014 and 2015 (compared with 2010–2013), associated with anomalous warm conditions and decadal scale oscillations. Application of this model to time series data reiterates the direct association between low aragonite saturation state and upwelled waters and highlights the extent to which benthic communities on the Northern California shelf are already exposed to aragonite undersaturated waters.  相似文献   

15.
山西省阳泉市山底河煤矿“老窑水”循环系统多年水质监测数据计算结果显示,煤矿酸性“老窑水”的Ca/Mg值普遍偏低,且存在Ca/Mg值随酸化程度的增强(SO42?含量增加或pH减小)而减小的规律。针对这一问题,结合研究区的地球化学物源条件,通过室内试验以及野外监测水样的石膏、方解石、白云石矿物饱和指数与pH变化关系,分析煤矿酸性“老窑水”低Ca/Mg值的成因机制。研究表明:区内石炭系-二叠系的煤系地层中碳酸盐岩夹层、分散状态分布的菱镁矿、黄铁矿是“老窑水”中Ca2+、Mg2+、SO42?的物质来源;在黄铁矿氧化水解形成的以硫酸根为主导的酸性溶液中(pH为2.0~4.5),代表硫酸对石膏、方解石、白云石可溶解性的饱和指数排序为石膏>方解石>白云石,受石膏在高浓度硫酸活性降低并发生沉淀、方解石溶解受Ca2+同离子效应抑制和饱和状态的平衡调节的综合影响,使Ca2+相对含量减少,由于MgSO4溶度积大于CaSO4,故Mg2+含量未受上述约束(或较低),脱白云岩化反应可因Ca2+含量随石膏沉淀而继续进行,加之区内有菱镁矿的溶解,使得Mg2+相对含量增加,最终出现了镁矿酸性“老窑水” Ca/Mg值低的结果。Ca/Mg值可作为煤矿酸性“老窑水”的污染特征指标,应用于环境影响评价。   相似文献   

16.
The Shubenacadie River basin is the largest watershed in Nova Scotia, Canada, encompassing an area of approximately 2,800 km2 and supporting one of the most rapidly expanding populations in Atlantic Canada. A comprehensive study was carried out to assess the effect of recent development in the basin on the headwater lakes. Information on the environmental status of the lakes can be further used in the development of a management framework for the basin with respect to water quality and quantity objectives.Water and sediment quality were investigated in four of the Shubenacadie River headwater lakes. In addition, trophic status of the lakes was assessed by using dissolved phosphorus and oxygen concentrations. The surface area and mean depth of the lakes ranged from 0.83 to 1.13 km2 and 4.3 to 6.6 m, respectively. Three of the studied lakes were thermally stratified during the summer. The concentration of dissolved oxygen decreased significantly in the hypolimnion during the stratification period, although the lakes were generally classified as oligotrophic. The water quality is typical for lakes of the area. The pH of the water ranged between 6.1 and 7.3 during the study period. Major ions were chloride, sodium, and sulphate. A significant increase of As, Hg, Zn, Pb, Cu, Ni and Co was found in surface sediments in all four lakes. However, the concentration of these elements in lake water was lower than recommended guidelines for aquatic life and human consumption.  相似文献   

17.
Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their distribution in lake sediments are less well understood. Several studies have found a relationship between the distribution of branched GDGTs in lake sediments and average lake water pH, suggesting an aquatic source for them, besides that for soil transported to the lake via erosion. We sampled the surface water suspended particulate matter (SPM) from 23 lakes in Minnesota and Iowa (USA), that vary widely in pH, alkalinity and trophic state. The SPM was analyzed for the concentration and distributions of core lipid (presumed fossil origin) and intact polar lipid (IPL, presumed to derive from living cells) branched GDGTs. The presence of substantial amounts (18–48%) of IPL-derived branched GDGTs suggests that branched GDGTs are likely of autochthonous origin. Temperature estimates based on their distribution using lake-specific calibrations agree reasonably with water temperature at time of sampling and average air temperature of the season of sampling. Importantly, a strong correlation between the distribution of branched GDGTs and lake water pH was found (r2 0.72), in agreement with a predominant in situ production. An stronger correlation was found with lake water alkalinity (r2 0.83), although the underlying mechanism that controls the relationship is not understood. Our results raise the potential for reconstructing pH/alkalinity of past lake environments, which could provide important knowledge on past developments in lake water chemistry.  相似文献   

18.
The coastal upwelling system off central Namibia is one of the most productive regions of the oceans and is characterized by frequently occurring shelf anoxia with severe effects for the benthic life and fisheries. We present data on water column dissolved oxygen, sulfide, nitrate and nitrite, pore water profiles for dissolved sulfide and sulfate,35S-sulfate reduction rates, as well as bacterial counts of large sulfur bacteria from 20 stations across the continental shelf and slope. The stations covered two transects and included the inner shelf with its anoxic and extremely oxygen-depleted bottom waters, the oxygen minimum zone on the continental slope, and the lower continental slope below the oxygen minimum zone. High concentrations of dissolved sulfide, up to 22 mM, in the near-surface sediments of the inner shelf result from extremely high rates of bacterial sulfate reduction and the low capacity to oxidize and trap sulfide. The inner shelf break marks the seaward border of sulfidic bottom waters, and separates two different regimes of bacterial sulfate reduction. In the sulfidic bottom waters on the shelf, up to 55% of sulfide oxidation is mediated by the large nitrate-storing sulfur bacteria, Thiomargarita spp. The filamentous relatives Beggiatoa spp. occupy low-O2 bottom waters on the outer shelf. Sulfide oxidation on the slope is apparently not mediated by the large sulfur bacteria. The data demonstrate the importance of large sulfur bacteria, which live close to the sediment-water interface and reduce the hydrogen sulfide flux to the water column. Modeling of pore water sulfide concentration profiles indicates that sulfide produced by bacterial sulfate reduction in the uppermost 16 cm of sediment is sufficient to account for the total flux of hydrogen sulfide to the water column. However, the total pool of hydrogen sulfide in the water column is too large to be explained by steady state diffusion across the sediment-water interface. Episodic advection of hydrogen sulfide, possibly triggered by methane eruptions, may contribute to hydrogen sulfide in the water column.  相似文献   

19.
The present study investigates the surface water quality of three important tributaries of Jakara Basin, northwestern Nigeria to provide an overview of the relationship and sources of physicochemical and biological parameters. A total of 405 water samples were collected from 27 sampling points and analyzed for 13 parameters: dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), pH, ammonia-nitrogen (NH3NL), dissolved solids (DS), total solids (TS), nitrates (NO3), chloride (Cl), phosphates (PO4), Escherichia coli (E. coli) and fecal coliform bacteria (FCB). Pearson’s product–moment correlation matrix and principal component analysis (PCA) were used to distinguish the main pollution sources in the basin. Four varimax components were extracted from PCA, which explained 84.86, 83.60, and 78.69 % of the variation in the surface water quality for Jakara, Tsakama, and Gama-Kwari Rivers, respectively. Strong positive loading included BOD5, COD, NH3NL, E. coli, and FCB with negative loading on DO attribute to a domestic waste water pollution source. One-way ANOVA revealed that there was no significant difference in the mean of the three water bodies (p?>?0.05). It is therefore recommended that the government should be more effective in controlling the point source of pollution in the area.  相似文献   

20.
以桂林岩溶水文地质试验场为研究点,以研究水生植物对岩溶水化学日变化的影响为目的,着重研究水葫芦和水藻对岩溶水的pH、电导率、溶解氧含量、方解石饱和指数以及CO2 分压日变化的影响。试验结果表明: 在不同水生植物生长的岩溶水中,水化学的日动态变化规律是不同的。在水藻生长的水池出水口处,水的pH、电导、溶解氧含量、饱和指数以及CO2 分压所受的影响主要以水生植物的光合作用为主;而在有水葫芦生长的岩溶水中,水生植物的光合作用影响降低,而温度和根呼吸作用的影响增强。在以桂林岩溶水文地质试验场S31号泉水池出水口堰板处和堰板下游约3m 处为监测点试验时,试验结果表明其水生植物的影响占70%以上,强于温度作用的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号