首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ant Miner algorithm was compared with the bivariate frequency ratio (FR) and boosted regression trees (BRT) algorithms in terms of its capacity to assess groundwater potential. A geospatial dataset was prepared that contains two components: a flowing well inventory map and eleven factors relevant to groundwater conditions. Average nearest neighbor technique was used to investigate the spatial pattern of flowing wells and to find the appropriate distance between flowing and nonflowing points in the study area. A wrapper approach known as random forest classifier and a filtering approach known as information gain ratio were used to identify the most relevant groundwater factors. The developed models were validated via the area under the operating characteristic curve. Results revealed that the Ant Miner model performed better in terms of both success (0.944) and prediction (0.92) rates compared to FR and BRT. Furthermore, the Ant Miner algorithm derived five simple, easily interpreted rules for predicting groundwater potential that can be used by hydrogeologists for identifying potential groundwater well locations with minimal effort and cost.  相似文献   

2.
The purpose of the current study is to produce landslide susceptibility maps using different data mining models. Four modeling techniques, namely random forest (RF), boosted regression tree (BRT), classification and regression tree (CART), and general linear (GLM) are used, and their results are compared for landslides susceptibility mapping at the Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslide locations were identified and mapped from the interpretation of different data types, including high-resolution satellite images, topographic maps, historical records, and extensive field surveys. In total, 125 landslide locations were mapped using ArcGIS 10.2, and the locations were divided into two groups; training (70 %) and validating (25 %), respectively. Eleven layers of landslide-conditioning factors were prepared, including slope aspect, altitude, distance from faults, lithology, plan curvature, profile curvature, rainfall, distance from streams, distance from roads, slope angle, and land use. The relationships between the landslide-conditioning factors and the landslide inventory map were calculated using the mentioned 32 models (RF, BRT, CART, and generalized additive (GAM)). The models’ results were compared with landslide locations, which were not used during the models’ training. The receiver operating characteristics (ROC), including the area under the curve (AUC), was used to assess the accuracy of the models. The success (training data) and prediction (validation data) rate curves were calculated. The results showed that the AUC for success rates are 0.783 (78.3 %), 0.958 (95.8 %), 0.816 (81.6 %), and 0.821 (82.1 %) for RF, BRT, CART, and GLM models, respectively. The prediction rates are 0.812 (81.2 %), 0.856 (85.6 %), 0.862 (86.2 %), and 0.769 (76.9 %) for RF, BRT, CART, and GLM models, respectively. Subsequently, landslide susceptibility maps were divided into four classes, including low, moderate, high, and very high susceptibility. The results revealed that the RF, BRT, CART, and GLM models produced reasonable accuracy in landslide susceptibility mapping. The outcome maps would be useful for general planned development activities in the future, such as choosing new urban areas and infrastructural activities, as well as for environmental protection.  相似文献   

3.
Data- and knowledge-driven techniques are used to produce regional Au prospectivity maps of a portion of Melville Peninsula, Northern Canada using geophysical and geochemical data. These basic datasets typically exist for large portions of Canada's North and are suitable for a “greenfields” exploration programme. The data-driven method involves the use of the Random Forest (RF) supervised classifier, a relatively new technique that has recently been applied to mineral potential modelling while the knowledge-driven technique makes use of weighted-index overlay, commonly used in GIS spatial modelling studies. We use the location of known Au occurrences to train the RF classifier and calculate the signature of Au occurrences as a group from non-occurrences using the basic geoscience dataset. The RF classification outperformed the knowledge-based model with respect to prediction of the known Au occurrences. The geochemical data in general were more predictive of the known Au occurrences than the geophysical data. A data-driven approach such as RF for the production of regional Au prospectivity maps is recommended provided that a sufficient number of training areas (known Au occurrences) exist.  相似文献   

4.
The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artificial Neural Network(ANN),Quadratic Discriminant Analysis(QDA),Linear Discriminant Analysis(LDA),and Naive Bayes(NB),for landslide susceptibility modeling and comparison of their performances.Coupling machine learning algorithms with spatial data types for landslide susceptibility mapping is a vitally important issue.This study was carried out using GIS and R open source software at Abha Basin,Asir Region,Saudi Arabia.First,a total of 243 landslide locations were identified at Abha Basin to prepare the landslide inventory map using different data sources.All the landslide areas were randomly separated into two groups with a ratio of 70%for training and 30%for validating purposes.Twelve landslide-variables were generated for landslide susceptibility modeling,which include altitude,lithology,distance to faults,normalized difference vegetation index(NDVI),landuse/landcover(LULC),distance to roads,slope angle,distance to streams,profile curvature,plan curvature,slope length(LS),and slope-aspect.The area under curve(AUC-ROC)approach has been applied to evaluate,validate,and compare the MLTs performance.The results indicated that AUC values for seven MLTs range from 89.0%for QDA to 95.1%for RF.Our findings showed that the RF(AUC=95.1%)and LDA(AUC=941.7%)have produced the best performances in comparison to other MLTs.The outcome of this study and the landslide susceptibility maps would be useful for environmental protection.  相似文献   

5.
《地学前缘(英文版)》2020,11(6):2207-2219
This investigation assessed the efficacy of 10 widely used machine learning algorithms (MLA) comprising the least absolute shrinkage and selection operator (LASSO), generalized linear model (GLM), stepwise generalized linear model (SGLM), elastic net (ENET), partial least square (PLS), ridge regression, support vector machine (SVM), classification and regression trees (CART), bagged CART, and random forest (RF) for gully erosion susceptibility mapping (GESM) in Iran. The location of 462 previously existing gully erosion sites were mapped through widespread field investigations, of which 70% (323) and 30% (139) of observations were arbitrarily divided for algorithm calibration and validation. Twelve controlling factors for gully erosion, namely, soil texture, annual mean rainfall, digital elevation model (DEM), drainage density, slope, lithology, topographic wetness index (TWI), distance from rivers, aspect, distance from roads, plan curvature, and profile curvature were ranked in terms of their importance using each MLA. The MLA were compared using a training dataset for gully erosion and statistical measures such as RMSE (root mean square error), MAE (mean absolute error), and R-squared. Based on the comparisons among MLA, the RF algorithm exhibited the minimum RMSE and MAE and the maximum value of R-squared, and was therefore selected as the best model. The variable importance evaluation using the RF model revealed that distance from rivers had the highest significance in influencing the occurrence of gully erosion whereas plan curvature had the least importance. According to the GESM generated using RF, most of the study area is predicted to have a low (53.72%) or moderate (29.65%) susceptibility to gully erosion, whereas only a small area is identified to have a high (12.56%) or very high (4.07%) susceptibility. The outcome generated by RF model is validated using the ROC (Receiver Operating Characteristics) curve approach, which returned an area under the curve (AUC) of 0.985, proving the excellent forecasting ability of the model. The GESM prepared using the RF algorithm can aid decision-makers in targeting remedial actions for minimizing the damage caused by gully erosion.  相似文献   

6.

Hot and humid subtropical plateau regions are susceptible to land degradation in the form of weathering and gully erosion. Here, we investigate chemical weathering, gully erosion and cohesiveness through field-based measurements with a view to understand the controlling factors of potential land degradation, in complex river basin of the Chotanagpur plateau region in Eastern India. The layers of controlling factors of gully erosion were developed and prioritized considering boosted regression tree (BRT), alternative decision tree (ADT), particle swarm optimization (PSO) and random forest (RF) algorithms in the R software, and the results of these methods were also validated using receiver operating characteristic (ROC) curves. The spectroscopic analysis was carried out of collected soil samples to measure the degree of chemical weathering and cohesiveness. Furthermore, the climatic elements like temperature and rainfall were also considered for estimating the chemical weathering. The results of the gully erosion models (i.e., BRT, ADT, PSO and RF) show remarkable accuracy with ROC values of 0.93, 0.89, 0.91 and 0.84, respectively. An advanced decision tree model was integrated with the results of degree of chemical weathering and cohesiveness in geographical information system platform. The land degradation map developed from this approach shows that 10.53% of the study area is highly affected, whereas 17.36% area is moderately affected and the rest of the 73.85% area is less affected by land degradation. Our results provide essential information for policy makers in adopting measures for minimizing and controlling the land degradation. Our novel approach is significant to assess land degradation to a large scale.

  相似文献   

7.
随机森林与GIS的泥石流易发性及可靠性   总被引:3,自引:0,他引:3       下载免费PDF全文
张书豪  吴光 《地球科学》2019,44(9):3115-3134
目前基于GIS的泥石流易发性(简称DFS)评价模型中,统计类型模型的因子须保证独立性,且权重受区间划分控制;线性机器学习难以处理非线性问题、而常用非线性模型调试效率低.鉴于随机森林(RF)能有效克服常用模型的诸多不足,且在DFS评价中的应用极少,首先展开基于RF的DFS评价,采用线性、RBF支持向量机、二次判别分析、RF等经贝叶斯优化的模型和26种泥石流影响因子;然后,分别以RF的相对权重排序和蒙特卡洛方法研究因子组合和建模样本变化下DFS评价的可靠性.结果表明:RF不易发和较易发区中有21个因子可指示泥石流孕育环境差异;RF的相对权重排序能有效确定易发模型的局部最优因子组合;随机样本划分导致的评价不确定性在中易发区最大,应通过提高建模样本比例和改善模型降低;RF的预测能力指标AUC为0.86、全局预测精度为0.79、F1分数为0.66、brier分数为0.14,以及它们的可靠度最优,可作为DFS定量评估的优先选择.   相似文献   

8.
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam. In this article, we proposed new machine learning ensemble techniques namely Ada Boost ensemble(ABLWL), Bagging ensemble(BLWL), Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL) with Locally Weighted Learning(LWL) algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam. For this study, eleven conditioning factors(aspect, altitude, curvature, slope, Stream Transport Index(STI), Topographic Wetness Index(TWI), soil, geology,river density, rainfall, land-use) and 134 wells yield data was used to create training(70%) and testing(30%)datasets for the development and validation of the models. Several statistical indices were used namely Positive Predictive Value(PPV), Negative Predictive Value(NPV), Sensitivity(SST), Specificity(SPF), Accuracy(ACC),Kappa, and Receiver Operating Characteristics(ROC) curve to validate and compare performance of models. Results show that performance of all the models is good to very good(AUC: 0.75 to 0.829) but the ABLWL model with AUC = 0.89 is the best. All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.  相似文献   

9.
《地学前缘(英文版)》2020,11(3):871-883
Landslides are abundant in mountainous regions.They are responsible for substantial damages and losses in those areas.The A1 Highway,which is an important road in Algeria,was sometimes constructed in mountainous and/or semi-mountainous areas.Previous studies of landslide susceptibility mapping conducted near this road using statistical and expert methods have yielded ordinary results.In this research,we are interested in how do machine learning techniques help in increasing accuracy of landslide susceptibility maps in the vicinity of the A1 Highway corridor.To do this,an important section at Ain Bouziane(NE,Algeria) is chosen as a case study to evaluate the landslide susceptibility using three different machine learning methods,namely,random forest(RF),support vector machine(SVM),and boosted regression tree(BRT).First,an inventory map and nine input factors were prepared for landslide susceptibility mapping(LSM) analyses.The three models were constructed to find the most susceptible areas to this phenomenon.The results were assessed by calculating the receiver operating characteristic(ROC) curve,the standard error(Std.error),and the confidence interval(CI) at 95%.The RF model reached the highest predictive accuracy(AUC=97.2%) comparatively to the other models.The outcomes of this research proved that the obtained machine learning models had the ability to predict future landslide locations in this important road section.In addition,their application gives an improvement of the accuracy of LSMs near the road corridor.The machine learning models may become an important prediction tool that will identify landslide alleviation actions.  相似文献   

10.
Due to the combined influences such as ore-forming temperature, fluid and metal sources, sphalerite tends to incorporate diverse contents of trace elements during the formation of different types of Lead-zinc (Pb-Zn) deposits. Therefore, trace elements in sphalerite have long been utilized to distinguish Pb-Zn deposit types. However, previous discriminant diagrams usually contain two or three dimensions, which are limited to revealing the complicated interrelations between trace elements of sphalerite and the types of Pb-Zn deposits. In this study, we aim to prove that the sphalerite trace elements can be used to classify the Pb-Zn deposit types and extract key factors from sphalerite trace elements that can discriminate Pb-Zn deposit types using machine learning algorithms. A dataset of nearly 3600 sphalerite spot analyses from 95 Pb-Zn deposits worldwide determined by LA-ICP-MS was compiled from peer-reviewed publications, containing 12 elements (Mn, Fe, Co, Cu, Ga, Ge, Ag, Cd, In, Sn, Sb, and Pb) from 5 types, including Sedimentary Exhalative (SEDEX), Mississippi Valley Type (MVT), Volcanic Massive Sulfide (VMS), skarn, and epithermal deposits. Random Forests (RF) is applied to the data processing and the results show that trace elements of sphalerite can successfully discriminate different types of Pb-Zn deposits except for VMS deposits, most of which are falsely distinguished as skarn and epithermal types. To further discriminate VMS deposits, future studies could focus on enlarging the capacity of VMS deposits in datasets and applying other geological factors along with sphalerite trace elements when constructing the classification model. RF’s feature importance and permutation feature importance were adopted to evaluate the element significance for classification. Besides, a visualized tool, t-distributed stochastic neighbor embedding (t-SNE), was used to verify the results of both classification and evaluation. The results presented here show that Mn, Co, and Ge display significant impacts on classification of Pb-Zn deposits and In, Ga, Sn, Cd, and Fe also have relatively important effects compared to the rest elements, confirming that Pb-Zn deposits discrimination is mainly controlled by multi-elements in sphalerite. Our study hence shows that machine learning algorithm can provide new insights into conventional geochemical analyses, inspiring future research on constructing classification models of mineral deposits using mineral geochemistry data.  相似文献   

11.
In this study, the hydrodynamics of lower Ganges basin in India has been monitored using radar altimetry data from environmental satellite (ENVISAT) mission and microgravity data from the Gravity Recovery and Climate Experiment (GRACE) mission. River stage time series have been constructed for different virtual stations on the lower Ganges. Time series for the integrated water volume changes from microgravity measurements have also been constructed to characterize the seasonal and interannual fluctuation patterns in water storage and flux. The ENVISAT dataset indicates an average seasonal river stage fluctuation of 8 m in the lower Ganges River. The GRACE dataset reveals a seasonal fluctuation ranging from 0.18 to 0.40 m in the vertically integrated total water storage in the lower Ganges basin. The two independent datasets show broad similarity in the lower Ganges basin and outline the importance of space-based techniques for monitoring continental water resources.  相似文献   

12.
The purpose of current study is to produce groundwater qanat potential map using frequency ratio (FR) and Shannon's entropy (SE) models in the Moghan watershed, Khorasan Razavi Province, Iran. The qanat is basically a horizontal, interconnected series of underground tunnels that accumulate and deliver groundwater from a mountainous source district, along a water- bearing formation (aquifer), and to a settlement. A qanat locations map was prepared for study area in 2013 based on a topographical map at a 1:50,000-scale and extensive field surveys. 53 qanat locations were detected in the field surveys. 70 % (38 locations) of the qanat locations were used for groundwater potential mapping and 30 % (15 locations) were used for validation. Fourteen effective factors were considered in this investigation such as slope degree, slope aspect, altitude, topographic wetness index (TWI), stream power index (SPI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Using the above conditioning factors, groundwater qanat potential map was generated implementing FR and SE models, and the results were plotted in ArcGIS. The predictive capability of frequency ratio and Shannon's entropy models were determined by the area under the relative operating characteristic curve. The area under the curve (AUC) for frequency ratio model was calculated as 0.8848. Also AUC for Shannon's entropy model was 0.9121, which depicts the excellence of this model in qanat occurrence potential estimation in the study area. So the Shannon's entropy model has higher AUC than the frequency ratio model. The produced groundwater qanat potential maps can assist planners and engineers in groundwater development plans and land use planning.  相似文献   

13.
准确可靠的中长期径流预报是支撑水资源科学调配、提高水资源利用效率的关键。本研究采用AdaBoost模型(AdB)、随机森林模型(RF)和支持向量机模型(SVM)进行淮河流域王家坝和蚌埠站当年11月至次年10月共12个月的中长期径流预报研究。采用置换准确度重要性度量法从130项气象-气候因子及前期降雨/流量构建的1 562个因子变量中筛选出影响各月径流的关键因子,构建了基于AdB、RF和SVM模型的各月径流预报模型,模型参数采用随机搜索技术并结合交叉验证方式确定。采用变幅误差合格率和等级(五级)预报合格率指标对模型的预报精度进行了评估。变幅误差合格率指标表明,王家坝12个月的平均合格率分别为99.8%(AdB)、96.6%(RF)和95.9%(SVM),蚌埠站分别为100%(AdB)、94.8%(RF)和93.8%(SVM);等级预报合格率指标表明,王家坝12个月的平均合格率分别为79.0%(AdB)、76.4%(RF)和79.9%(SVM),蚌埠站分别为81.0%(AdB)、75.6%(RF)和76.6%(SVM)。模型均具有较好的预报效果,但RF和SVM模型对于高流量值的预报存在偏低现象,AdB模型整体上优于RF和SVM模型。  相似文献   

14.
Changes in nitrate concentration in groundwater from wells in Prince Edward Island, Canada were investigated over time using two datasets. Temporal trends in groundwater nitrate concentrations were assessed annually during 1981–1996 (1,299 observations), and both seasonally and monthly during 1988–1991 (1,868 observations). Data were analysed using linear mixed models with random effects and correlation structures. The average nitrate concentration in the monthly dataset was 3.99 mg/L as NO3–N, with January, May, and November concentrations being higher (p?=?0.018). A seasonal effect was present when season was combined with land use type in an interaction term (p?=?0.004). Wells located in agricultural areas had greater nitrate concentrations than urban areas, which in turn, had greater values than low human-impact areas. Row-cropped areas had higher groundwater nitrate concentrations in the summer, whereas manure storage areas were higher in the spring and autumn. Nitrate in groundwater in areas with low human impact and with centralized sewage disposal infrastructure remained relatively low and stable throughout the seasons. There was no significant annual trend (p?=?0.954), but for individual sites, 9.6% significantly increased in nitrate concentration over time, and 6.6% significantly decreased over time.  相似文献   

15.
《地学前缘(英文版)》2020,11(5):1805-1819
In Punjab(Pakistan),the increasing population and expansion of land use for agriculture have severely exploited the regional groundwater resources.Intensive pumping has resulted in a rapid decline in the level of the water table as well as its quality.Better management practices and artificial recharge are needed for the development of sustainable groundwater resources.This study proposes a methodology to delineate favorable groundwater potential recharge zones(FPRI) by integrating maps of groundwater potential recharge index(PRI) with the DRASTIC-based groundwater vulnerability index(VI).In order to evaluate both indexes,different thematic layers corresponding to each index were overlaid in ArcGIS.In the overlay analysis,the weights(for various thematic layers) and rating values(for sub-classes) were allocated based on a review of published literature.Both were then normalized and modified using the analytical hierarchical process(AHP) and a frequency ratio model respectively.After evaluating PRI and FPRI,these maps were validated using the area under the curve(AUC) method.The PRI map indicates that 53% of the area assessed exists in very low to low recharge zones,22% in moderate,and 25% in high to excellent potential recharge zones.The VI map indicates that 38% of the area assessed exists in very low to low vulnerability,33% in moderate,and 29% in high to very high vulnerability zones.The FPRI map shows that the central region of Punjab is moderately-to-highly favorable for recharge due to its low vulnerability and high recharge potential.During the validation process,it was found that the AUC estimated with modified weights and rating values was 79% and 67%,for PRI and VI indexes,respectively.The AUC was less when evaluated using original weights and rating values taken from published literature.Maps of favorable groundwater potential recharge zones are helpful for planning and implementation of wells and hydraulic structures in this region.  相似文献   

16.
随机森林模型预测岩溶区酸性煤矿井水锰污染   总被引:1,自引:0,他引:1  
李冲 《中国煤炭地质》2021,(3):43-47,59
酸性煤矿井水严重威胁地下水的水质。如何更有效对受影响区域的地下水源进行动态监测是当前的一个关键问题。采用随机森林中的回归模型,利用自变量(采空区水位、岩溶水位、pH值、泉水流量、电导率)和因变量(污染离子浓度)的相关性,建立回归模型;使用测试数据进行误差分析,结果证明模型准度较高,所得预测值具有参考价值;得出各自变量对因变量影响的重要程度,分析结果与实际情况相符合。试验表明,随机森林回归模型在酸性煤矿井水污染预测方面具有适用性,可作为辅助手段监测水质污染情况,对今后工作有一定的指导意义和经济价值。  相似文献   

17.
Three statistical models—frequency ratio (FR), weights-of-evidence (WofE) and logistic regression (LR)—produced groundwater-spring potential maps for the Birjand Township, southern Khorasan Province, Iran. In total, 304 springs were identified in a field survey and mapped in a geographic information system (GIS), out of which 212 spring locations were randomly selected to be modeled and the remaining 92 were used for the model evaluation. The effective factors—slope angle, slope aspect, elevation, topographic wetness index (TWI), stream power index (SPI), slope length (LS), plan curvature, lithology, land use, and distance to river, road, fault—were derived from the spatial database. Using these effective factors, groundwater spring potential was calculated using the three models, and the results were plotted in ArcGIS. The receiver operating characteristic (ROC) curves were drawn for spring potential maps and the area under the curve (AUC) was computed. The final results indicated that the FR model (AUC?=?79.38 %) performed better than the WofE (AUC?=?75.69 %) and LR (AUC?=?63.71 %) models. Sensitivity and factor analyses concluded that the bivariate statistical index model (i.e. FR) can be used as a simple tool in the assessment of groundwater spring potential when a sufficient number of data are obtained.  相似文献   

18.
Hazards and disasters have always negative impacts on the way of life.Landslide is an overwhelming natural as well as man-made disaster that causes loss of natural resources and human properties throughout theworld.The present study aimed to assess and compare the prediction efficiency of different models in landslide susceptibility in the Kysuca river basin,Slovakia.In this regard,the fuzzy decision-making trial and evaluation laboratory combining with the analytic network process(FDEMATEL-ANP),Na?ve Bayes(NB)classifier,and random forest(RF)classifier were considered.Initially,a landslide inventory map was produced with 2000 landslide and nonlandslide points by randomly dividedwith a ratio of 70%:30%for training and testing,respectively.The geospatial database for assessing the landslide susceptibility was generated with the help of 16 landslide conditioning factors by allowing for topographical,hydrological,lithological,and land cover factors.The ReliefF methodwas considered for determining the significance of selected conditioning factors and inclusion in the model building.Consequently,the landslide susceptibility maps(LSMs)were generated using the FDEMATEL-ANP,Na?ve Bayes(NB)classifier,and random forest(RF)classifier models.Finally,the area under curve(AUC)and different arithmetic evaluation were used for validating and comparing the results and models.The results revealed that random forest(RF)classifier is a promising and optimum model for landslide susceptibility in the study area with a very high value of area under curve(AUC=0.954),lower value of mean absolute error(MAE=0.1238)and root mean square error(RMSE=0.2555),and higher value of Kappa index(K=0.8435)and overall accuracy(OAC=92.2%).  相似文献   

19.
In many parts of the world sedimentary horizons with potential for hydrocarbon are located below flood basalt provinces. However, the presence of high velocity basaltic overburden makes delineation of sediments difficult due to the low velocity layer problem. Electrical and electromagnetic methods have been used in such scenarios because of the good electrical conductivity contrast between basalts and underlying sediments. However, mapping of the target sediments becomes difficult when the layer is thin as the data errors due to inherent noise lead to equivalent solutions. To tackle such difficult situations, a joint inversion scheme incorporating seismic reflection and refraction, magnetotelluric and deep electrical resistivity datasets is presented. Efficacy of the scheme is tested for a model comprising a thin sedimentary layer sandwiched between a thick basalt cover and a granitic basement. The results indicate that the parameters of the target sedimentary layer are either poorly resolved or equivalent solutions are obtained by the inversion of individual datasets. Joint inversions of seismic reflection (RFLS) and refraction (RFRS), or DC and MT dataset pairs provide improved results and the range of equivalent solutions is narrowed down. Combination of any three of the above datasets leads to further narrowing of this range and improvements in mean model estimates. Joint inversion incorporating all the datasets is found to yield good estimates of the structure. Resolution analysis is carried out to appraise estimates of various model parameters obtained by jointly inverting different combinations of datasets.  相似文献   

20.
The main goal of this study is to investigate the application of the probabilistic-based frequency ratio (FR) model in groundwater potential mapping at Langat basin in Malaysia using geographical information system. So far, the approach of probabilistic frequency ratio model has not yet been used to delineate groundwater potential in Malaysia. Moreover, this study includes the analysis of the spatial relationships between groundwater yield and various hydrological conditioning factors such as elevation, slope, curvature, river, lineament, geology, soil, and land use for this region. Eight groundwater-related factors were collected and extracted from topographic data, geological data, satellite imagery, and published maps. About 68 groundwater data with high potential yield values of ≥11 m3/h were randomly selected using statistical software of SPSS. Then, the groundwater data were randomly split into a training dataset 70 % (48 borehole data) for training the model and the remaining 30 % (20 borehole data) was used for validation purpose. Finally, the frequency ratio coefficients of the hydrological factors were used to generate the groundwater potential map. The validation dataset which was not used during the FR modeling process was used to validate the groundwater potential map using the prediction rate method. The validation results showed that the area under the curve for frequency model is 84.78 %. As far as the performance of the FR approach is concerned, the results appeared to be quite satisfactory, i.e., the zones determined on the map being zones of relative groundwater potential. This information could be used by government agencies as well as private sectors as a guide for groundwater exploration and assessment in Malaysia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号