首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A compilation of phytoplankton species abundance data from the spring bloom along the northern Norwegian coast and in the Barents Sea shows that the quantitatively most important species are the prymnesiophyte Phaeocystis pouchetii and the common cold water to temperate diatoms Chaetoceros socialis, Skeletonema costatum sensu lato, Fragilariopsis oceanica, Thalassiosira spp., Chaetoceros furcellatus, Chaetoceros compressus, Chaetoceros debilis and Bacterosira bathyomphala. The relative abundance of diatoms and Phaeocystis varied highly and apparently stochastically between years. P. pouchetii occurred during all stages of the spring bloom and sometimes completely dominated the phytoplankton community. Along the Norwegian coast, the importance of P. pouchetii increased northwards. The species composition in coastal fjords at 70° N is surprisingly similar to that of shelf waters in the Barents Sea (up to 80° N). An exception is S. costatum sensu lato which was seldom observed in Arctic waters. Small flagellates (<10 μm) other than dinoflagellates and P. pouchetii are also important among the Barents Sea spring phytoplankton. Associations of species seem rigid over time and are dominated by C. socialis and P. pouchetii in northern waters. Biogeographical categories of spring bloom species in relation to environmental conditions are discussed.  相似文献   

2.
We combined a surface irradiance model with a non-spectral photosynthesisirradiance model to estimate the daily, average rate of mixed-layer primary production in the Arabian Sea for the 15th day of months at the end of the northeast monsoon, the southwest monsoon, and the fall and spring inter-monsoons. Our model experiment uses climatologies of cloud cover, mixed-layer thickness, and satellite ocean-color observations of phytoplankton biomass. Modelled surface radiation is at an annual maximum in May beneath nearly cloud-free skies just prior to the summer solstice. The model estimate of surface radiation diminishes through the southwest monsoon over most of the northern Arabian Sea to an annual minimum in August due to intense cloudiness. In agreement with previous ship-based measurements, the photosynthesis-irradiance model predicts that the mixed-layer primary production in the Arabian Sea is extremely seasonal, and peaks annually during the southwest monsoon to the north-west of the atmospheric Findlater Jet and along the coast of Somalia. Northern Arabian Sea maxima predicted for both the summer and winter monsoons are separated by periods of low mixed-layer primary production, the fall and spring inter-monsoons. The annual cycles of modelled mixed-layer primary production differ by region in the Arabian Sea due to varying monsoon influence and circulation dynamics.  相似文献   

3.
格陵兰海海冰外缘线变化特征分析   总被引:2,自引:0,他引:2  
格陵兰海作为北冰洋的边缘海之一,容纳了北极输出的海冰,其海冰外缘线的变化既受北极海冰输出量的影响,也受局地海冰融化和冻结过程的影响。利用2003年1月到2011年6月AMSR-E卫星亮温数据反演的海冰密集度产品,对格陵兰海海冰外缘线的变化特征进行了分析。结果表明,格陵兰海海冰外缘线不仅存在一年的变化周期,还存在比较显著的半年变化周期,与海冰在春秋两季向岸收缩有关。格陵兰海冬季的海冰外缘线极大值呈逐年下降的趋势,体现了北极增暖导致的冬季海冰范围减小;而夏季海冰外缘线离岸距离的极小值呈上升趋势,表明夏季来自北冰洋的海冰输出量增大。2003—2004年是格陵兰海夏季海冰融化最严重的2年。2007年北冰洋夏季海冰覆盖范围达到历史最小;而格陵兰海夏季的最小海冰范围最大,表明2007年北冰洋海冰的输出量大于其他年份。此外,夏季格陵兰岛冰雪融化形成的地表径流对海冰外缘线有一定的影响。对海冰外缘线影响最大的不是格陵兰海的局地风场,而是弗拉姆海峡(Fram Strait)区域的经向风,它直接驱动了北冰洋海冰向格陵兰海的输运,进而对格陵兰海海冰外缘线的分布产生滞后的影响。  相似文献   

4.
The annual balance of radionuclides inflow/outflow was assessed for 137Cs and 90Sr isotopes in the Barents Sea, taking into account the atmospheric precipitation, inflow from the Norwegian and the White seas, as well as riverine discharge, liquid radioactive waste disposal (LRWD), and outflow to the adjacent seas. The original and published data for the period of 1950–2009 were analyzed. According to the multiyear dynamics (1960–2009), the inflow of 137Cs and 90Sr into the Barents Sea was significantly preconditioned by the Norwegian Sea currents; and precipitation played a major role in the 1950s, 1960s, and in 1986. Currently, the trans-border redeposition of 90Sr prevails over 137Cs redeposition in the Barents Sea, and constitutes about 99% of inflow of each element.  相似文献   

5.
Ice-atmosphere interactions in the Seasonal Sea Ice Zone undergo rapid changes during the spring melt period with the transition from winter to summer conditions. The nature of these interactions is strongly dependent on the characteristics of the surface, which also experiences large changes during this same time period. This paper describes a methodology, based on Extended Principal Components Analysis, which is used to categorize the spatial and temporal patterns of surface change that occur in the Seasonal Sea Ice Zone during the spring/early summer. The methodology is demonstrated for the Kara/Barents Sea in spring 1984 using data from the Nimbus-7 Scanning Multichannel Microwave Radiometer. The analysis shows conditions in the Barents Sea to be largely controlled by ice advection, while the variance in the Kara Sea is dominated by surface melt.  相似文献   

6.
Tom Sawyer Hopkins   《Earth》1991,30(3-4):175-318
A synthesis and review of the physical oceanography of the GIN Sea (Greenland, Iceland and Norwegian Seas) is presented. An accompanying bibliography is included from 1972 through 1985. Some 1986 works are also noted. Emphasis is placed on describing the GIN Sea as a major semi-enclosed basin that plays a role unique among the world's oceans: by providing a strong two-way advective exchange between the ice-covered Polar Sea and the North Atlantic Ocean and at the same time acting as the primary site for Northern Hemisphere bottom water formation. The water masses for the GIN Sea are defined, in a manner as consistent as possible with the literature. The large-scale oceanographic and meteorological factors influencing the water mass formation and circulation are described. A sample calculation of the various horizontal and vertical thermohaline-driven exchanges is given.  相似文献   

7.
On the basis of geomorphological and sedimentological data, we believe that the entire Barents Sea was covered by grounded ice during the last glacial maximum. 14C dates on shells embedded in tills suggest marine conditions in the Barents Sea as late as 22 ka BP; and models of the deglaciation history based on uplift data from the northern Norwegian coast suggest that significant parts of the Barents Sea Ice Sheet calved off as early as 15 ka BP. The growth of the ice sheet is related to glacioeustatic fall and the exposure of shallow banks in the central Barents Sea, where ice caps may develop and expand to finally coalesce with the expanding ice masses from Svalbard and Fennoscandia.The outlined model for growth and decay of the Barents Sea Ice Sheet suggests a system which developed and existed under periods of maximum climatic deterioration, and where its growth and decay were strongly related to the fall and rise of sea level.  相似文献   

8.
Based on sedimentological, mineralogical, geochemical, and micropaleontological data on the comprehensively investigated Core ASV 1372, the late Pleistocene-Holocene sedimentation history is reconstructed for the Voring marginal plateau (continental margin of the Norwegian Sea). The age model is constructed based on the correlation with several adjacent cores, for which the AMS radiocarbon dates are available. Lithostratigraphic correlation made it possible to compare stratigraphic division of Core ASV 1372 with other cores recovered from the Voring Plateau and the shelf and continental slope off the central Norway. It is concluded that the compositional and structural features of sediments are correlated with paleoclimatic and paleoceanographic changes, variations in provenances, as well as agents and pathways of sedimentary material transport.  相似文献   

9.
通过对东海海—气界面二氧化碳(CO2)交换有关研究的总结,剖析了东海表层海水CO2分压(pCO2)的区域分布特征,探讨了海—气界面CO2通量(FCO2)的季节变化规律,诠释了影响海—气界面CO2转移的主要因素.结果表明,东海表层海水pCO2的区域分布具有明显的季节变化,可将其分为冬季、夏季、过渡季节(春季、秋季)3个时段.冬季西部近岸海域由于水体垂直交换强烈,造成表层水体pCO2较高,而中、东部陆架海域由于浮游生物的光合作用使得pCO2较低.夏季近岸河口海域由于陆源输入的影响导致pCO2较高,中、东部陆架海域受温跃层、长江冲淡水、浮游植物的综合作用pCO2较低.春季、秋季为过渡时段,表层海水pCO2分布变化剧烈,受控因素较为复杂.东海全年表现为大气CO2的净汇,其中冬、春、夏为碳汇,其海—气界面FCO2分别为(-6.68±6.93),(-4.94±0.80),(-3.67±1.09)mmol/(m2·d).秋季表现为碳源,通量约为(1.50±8.37)mmoL/(m2·d).东海全年平均通量约为-3.16 mmol/(m2·d),共可吸收CO2约为6.92×106 t C/a.不同季节海—气界面FCO2的年际变化凸显了人为因素的影响,近海富营养化加剧,三峡工程的运行都可能是造成东海冬季碳汇量减少、秋季碳源/汇格局转变的原因.  相似文献   

10.
The results of calculating the values of average annual transport of waters eastward of Greenland in 2007–2015 by the system of western boundary currents are discussed. It is shown that the values of the average annual transport of waters estimated by different methods for measuring the velocity of currents and the different calculation methods differ by 20%. The role of friction in the bottom jets of the northwestern deep water, which were discovered for the first time during long-term observations, is discussed. The considerable contribution of the shelf water cascading across the continental slope to the formation of the structure and transport of the East Greenland Current is established. The significant influence of vertical mixing on the physicochemical properties of the bottom layer waters is shown. The biological arguments of the contribution made by the Irminger current and the subsurface waters to the formation of the northwestern deep water are presented.  相似文献   

11.
A considerable portion of Northern Eurasia, and particularly its continental shelf, was glaciated by inland ice during late Weichsel time. This was first inferred from such evidence as glacial striae, submarine troughs, sea-bed diamictons, boulder trains on adjacent land, and patterns of glacioisostatic crustal movements. Subsequently, the inference was confirmed by data on the occurrence and geographic position of late Weichselian end moraines and proglacial lacustrine deposits.The south-facing outer moraines in the northeastern Russian Plain, northern West Siberia, and on Taimyr Peninsula are underlain by sediments containing wood and peat, the radiocarbon dating of which yielded ages of 22,000 to 45,000 yr B.P. The youngest late-glacial moraines are of Holocene age: the double Markhida moraine in the lower Pechora River basin, presumably associated with “degradational” surges of the Barents Ice Dome, is underlain by sediments with wood and peat dated at 9000 to 9900 yr B.P.: this suggests that deglaciation of the Arctic continental shelf of Eurasia was not completed until after 9000 yr B.P.The reconstructed ice-front lines lead to the conclusion that the late Weichselian ice sheet of Northern Eurasia (proposed name: the Eurasian Ice Sheet) extended without interruptions from southwestern Ireland to the northeastern end of Taimyr Peninsula, a distance of 6000 km: it covered an area of 8,370,000 km2, half of which lay on the present-day continental shelves and a quarter on lowlands that were depressed isostatically below sea level. Hence, the ice sheet was predominantly marine-based.A contour map of the ice sheet based both on the dependence of the heights of ice domes upon their radii and on factual data concerning the impact of bedrock topography upon ice relief has been constructed. The major features of the ice sheet were the British, Scandinavian, Barents, and Kara Ice Domes that had altitudes of 1.9 to 3.3 km and were separated from one another by ice saddles about 1.5 km high. At the late Weichselian glacial maximum, all the main ice-dispersion centers were on continental shelves and coastal lowlands, whereas mountain centers, such as the Polar Urals and Byrranga Range, played only a local role.The portions of the ice sheet that were grounded on continental shelves some 700 to 900 m below sea level were inherently unstable and could exist only in conjunction with confined and pinned floating ice shelves that covered the Arctic Ocean and the Greenland and Norwegian Seas.The Eurasian Ice Sheet impounded the Severnaya Dvina, Mezen, Pechora, Ob, Irtysh, and Yneisei Rivers, and caused the formation of ice-dammed lakes on the northern Russian Plain and in West Siberia. Until about 13,500 yr B.P. the proglacial system of lakes and spillways had a radial pattern; it included large West Siberian lakes, the Caspian and Black Seas, and ended in the Mediterranian Sea. Later, the system became marginal and discharged proglacial water mainly into the Norwegian Sea.  相似文献   

12.
This work focuses on the direct measurement of the vertical flux of appendicularian houses in order to assess their importance as a component of vertical carbon flux in coastal areas. For this purpose, arrays of cylindrical sediment traps were deployed for 5 to 8 days at two depths in a coastal area of the northern Aegean Sea (inner Thermaikos Gulf) during spring. The data support the contention that resuspension was minimal. Fecal pellet (FP) production and grazing experiments with the dominant copepods (Acartia clausi) were conducted to provide additional information on the potential FP contribution to the total carbon flux. The magnitude of the vertical flux of particulate organic carbon (POC) ranged between 310 and 724 mg C m?2 day?1. The proportion of phytoplankton carbon in the POC vertical flux was up to 45 %. The contribution of zooplankton FPs to the total carbon never exceeded 5 %. On the contrary, appendicularian houses were an essential component of the biogenic carbon flux contributing up to 55.3 % of the total vertical carbon flux. Consequently, both phytoplankton and appendicularian houses contributed equally to the biogenic carbon flux exceeding 80 % of the total sinking POC. Taking into account the sinking speed of the particles and the environment in the area, all this carbon probably reaches the seafloor, thus indicating a strong pelagic–benthic coupling.  相似文献   

13.
The paper is focused on the two tectonic-geodynamic factors that made the most appreciable contribution to the transformation of the lithospheric and hydrocarbon potential distribution at the Barents Sea continental margin: Jurassic-Cretaceous basaltic magmatism and the Cenozoic tectonic deformations. The manifestations of Jurassic-Cretaceous basaltic magmatism in the sedimentary cover of the Barents Sea continental margin have been recorded using geological and geophysical techniques. Anomalous seismic units related to basaltic sills hosted in terrigenous sequences are traced in plan view as a tongue from Franz Josef Land Archipelago far to the south along the East Barents Trough System close to its depocentral zone with the transformed thinned Earth’s crust. The Barents Sea igneous province has been contoured. The results of seismic stratigraphy analysis and timing of basaltic rock occurrences indicate with a high probability that the local structures of the hydrocarbon (HC) fields and the Stockman-Lunin Saddle proper were formed and grew almost synchronously with intrusive magmatic activity. The second, no less significant multitectonic stress factor is largely related to the Cenozoic stage of evolution, when the development of oceanic basins was inseparably linked with the Barents Sea margin. The petrophysical properties of rocks from the insular and continental peripheries of the Barents Sea shelf are substantially distinct as evidence for intensification of tectonic processes in the northwestern margin segment. These distinctions are directly reflected in HC potential distribution.  相似文献   

14.
The principal aim of this work is to reveal the regularities of short-period synoptic variability of vertical flows and the composition of settling sedimentary material, to obtain information on the quantitative characteristics of the processes that influence sound-scattering layers in the water layer above the continental slope behind the shelf edge in the northeastern part of the Black Sea. The results were obtained due to improvement of the equipment and the procedures for performing sea experiments on studying physicogeological, biological, and hydrophysical processes in the upper illuminated layer of phytoplankton development.  相似文献   

15.
Previous work on surface (modern) sediments has defined diatom species which appear to be good indicators of various oceanographic/ecologic conditions in the North Pacific Ocean and marginal seas. Three long cores from the eastern and northern sides of the Aleutian Basin show changes in species assemblage which can be interpreted in terms of changes in the ocean environment during the last glaciation (Wisconsin) and the Holocene. The early and late Wisconsin maxima were times of prolonged annual sea-ice cover and a short cool period of phytoplankton productivity during the ice-free season. The middle Wisconsin interstade, at least in the southern Bering Sea, had greater seasonal contrast than today, with some winter sea-ice cover, an intensified temperature minimum, and high spring productivity. Variations in clastic and reworked fossil material imply varying degrees of transport to the basin by Alaskan rivers. The results of Jousé from the central Bering Sea generally correspond with those presented here, although there are problems with direct comparison.  相似文献   

16.
Throughout the last 1.1 million years repeated glaciations have modified the southern Fennoscandian landscape and the neighbouring continental shelf into their present form. The glacigenic erosion products derived from the Fennoscandian landmasses were transported to the northern North Sea and the SE Nordic Seas continental margin. The prominent sub‐marine Norwegian Channel trough, along the south coast of Norway, was the main transport route for the erosion products between 1.1 and 0.0 Ma. Most of these erosion products were deposited in the North Sea Fan, which reaches a maximum thickness of 1500 m and has nearly 40 000 km3 of sediments. About 90% of the North Sea Fan sediments have been deposited during the last 500 000 years, in a time period when fast‐moving ice streams occupied the Norwegian Channel during each glacial stage. Back‐stripping the sediment volumes in the northern North Sea and SE Nordic Seas sink areas, including the North Sea Fan, to their assumed Fennoscandian source area gives an average vertical erosion of 164 m for the 1.1–0.0 Ma time period. The average 1.1–0.0 Ma erosion rate in the Fennoscandian source area is estimated to be 0.15 mm a?1. We suggest, however, that large variations in erosion rates have existed through time and that the most intense Fennoscandian landscape denudation occurred during the time period of repeated shelf edge ice advances, namely from Marine Isotope Stage 12 (c. 0.5 Ma) onwards.  相似文献   

17.
南海深水区晚更新世以来沉积速率、沉积通量与物质组成   总被引:6,自引:2,他引:6  
通过调查所获得柱样沉积物氧碳同位素测年资料及多学科综合分析表明,晚更新世以来南海沉积速率和沉积通量具有以下几个特征 :(1)总体上为间冰期沉积速率低、冰期沉积速率高,冰期沉积速率是间冰期沉积速率的 1.3~ 1.6倍;(2 )南海沉积速率趋势面分析表明,氧同位素 1期东北陆坡和西南陆坡沉积速率高,氧同位素 2、3期沉积速率分布特征相似,与 1期有所不同,东北陆坡沉积速率高于西南陆坡,表明氧同位素 2期之后,南海的沉积环境发生明显的改变,造成上述沉积速率分布的主要控制因素是南海周围的河流分布、季风、海流等;(3)南海东部沉积通量与物质组成分析表明,末次冰期以来沉积总通量北部陆坡区明显高于深海区,前者是后者 2~ 3倍,并有自北向南逐渐降低的趋势;(4)硅质生物沉积通量冰期明显高于间冰期,末次冰期以来东北部陆坡区的硅质生物沉积通量最高,末次冰期之前恰好相反,深海盆高于陆坡区;(5 )末次冰期以来,陆源沉积约占南海东部海域沉积的 4 4 %以上。  相似文献   

18.
The seasonal variation in phytoplankton activity is determined by analysing 1385 primary production (PP) profiles, chlorophyll a (Chl) concentration profiles and phytoplankton carbon biomass concentrations (C) from the period 1998–2012. The data was collected at six different stations in the Baltic Sea transition zone (BSTZ) which is a location with strong seasonal production patterns with light as the key parameter controlling this productivity. We show that the use of Chl as a proxy for phytoplankton activity strongly overestimates the contribution from the spring production to annual pelagic carbon flow. Spring (February and March) Chl comprised 16–30% of the total annual Chl produced, whereas spring C was much lower (8–23%) compared to the annual C. Spring PP accounted for 10–18% of the total annual PP, while the July–August production contributed 26–33%, i.e. within the time frame when zooplankton biomass and grazing pressure are highest. That is, Chl failed in this study to reflect the importance of the high summer PP. A better proxy for biomass may be C, which correlated well with the seasonal pattern of PP (Pearson correlation, p < 0.05). Thus, this study suggests to account for the strong seasonal pattern in C/Chl ratios when considering carbon flow in coastal systems. Seasonal data for PP were fitted to a simple sinusoidal wave model describing the seasonal distribution of PP in the BSTZ and were proposed to present a better parameterizaton of PP in shallow stratified temperate regions than more commonly applied proxies.  相似文献   

19.
Oxygen and hydrogen isotope analysis was performed to study the processes of distribution of water masses and modification of their salinity in the Russian Arctic seas. A wealth of new isotopic data was obtained for freshwater (river runoff, Novaya Zemlya glaciers) and seawater samples collected along a set of extended 2D profiles in the Barents, Kara, and Laptev Seas. The study presents the first δD values measured for the Northeast Atlantic Deep Water NEADW dominated the water column of the Barents Sea (S = 34.90 ± 0.05, δD = +1.55 ± 0.4‰, δ18O = +0.26 ± 0.1‰, n = 44). This water mass is present in the Kara Sea and western Laptev Sea. The relationship between δD, δ18О, and salinity data was used to calculate the fractions of waters of different origin, including the fractions of continental runoff in waters of the Barents, Kara, and Laptev Seas. It was shown that the relationships between the isotopic parameters (δD, δ18О) and salinity in waters of the Kara and Laptev Seas is controlled by the intensity of continental runoff and sea ice processes. Sea ice formation is the main factor controlling the formation of the water column on the Laptev Sea shelf, whereas the surface waters of the middle Kara Sea are dominated by the contribution of river runoff. A very strong stratification in the Kara Sea is caused by the presence of a relatively fresh surface layer mostly contributed by estuarine water inputs from the Ob and Yenisei Rivers. The contribution of river waters reaches 40–60% in the surface layer in the central part of the sea and decreases to a few percent down 100 m water depth. Stratification in the western part of the Laptev Sea is controlled by the contribution of freshwater input from the Lena River and modification of salinity by sea ice formation.  相似文献   

20.
This paper reviews the exploration history of the Barents Sea part of the Norwegian continental shelf. The main structural elements which so far have been identified in the Troms/Finnmark/Barents Sea region are outlined and discussed. Special attention is given to the selected Area I outside Troms, where according to latest government plans, drilling will start in 1978.At least two different fault systems are discribed in Area I. The salt diapirs in the Tromsø Basin and their location relative to the fault pattern are discussed. A schematic structural model for Area I is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号