首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete rupture of the Padul Fault represents one of the largest plausible earthquakes in the Sierra Nevada Range, one of the most seismically active regions of Spain. We performed a regional assessment of earthquake-triggered slope instabilities in the western part of the range to determine the most likely types of failures from such an earthquake in the region and suggest where such failures have a higher likelihood of occurring. These results are broadly useful for management of regional life-lines and future development. First, a slope-instability inventory of the Sierra Nevada was produced to identify the most common instability types. Subsequently, the Newmark’s sliding rigid-block methodology, implemented in a geographic information system, was used to obtain the distribution of Newmark displacements in the area considering a M w 6.6 earthquake on the Padul Fault. The Newmark displacements were then compared to the distribution of the inventoried slope instabilities to identify the areas where seismicity could reactivate old slope instabilities or generate new ones, and to identify the involved landslide typology. The most likely seismically induced slope instabilities in the Sierra Nevada are rock falls and rock slides. These types of instabilities could be triggered by Newmark displacements of 2 cm or less.  相似文献   

2.
Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir   总被引:2,自引:2,他引:0  
The seismic hazard study for Pakistan and Azad Jammu and Kashmir has been conducted by using probabilistic approach in terms of peak ground acceleration (PGA) in m/s2 and also seismic hazard response spectra for different cities. A new version of Ambraseys et al. (Bull Earthq Eng 3:1–53, 2005) ground acceleration model is used, and parameterization is based on most recent updated earthquake catalogs that consisted of 14,000 events. The threshold magnitude was fixed at M w 4.8, but seismic zones like northern Pakistan–Tajikistan, Hindukush and northern Afghanistan–Tajikistan border had M w 5.2. The average normalized ‘a’ and ‘b’ values for all zones are 6.15 and 0.95, respectively. Seismicity of study area was modeled, and ground motion was computed for eight frequencies (0.025, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5 s) for different annual exceedance rates of 0.02, 0.01, 0.005, 0.002 and 0.001 (return periods 50, 100, 200, 500 and 1,000 years) for stiff rocks at the gridding of 0.1° × 0.1°. Seismic hazard maps based on computed PGA for 0.02, 0.01 and 0.002 annual exceedance are prepared. These maps indicate the earthquake hazard of Pakistan and surrounding areas in the form of acceleration contour lines, which are in agreement with geological and seismotectonic characteristics of the study area. The maximum seismic hazard values are found at Muzaffarabad, Gilgit and Quetta areas.  相似文献   

3.
A homogenous earthquake catalog is a basic input for seismic hazard estimation, and other seismicity studies. The preparation of a homogenous earthquake catalog for a seismic region needs regressed relations for conversion of different magnitudes types, e.g. m b , M s , to the unified moment magnitude M w. In case of small data sets for any seismic region, it is not possible to have reliable region specific conversion relations and alternatively appropriate global regression relations for the required magnitude ranges and focal depths can be utilized. In this study, we collected global events magnitude data from ISC, NEIC and GCMT databases for the period 1976 to May, 2007. Data for mb magnitudes for 3,48,423 events for ISC and 2,38,525 events for NEIC, M s magnitudes for 81,974 events from ISC and 16,019 events for NEIC along with 27,229 M w events data from GCMT has been considered. An epicentral plot for M w events considered in this study is also shown. M s determinations by ISC and NEIC, have been verified to be equivalent. Orthogonal Standard Regression (OSR) relations have been obtained between M s and M w for focal depths (h < 70 km) in the magnitude ranges 3.0 ≤ M s  ≤ 6.1 and 6.2 ≤ M s  ≤ 8.4, and for focal depths 70 km ≤ h ≤ 643 km in the magnitude range 3.3 ≤ M s  ≤ 7.2. Standard and Inverted Standard Regression plots are also shown along with OSR to ascertain the validation of orthogonal regression for M s magnitudes. The OSR relations have smaller uncertainty compared to SR and ISR relations for M s conversions. ISR relations between m b and M w have been obtained for magnitude ranges 2.9 ≤ m b  ≤ 6.5, for ISC events and 3.8 ≤ m b  ≤ 6.5 for NEIC events. The regression relations derived in this study based on global data are useful empirical relations to develop homogenous earthquake catalogs in the absence of regional regression relations, as the events catalog for most seismic regions are heterogeneous in magnitude types.  相似文献   

4.
The Maule, Chile, (Mw 8.8) earthquake on 27 February 2010 triggered deformation events over a broad area, allowing investigation of stress redistribution within the upper crust following a mega-thrust subduction event. We explore the role that the Maule earthquake may have played in triggering shallow earthquakes in northwestern Argentina and Chile. We investigate observed ground deformation associated with the Mw 6.2 (GCMT) Salta (1450 km from the Maule hypocenter, 9 h after the Maule earthquake), Mw 5.8 Catamarca (1400 km; nine days), Mw 5.1 Mendoza (350 km; between one to five days) earthquakes, as well as eight additional earthquakes without an observed geodetic signal. We use seismic and Interferometric Synthetic Aperture Radar (InSAR) observations to characterize earthquake location, magnitude and focal mechanism, and characterize how the non-stationary, spatially correlated noise present in the geodetic imagery affects the accuracy of our parameter estimates. The focal mechanisms for the far-field Salta and Catamarca earthquakes are broadly consistent with regional late Cenozoic fault kinematics. We infer that dynamic stresses due to the passage of seismic waves associated with the Maule earthquake likely brought the Salta and Catamarca regions closer to failure but that the involved faults may have already been at a relatively advanced stage of their seismic cycle. The near-field Mendoza earthquake geometry is consistent with triggering related to positive static Coulomb stress changes due to the Maule earthquake but is also aligned with the South America-Nazca shortening direction. None of the earthquakes considered in this study require that the Maule earthquake reactivated faults in a sense that is inconsistent with their long-term behavior.  相似文献   

5.
We study the Byzantine-to-Ummayad (6th–8th century) archaeological site of Umm-El-Qanatir, located 10 km east of the Dead Sea Transform (DST) in northern Israel. The site was damaged by an earthquake-induced landslide, and in this work we use slope stability analysis to constrain the historical seismic acceleration that occurred along the northern segment of the DST. Umm-El-Qanatir archaeological site is located on a slope of a canyon and contains evidence for earthquake-related damage, including fallen columns and walls, horizontal shift of heavy masonry blocks, and complete burial of ceramic pots and farming tools beneath fallen ceilings. A water pool that collected spring water is displaced nearly one meter by the landslide. The artifacts from the village and the spring area indicate that people inhabited the site until the middle of the 8th century. We argue that the destruction, which forced the abandonment of Umm-El-Qanatir together with nearby settlements, was associated with the earthquake of January 18, 749 CE. In order to evaluate the ground acceleration related to the above earthquake, we back-analyze the stability of a failed slope, which cut and displaced the water-pool, using slope stability software (Slope/W). The results show that the slope is statically stable and that high values of horizontal seismic acceleration (>0.3 g) are required to induce slope failure. Subsequently, we use the Newmark displacement method to calculate the earthquake magnitude needed to cause the slope failure as a function of distance from the site. The results (attributed to the 749 CE earthquake) show that a MW > 7.0 earthquake up to 25 km from the site could have induced the studied landslide.  相似文献   

6.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

7.
On March 20, 2006, an earthquake (M w = 5.3; SED) struck the mountainous region of the Babors chain (Wilaya of Bejaia, northeast Algeria). The seismic epicenter was located near the Kherrata village. This earthquake was felt on a large area of the northeastern part of Algeria. It reached an intensity of VII (EMS scale) at the Laalam village, situated at about 20 km northeast of Kherrata. Here, many old and recent houses were damaged or collapsed totally, four people died and 68 were injured. Field investigations revealed that these casualties were caused by a landslide triggered by the earthquake. Many fissures were visible on ground throughout the site. They were generated by both sliding and settling phenomena. The Laalam site is prone to landslide, as revealed by some evidences on old instabilities. This is due to two main factors: local geomorphology and geology. These factors intervene synchronously for reducing the slope instability at the Laalam village. The March 20, 2006 Kherrata earthquake was the trigger that released the Laalam landslide.  相似文献   

8.
We investigate spatial clustering of 2414 aftershocks along the Izmit Mw = 7.4 August 17, 1999 earthquake rupture zone. 25 days prior to the Düzce earthquake Mw = 7.2 (November 12, 1999), we analyze two spatial clusters, namely Sakarya (SC) and Karadere–Düzce (KDC). We determine the earthquake frequency–magnitude distribution (b-value) for both clusters. We find two high b-value zones in SC and one high b-value zone in KDC which are in agreement with large coseismic surface displacements along the Izmit rupture. The b-values are significantly lower at the eastern end of the Izmit rupture where the Düzce mainshock occurred. These low b-values at depth are correlated with low postseismic slip rate and positive Coloumb stress change along KDC. Since low b-values are hypothesized with high stress levels, we propose that at the depth of the Düzce hypocenter (12.5 km), earthquakes are triggered at higher stresses compared to shallower crustal earthquake. The decrease in b-value from the Karadere segment towards the Düzce Basin supports this low b-value high stress hypothesis at the eastern end of the Izmit rupture. Consequently, we detect three asperity regions which are correlated with high b-value zones along the Izmit rupture. According to aftershock distribution the half of the Düzce fault segment was active before the 12 November 1999 Düzce mainshock. This part is correlated with low b-values which mean high stress concentration in the Düzce Basin. This high density aftershock activity presumably helped to trigger the Düzce event (Mw = 7.2) after the Izmit Mw 7.4 mainshock.  相似文献   

9.
Magnitude conversion problem for the Turkish earthquake data   总被引:1,自引:0,他引:1  
Earthquake catalogues which form the main input in seismic hazard analysis generally report earthquake magnitudes in different scales. Magnitudes reported in different scales have to be converted to a common scale while compiling a seismic data base to be utilized in seismic hazard analysis. This study aims at developing empirical relationships to convert earthquake magnitudes reported in different scales, namely, surface wave magnitude, M S, local magnitude, M L, body wave magnitude, m b and duration magnitude, M d, to the moment magnitude (M w). For this purpose, an earthquake data catalogue is compiled from domestic and international data bases for the earthquakes occurred in Turkey. The earthquake reporting differences of various data sources are assessed. Conversion relationships are established between the same earthquake magnitude scale of different data sources and different earthquake magnitude scales. Appropriate statistical methods are employed iteratively, considering the random errors both in the independent and dependent variables. The results are found to be sensitive to the choice of the analysis methods.  相似文献   

10.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   

11.
The southernmost sector of the Italian peninsula is crossed by an almost continuous seismogenic belt capable of producing M ∼ 7 earthquakes and extending from the Calabrian Arc, through the Messina Straits, as far as Southeastern Sicily. Though large earthquakes occurring in this region during the last millennium are fairly well known from the historical point of view and seismic catalogues may be considered complete for destructive and badly damaging events (IX ≤ I o ≤ XI MCS), the knowledge and seismic completeness of moderate earthquakes can be improved by investigating other kinds of documentary sources not explored by the classical seismological tradition. In this paper, we present a case study explanatory of the problem, regarding the Ionian coast between the Messina Straits and Mount Etna volcano, an area of North-eastern Sicily lacking evidence of relevant seismic activity in historical times. Now, after a systematic analysis of the 18th century journalistic sources (gazettes), this gap can be partly filled by the rediscovery of a seismic sequence that took place in 1780. According to the available catalogues, the only event on record for this year is a minor shock (I = VI MCS, M w = 4.8) recorded in Messina on March 28, 1780. The newly discovered data allow to reinstate it as the mainshock (I = VII–VIII MCS, M w = 5.6) of a significant seismic period, which went on from March to June 1780, causing severe damage along the Ionian coast of North-eastern Sicily. The source responsible for this event appears located offshore, 40-km south of the previous determination, and is consistent with the Taormina Fault suggested by the geological literature, developing in the low seismic rate zone at the southernmost termination of the 1908 Messina earthquake fault.  相似文献   

12.
The return periods and occurrence probabilities related to medium and large earthquakes (M w 4.0–7.0) in four seismic zones in northeast India and adjoining region (20°–32°N and 87°–100°E) have been estimated with the help of well-known extreme value theory using three methods given by Gumbel (1958), Knopoff and Kagan (1977) and Bury (1999). In the present analysis, the return periods, the most probable maximum magnitude in a specified time period and probabilities of occurrences of earthquakes of magnitude M ≥ 4.0 have been computed using a homogeneous and complete earthquake catalogue prepared for the period between 1897 and 2007. The analysis indicates that the most probable largest annual earthquakes are close to 4.6, 5.1, 5.2, 5.5 and 5.8 in the four seismic zones, namely, the Shillong Plateau Zone, the Eastern Syntaxis Zone, the Himalayan Thrusts Zone, the Arakan-Yoma subduction zone and the whole region, respectively. The most probable largest earthquakes that may occur within different time periods have been also estimated and reported. The study reveals that the estimated mean return periods for the earthquake of magnitude M w 6.5 are about 6–7 years, 9–10 years, 59–78 years, 72–115 years and 88–127 years in the whole region, the Arakan-Yoma subduction zone, the Himalayan Thrusts Zone, the Shillong Plateau Zone and the Eastern Syntaxis Zone, respectively. The study indicates that Arakan-Yoma subduction zone has the lowest mean return periods and high occurrence probability for the same earthquake magnitude in comparison to the other zones. The differences in the hazard parameters from zone to zone reveal the high crustal heterogeneity and seismotectonics complexity in northeast India and adjoining regions.  相似文献   

13.
Groundwater bearing alluvial units in the seismically active settlement areas may bring out probable damage on the urban and built environment due to liquefaction. Bolu settlement area and surroundings are located in the North Anatolian Fault Zone. Geotechnical boreholes were drilled in order to determine the distribution of the geological units, to obtain representative soil samples and to measure groundwater level. Quaternary aged alluvium is the main geological unit in the South of study area. Stiffness and consistency of the soils were determined by Standart penetration test. P and S wave velocities of soil have been measured along the seismic profiles. The index and physical properties of the samples have also been tested in the laboratory. Liquefaction potential and safety factor of the sandy levels in Quaternary aged alluvium were investigated by different methods based on SPT and V s. Liquefaction seems to be a significant risk in case of an earthquake with a max = 0.48 g and M w = 7.5 at different levels of the boreholes. This situation may bring out environmental problems in the future.  相似文献   

14.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

15.
During two distinct earthquakes occurred on March 7, 1867 and October 6, 1944, tsunami waves were also observed at some localities around the Gulf of Edremit, NE Aegean Sea. The first event (M w = 6.8) mostly affected the city of Mitilini of Lesvos Island while the Gulf of Edremit-Ayvacık earthquake (M S = 6.8) largely affected the northern and eastern coastal areas of the Gulf of Edremit. In 1944 earthquake, numerous surface cracks and water gushes were reported. The coastal neighborhoods of the town of Ayvalık in the east were flooded by tsunami waves. At the WSW extend of the main fault observed on land, which is parallel to the present-day slip vectors, some normal-oblique faults were observed close and subparallel to the northern coast. On the basis of historical documents, reports, interviews, geological setting, field observations and marine seismic reflection data, the 1944 earthquake was not triggered by one of the main fault segments but by a secondary fault or fault group which was described in this study. Depending on the distribution of tensional and compressional forces in the region, which rotates clockwise under the control of the middle strand of the North Anatolian fault, secondary fault groups become important. The moment tensor parameters of such small-size events have been determined and have obtained consistent results with the faults proposed in this study.  相似文献   

16.
High magnitude earthquakes trigger numerous landslides and their occurrences are mainly controlled by terrain parameters. We created an inventory of 15,551 landslides with a total area of 90.2 km2 triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal, through interpretation of very high resolution satellite images (e.g. WorldView, Pleiades, Cartosat-1 and 2, Resourcesat-2). Our spatial analysis of landslide occurrences with ground acceleration, slope, lithology and surface defomation indicated ubiquitous control of steep slope on landslides with ground acceleration as the trigger. Spatial distribution of landslides shows increasing frequency away from the Gorkha earthquake epicentre up to 130 km towards east, dropping sharply thereafter, which is an abnormal phenomenon of coseismic landslides. Landslides are laterally concentrated in three zones which matches well with the seismic rupture evolution of Gorkha earthquake, as reported through teleseismic measurements.  相似文献   

17.
Deterministic seismic microzonation of Kolkata city   总被引:1,自引:0,他引:1  
This paper presents the deterministic seismic microzonation of densely populated Kolkata city situated on the world’s largest delta island with very soft and thick soil deposit in the surficial layers. A fourth-order accurate staggered-grid finite-difference algorithm for SH-wave propagation simulation in visco-elastic medium is used for the linear computation of ground motion amplifications in sedimentary deposit. Different maps such as for fundamental frequency (F 0), peak ground acceleration (PGA), peak ground velocity, and peak ground displacement are developed for variety of end-users communities, including structural and geotechnical engineers for performance-based designs, building officials, emergency managers, land-use planners, private businesses, and the general public. The scenario of simulated amplification factors in the different frequency bands revealed that the Kolkata city is very much prone to severe damage even during a moderate earthquake and very selective damage may occur at some of the localities during local and distant earthquakes. The deterministically predicted PGA at bedrock level is 0.0844 g and the maximum PGA predicted at the free surface is 0.6 g in Kolkata city due to maximum credible earthquake (M w = 5.4) associated with Eocene Hinge Zone at a depth of 36 km. The seismic microzonation of Kolkata city reveals that the Nager Bazar and Nimtala areas are the safest regions with earthquake point of view.  相似文献   

18.
The Attock Basin is situated close to the northwest of Pakistan. Recent seismic event of October 2015 (7.5Mw) near the Pakistan Afghanistan border has proved that the area of interest is seismically active and triggered a series of aftershocks of magnitude even greater than 6.5Mw. This seismic activity has posed danger to the future of the people and infrastructure especially to the northwestern part of the country. Therefore, site response analysis is essential for estimating local site conditions in response to seismic events. Ambient noise recordings were made at 50 sites within urban and semi-urban settlements in the Attock Basin to analyze the site response of the small but densely populated basin. At each of these sites, the fundamental frequency of the soft sediments (f 0), the amplitude (A 0) of corresponding H/V spectral ratios, the thickness of soft sediment (H) lying over competent lithology, and the soil vulnerability index (K g) were studied. Results were correlated with sparsely available borehole data to enhance the credibility of the study conducted for microzonation and predicting the site response to earthquake seismicity in the Attock Basin. The soil vulnerability index was found to range from moderate to high. Results clearly showed that the study area exhibits low to moderate fundamental frequency with greater soft sediment thicknesses distributed throughout the study area. Moreover, higher impedance contrasts were found at most of the sites within the central part of the Attock Basin, thus reflecting a moderate to high susceptibility of damage in those regions in response to seismic events.  相似文献   

19.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

20.
Hamouda  Amr Z. 《Natural Hazards》2011,59(1):465-479
The entrance of the southern Suez Gulf of the Red Sea is known to be an area of high seismic activity in Egypt. The high rate of seismic activity in this area is mainly related to the adjustment in motion at the triple junction between the African plate, the Arabian plate, and the Sinai microplate. The present study attempts to estimate the Probabilistic Seismic Hazard Analysis (PSHA) for Hurghada site. This was done in two steps; the first one is by estimating specific parameters for the site, such as the mean seismic activity, λ, the Gutenberg-Richter parameter, b, and the maximum regional magnitude, m max. The second step is by selecting a ground motion parameter that is applicable to Hurghada site. The procedure permits the combination of both historical and recent instrumental data. The results of the hazard assessment, expressed as the worst case scenario, detect that Hurghada is exposed to the maximum credible earthquake event of magnitude m max = 7.1 ± 0.31, at hypocentral distance of 31.6 ± 10 km. The possibility of the maximum Peak Ground Acceleration (PGA), which occurred in relation to this event at Hurghada site, is equal to 0.29 g. The mean return periods with the selected accelerations for Hurghada, a horizontal acceleration of 0.1 g, is expected to occur once every 74–106 years, with an average of one every 90 years. This result which obtained from the hazard assessment can be used as an input data for a seismic risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号