首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lysimeter-percolate and well-hydrograph analyses were combined to evaluate recharge for the Masser Recharge Site (central Pennsylvania, USA). In humid regions, aquifer recharge through an unconfined low-porosity fractured-rock aquifer can cause large magnitude water-table fluctuations over short time scales. The unsaturated hydraulic characteristics of the subsurface porous media control the magnitude and timing of these fluctuations. Data from multiple sets of lysimeters at the site show a highly seasonal pattern of percolate and exhibit variability due to both installation factors and hydraulic property heterogeneity. Individual event analysis of well hydrograph data reveals the primary influences on water-table response, namely rainfall depth, rainfall intensity, and initial water-table depth. Spatial and seasonal variability in well response is also evident. A new approach for calculating recharge from continuous water-table elevation records using a master recession curve (MRC) is demonstrated. The recharge estimated by the MRC approach when assuming a constant specific yield is seasonal to a lesser degree than the recharge estimate resulting from the lysimeter analysis. Partial reconciliation of the two recharge estimates is achieved by considering a conceptual model of flow processes in the highly-heterogeneous underlying fractured porous medium.  相似文献   

2.
Phu tok Aquifer is the most productive water bearing rock in the Northeastern region of Thailand. Generally, well drilled in this aquifer yields approximately 20–50 m3/hr with some wells yield over 150 m3/hr. This aquifer characterized both unconfined and confined aquifer. Data collected from core sampling and TV bore hole show water bearing fractures in the fine grained massive sandstone intercalated with thin shale layers. These intermittently bedding plane fracture zones were found vertically at 60-65 and 95-110 m below ground surface. Three directions of vertically fractures were also found at 103-104 m in the test well with underlain densely sandstone until 120 m of depth. Wells drilled to 60-70 m fractures at the area where surface elevation between 150 and 170 m above mean sea level were artesian well with rising water about 1-3 m. Natural discharge rate from 2-5 inches of diameter casing is 5-10 m3/hr. Fractures at 90-110 m yield 150 m3/hr through 6 inch casing well with 5-6 m of risen water above the ground. It is found from pumping test of Phu Tok Aquifer that hydraulic conductivity of unconfined aquifer at shallower than 50 m is 0.005-17 m/d. Transmissivity and storage coefficient are 0.05-20 m2/d and 7×10-3-0.725 respectively. The confined aquifer at depth not exceed 90 m has hydraulic conductivity value of 0.2-10 m/d while transmissivity and storage coefficient are 3.19-150 m2/d and 1×10-10-1.6×10-2. Another confined aquifer at 90-120 m of depth have hydraulic conductivity value of 0.08-15 m/d and transmissivity and storage coefficient values of 1.7-178 m2/d and 4×10-7-4.5×10-3 respectively.  相似文献   

3.
The water-table fluctuation (WTF) method is one of the most widely used means to estimate aquifer recharge. In the northeastern coast of the Buenos Aires province, Argentina, the geomorphological and climatic characteristics, as well as the presence of a shallow, homogeneous unconfined aquifer, make it possible to apply this methodology. The relationship between water-table fluctuations and precipitation in a humid climate, considering its seasonal variations, is assessed. Water tables were measured monthly between February 2008 and September 2010 in a monitoring network; rainfall data were analysed. The water table rises when the accumulated precipitation between measurements is more than 53?mm/month in the dry season and more than 97?mm/month in the rainy season. The index, relating water-table fluctuations and precipitation occurring between measurements, shows that values below 0 suggest no increase in the water reserves, whereas higher values entail an increase. In the study area, where there is a lack of historical data, finding out the relationship between water-table fluctuations and precipitation will constitute a tool for groundwater use and management, and set up an early warning system for dry periods. It could also be extrapolated to other regions with similar hydrological conditions lacking in data.  相似文献   

4.
Management of groundwater resources can be improved by using groundwater models to perform risk analyses and to improve development strategies, but a lack of extensive basic data often limits the implementation of sophisticated models. Dar es Salaam in Tanzania is an example of a city where increasing groundwater use in a Pleistocene aquifer is causing groundwater-related problems such as saline intrusion along the coastline, lowering of water-table levels, and contamination of pumping wells. The lack of a water-level monitoring network introduces a problem for basic data collection and model calibration and validation. As a replacement, local water-supply wells were used for measuring groundwater depth, and well-top heights were estimated from a regional digital elevation model to recalculate water depths to hydraulic heads. These were used to draw a regional piezometric map. Hydraulic parameters were estimated from short-time pumping tests in the local wells, but variation in hydraulic conductivity was attributed to uncertainty in well characteristics (information often unavailable) and not to aquifer heterogeneity. A MODFLOW model was calibrated with a homogeneous hydraulic conductivity field and a sensitivity analysis between the conductivity and aquifer recharge showed that average annual recharge will likely be in the range 80–100 mm/year.  相似文献   

5.
Transmissivity (T) is a basic hydraulic parameter of an aquifer that is utilized in most groundwater flow equations to understand the flow dynamics and is generally estimated from pumping tests. However, the cost of performing a large number of aquifer tests is expensive and time consuming. The fact that specific capacity (S c) is correlated with hydraulic flow properties of aquifers simplifies parameter estimation mainly because specific capacity values are more abundant in groundwater databases than values of transmissivity and they offer another approach to estimate hydraulic parameters of aquifers. In this study, an empirical relation is derived using 214 pairs of transmissivity and specific capacity values that are obtained from pumping tests conducted on water wells penetrating the complex volcanic aquifers of Upper Awash Basin, central Ethiopia. Linear and logarithmic regression functions have been performed and it is found that the logarithmic relationship predicting transmissivity from specific capacity data has a better correlation (R = 0.97) than the linear relationship (R = 0.79). The two parameters are log-normally distributed, in which the logarithmic relation is also better statistically justified than the linear relation. Geostatistical estimations of the transmissivity were made using different inputs and methods. Measured and supplemented transmissivity data obtained from estimates using the derived empirical relation were krigged and cokrigged, spherical and exponential models were fitted to the experimental variograms. The cross-validation results showed that the best estimation is provided using the kriging procedure, the transmissivity field represented by the measured transmissivity data and the experimental variogram fitted with the exponential model. Based on the geostatistical approach, the transmissivity map of the aquifer is produced, which will be used for groundwater flow modeling of the study area that will follow this analysis.  相似文献   

6.
A method is proposed that uses analysis of borehole stratigraphic logs for the characterization of shallow aquifers and for the assessment of areas suitable for manual drilling. The model is based on available borehole-log parameters: depth to hard rock, depth to water, thickness of laterite and hydraulic transmissivity of the shallow aquifer. The model is applied to a study area in northwestern Senegal. A dataset of boreholes logs has been processed using a software package (TANGAFRIC) developed during the research. After a manual procedure to assign a standard category describing the lithological characteristics, the next step is the automated extraction of different textural parameters and the estimation of hydraulic conductivity using reference values available in the literature. The hydraulic conductivity values estimated from stratigraphic data have been partially validated, by comparing them with measured values from a series of pumping tests carried out in large-diameter wells. The results show that this method is able to produce a reliable interpretation of the shallow hydrogeological context using information generally available in the region. The research contributes to improving the identification of areas where conditions are suitable for manual drilling. This is achieved by applying the described method, based on a structured and semi-quantitative approach, to classify the zones of suitability for given manual drilling techniques using data available in most African countries. Ultimately, this work will support proposed international programs aimed at promoting low-cost water supply in Africa and enhancing access to safe drinking water for the population.  相似文献   

7.
The applicability of geophysical techniques has been examined for evaluating aquifer properties like transmissivity and hydraulic conductivity of coastal aquifers, Tuticorin, Tamil Nadu. The pumping test data of 10 wells are interpreted by using forward modelling to obtain the aquifer characteristics in the study area. The available vertical electrical soundings (VES) data in the vicinity of the sites of pumping test have been interpreted; and true resistivity and thickness are determined at each site in the study area. Empirical relationships are established for estimating the hydraulic parameters from the electrical data.  相似文献   

8.
The Snake River Plain aquifer in southeast Idaho is hosted in a thick sequence of layered basalts and interbedded sediments. The degree to which the layering impedes vertical flow has not been well understood, yet is a feature that may exert a substantial control on the movement of contaminants. An axial-flow numerical model, RADFLOW, was calibrated to pumping test data collected by a straddle-packer system deployed at 23 depth intervals in four observation wells to evaluate conceptual models and estimate properties of the Snake River Plain aquifer at the Idaho National Engineering and Environmental Laboratory. A delayed water-table response observed in intervals beneath a sediment interbed was best reproduced with a three-layer simulation. The results demonstrate the hydraulic significance of this interbed as a semi-confining layer. Vertical hydraulic conductivity of the sediment interbed was estimated to be about three orders of magnitude less than vertical hydraulic conductivity of the lower basalt and upper basalt units. The numerical model was capable of representing aquifer conceptual models that could not be represented with any single analytical technique. The model proved to be a useful tool for evaluating alternative conceptual models and estimating aquifer properties in this application. Electronic Publication  相似文献   

9.
The unconfined aquifer of the Continental Terminal in Niger was investigated by magnetic resonance sounding (MRS) and by 14 pumping tests in order to improve calibration of MRS outputs at field scale. The reliability of the standard relationship used for estimating aquifer transmissivity by MRS was checked; it was found that the parametric factor can be estimated with an uncertainty ≤150% by a single point of calibration. The MRS water content (θ MRS) was shown to be positively correlated with the specific yield (Sy), and θ MRS always displayed higher values than Sy. A conceptual model was subsequently developed, based on estimated changes of the total porosity, Sy, and the specific retention Sr as a function of the median grain size. The resulting relationship between θ MRS and Sy showed a reasonably good fit with the experimental dataset, considering the inherent heterogeneity of the aquifer matrix (residual error is ~60%). Interpreted in terms of aquifer parameters, MRS data suggest a log-normal distribution of the permeability and a one-sided Gaussian distribution of Sy. These results demonstrate the efficiency of the MRS method for fast and low-cost prospection of hydraulic parameters for large unconfined aquifers.  相似文献   

10.
The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems. As groundwater flows through an aquifer, its composition and temperature may variation dependent on the aquifer condition through which it flows. Thus, hydrologic investigations can also provide useful information about the subsurface geology of a region. But because such studies investigate processes that follow under the Earth's shallow, obtaining the information necessary to answer these questions is not continuously easy. Springs, which discharge groundwater table directly, afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity (T) and storativity (S) are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.). In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole) that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery) is caused due to pumping of water from the well. Theis (1935) was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl) flow through an aquifer) and storativity (confined aquifer: S = bSs, unconfined: S = Sy), for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.  相似文献   

11.
在地下水扩散方程中,压力传导系数是描述地下水运动的重要参数。传统的方法是通过抽水或注水给地下水系统一个扰动,监测地下水水位的响应,由此计算含水层的压力传导系数。文章提出用潮汐衰减率方法识别含水层压力传导系数,其适用于滨海区承压含水层的参数识别。在推导出解析解的基础上,通过数值拟合、最小二乘法、牛顿迭代法求得含水层的压力传导系数,提出潮汐衰减率的概念,建立余切函数与潮汐衰减率的线性关系,用线性关系中的斜率和截距识别压力传导系数。用潮汐衰减率方法识别出的压力传导系数与其实际值相等,说明该方法是正确有效的。潮汐信号衰减率与海水振荡的余切函数线性相关。数值仿真表明,该方法可以准确地估算出含水层的压力传导系数。潮汐衰减率方法具有少打井,经济高效等优点。潮汐衰减率方法为实际工程应用提供了可靠的理论基础,它可以用于部分实际工程中。该方法的局限性在于需要提供含水层的部分参数,如含水层的长度、海水波动振幅、频率等。  相似文献   

12.
Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997–2006, followed by validation (2007–2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.  相似文献   

13.
Crystalline aquifers of semi-arid southern India represent a vital water resource for farming communities. A field study is described that characterizes the hydrodynamic functioning of intensively exploited crystalline aquifers at local scale based on detailed well monitoring during one hydrological year. The main results show large water-table fluctuations caused by monsoon recharge and pumping, high spatial variability in well discharges, and a decrease of well yields as the water table decreases. Groundwater chemistry is also spatially variable with the existence of aquifer compartments within which mixing occurs. The observed variability and compartmentalization is explained by geological heterogeneities which play a major role in controlling groundwater flow and connectivity in the aquifer. The position of the water table within the fracture network will determine the degree of connectivity between aquifer compartments and well discharge. The presented aquifer conceptual model suggests several consequences: (1) over-exploitation leads to a drop in well discharge, (2) intensive pumping may contribute to the hydraulic containment of contaminants, (3) groundwater quality is highly variable even at local scale, (4) geological discontinuities may be used to assist in the location of drinking-supply wells, (5) modeling should integrate threshold effects due to water-table fluctuations.  相似文献   

14.
An electrical resistivity method has been used to determine aquifer parameters in the Ganga-Yamuna interfluve in northern India. An existing relationship between the geoelectrical and hydraulic parameters has been modified for the case of an anisotropic aquifer. The hydrogeological framework in the upper part of the Ganga-Yamuna interfluve is evaluated by using existing relationships between hydraulic parameters and geoelectrical parameters for alluvial aquifers. On the basis of aquifer geometry, the area has been divided into two hydraulic units: the western Yamuna flood plain and the Ganga flood plain towards the east. The resistivity data collected in parts of the study area are first interpreted in terms of true resistivity and thicknesses of subsurface layers. The electrical parameters (resistivity and thicknesses) are subsequently correlated with the available pumping test data. Distinct correlations between transmissivity and modified transverse resistance are obtained for the two hydraulic units. A four-parameter model consisting of hydraulic conductivity, modified longitudinal resistivity, modified transverse resistance and hydraulic anisotropy is presented for the anisotropic aquifer underlain by conductive fine grained sediments. The model has been validated at a number of locations, where aquifer parameters are known from pumping test data.  相似文献   

15.
Effective evaluation, management and abstraction of groundwater resources of any aquifer require accurate and reliable estimates of its hydraulic parameters. This study, therefore, looks at the determination of hydraulic parameters of an unconfined aquifer using both analytical and numerical approaches. A long-duration pumping test data obtained from an unconfined aquifer system within the Tailan River basin in Xinjiang Autonomous Region in the northwest of China is used, in this study, to investigate the best method for estimating the parameters of the aquifer. The pumping test was conducted by pumping from a radial collector well and measuring the response in nine observation wells; all the wells used in the test were partially penetrating. Using two well-known tools, namely AquiferTest and MODFLOW, as an aid for the analytical and numerical approaches, respectively, the parameters of the aquifer were determined and their outputs compared. The estimated horizontal hydraulic conductivity, vertical hydraulic conductivity, and specific yield for the analytical approach are 38.1–50.30 m/day, 3.02–9.05 m/day and 0.204–0.339, respectively, while the corresponding numerical estimates are 20.50–35.24 m/day, 0.10–3.40 m/day, and 0.27–0.31, respectively. Comparing the two, the numerical estimates were found to be more representative of the aquifer in the study area since it simulated the groundwater flow conditions of the pumping test in the aquifer system better than the analytical solution.  相似文献   

16.
Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico   总被引:1,自引:0,他引:1  
The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7–10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Electronic Publication  相似文献   

17.
对于潜水井流,利用Dupuit公式计算的参数往往相差很大,难以直接选用。对Dupuit公式进行线性化,建立降深(s)与距离(r)的s-lnr直线关系,利用直线斜率、直线在x轴上的截距,可以直接求得唯一的渗透系数K和影响半径R。利用松花江河谷的承压水井抽水试验资料和洮儿河扇形地27个潜水抽水井及其观测孔的抽水试验资料,应用直线图解法分析计算,得到唯一的含水层参数T、K和R。将计算结果与直接利用Dupuit公式所计算的结果相比较,前者的求参效果较好。  相似文献   

18.
The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.  相似文献   

19.
20.
Indexing methods are used for the evaluation of aquifer vulnerability and establishing guidelines for the protection of ground-water resources. The principle of the indexing method is to rank influences on groundwater to determine overall vulnerability of an aquifer to contamination. The analytic element method (AEM) of ground-water flow modeling is used to enhance indexing methods by rapidly calculating a potentiometric surface based primarily on surface-water features. This potentiometric map is combined with a digital-elevation model to produce a map of water-table depth. This is an improvement over simple water-table interpolation methods. It is physically based, properly representing surface-water features, hydraulic boundaries, and changes in hydraulic conductivity. The AEM software, SPLIT, is used to improve an aquifer vulnerability assessment for a valley-fill aquifer in western New York State. A GIS-based graphical user interface allows automated conversion of hydrography vector data into analytic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号