首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
宁夏沿黄经济区蒸散量变化特征及水均衡方法验证   总被引:1,自引:1,他引:0       下载免费PDF全文
在干旱的内陆地区,蒸散是地表水和地下水主要的排泄方式之一,准确估算地表蒸散量为干旱区水资源合理开发利用、生态环境保护提供理论依据。基于MODIS遥感数据,应用SEBS模型估算了宁夏沿黄经济区2001—2014年的区域蒸散量,分析了其影响因素,并应用水均衡原理对蒸散量计算结果的可靠性进行了验证。结果表明:沿黄经济区的年蒸散量在2001—2014年间总体上是逐渐增加的,从2001年的434.27 mm增加为2014年的517.82 mm;研究区主要的蒸散量为耕地蒸散量,农业占据了全区近2/3的耗水量;SEBS模型与水均衡原理计算的蒸散量结果吻合度较高,很好地验证了SEBS模型计算区域地表蒸散量的可靠性。  相似文献   

2.
蒸散量是水均衡和能量平衡的重要组成部分, 对全球气候的演变和水资源评价及分析研究十分重要, 而准确估算蒸散量是当今研究热点之一.采用遥感模型, 基于表面能量平衡系统的原理, 选取了MOD09地表反射率和MOD11地表温度、辐射率数据, 并结合实测的气象水文资料对该流域蒸散量进行了估算.海流兔河流域2008年全年蒸散量结果为324.94 mm.这一结果在海流兔河流域, 用水均衡法得到了很好的验证.   相似文献   

3.
运用高分辨率ETM+数据计算区域作物蒸散   总被引:1,自引:0,他引:1       下载免费PDF全文
在太行山山前平原典型农区,对区域地表能量平衡及日蒸散模型进行了实证研究,且通过中国科学院栾城农业生态试验站田间实测资料对模型估算结果进行了有效性的验证。结果显示,采用LANDSAT 7ETM+的高分辨率数据结合地面同步的观测数据作为模型的输入变量,可以很好地估算农田的日蒸散量及能量平衡各分量。在典型农区,日蒸散量、NDVI的频率分布随作物生长季节的变化表现出一定的差异性。  相似文献   

4.
长江源区蒸散量变化规律及其影响因素   总被引:4,自引:0,他引:4  
利用空间分辨率为1 100 m的NOAA遥感数据,运用表面能量平衡系统(SEBS)模型,结合当地气象站实际观测数据,计算了1991-2001年长江源区的蒸散量,运用线性回归的方法计算了源区各像素点的蒸散量变化趋势,统计分析了蒸散量的多年变化规律。运用地理信息系统技术分析了气温、地表温度、降水量和植被指数(NDVI)等主要因素对蒸散量变化的影响。研究结果表明,源区蒸散量以6.8 mm/a的速度增加。全球变暖引起的气温、地表温度的升高是蒸散量增加的主要原因;在空间分布上,河流左岸阳坡蒸散量增加,右岸阴坡蒸散量减小;降水量、植被覆盖度分别与蒸散量有很好的正相关关系,源区东南部降水量大,植被相对旺盛,蒸腾作用强烈,蒸散量大;西北部降水量小,植被生长稀疏,蒸散量较小。  相似文献   

5.
用卫星遥感热红外数据估算大面积蒸散量   总被引:10,自引:6,他引:10       下载免费PDF全文
陈鸣  潘之棣 《水科学进展》1994,5(2):126-133
从能量平衡方程出发,将试验场实测地表热红外温度及各项气象要素,用冠、气温度差方法,求得局部地区的蒸散量;进而与卫星热红外温度数据相配合,估算大面积作物的蒸散发和蒸散量分布。经验证,该方法的研究结果与实测值有较好的相似性.  相似文献   

6.
在干旱的内陆盆地的水均衡中,蒸散发是主要的排泄方式,准确估算蒸散量是评价可利用水资源量的关键。从区域尺度上研究实际蒸散量对生态环境的保护具有重要的意义。基于表面能量平衡的原理,选取了DEM数据,MODIS数据以及GLDAS数据,以500 m的空间分辨率对柴达木盆地2001-2011年的蒸散量进行了估算,并研究了区域蒸散量的时空分布及其与气象站实测水面蒸发量的关系。结果表明:柴达木盆地的年实际蒸散量有逐年增大的趋势,从2001年的72.73 mm增加为2011年的182.34 mm,2001-2011年最大日均蒸散量介于2.62~3.20 mm。柴达木盆地的蒸发系数为0.14。分析NDVI和与其对应的ET的关系可知NDVI=0.055是柴达木盆地裸土和植被的分界点。虽然仅占据了研究区1.92%的区域,但水体的日均蒸散量最大,为2.31 mm/d。盆地裸土、稀疏灌木、中等覆盖灌木、草场以及农田2010年6-9月的日蒸散量平均值分别为0.24、0.42、1.21、1.12、1.18 mm/d。  相似文献   

7.
柴达木盆地土壤湿度的遥感反演及对蒸散发的影响   总被引:2,自引:0,他引:2  
土壤水分是地下水-土壤水-大气水循环系统的核心与纽带,蒸散是该系统的重要驱动力。从区域尺度上研究土壤含水量的分布特征及土壤含水量对蒸散的影响对干旱区的生态环境保护具有重要意义。基于MODIS数据和GLDAS数据,应用表观热惯量法对GLDAS地表0~10 cm土壤湿度数据降尺度处理,估算柴达木盆地平原区2014年间6—9月的月均土壤湿度,并结合归一化植被指数(NDVI)和实测土壤湿度数据对反演结果进行验证;利用地表能量平衡系统(SEBS)模型对平原区9个子流域的日均蒸散量进行计算,分析了土壤湿度与日均蒸散量之间的关系。结果表明:反演得到的表观热惯量(ATI)与GLDAS地表0~10 cm土壤含水量数据相关性较好,决定系数R2整体在07以上;利用ATI对GLDAS数据降尺度处理,得到的土壤含水量与NDVI和实测土壤湿度的决定系数R2分别为0954和0791,因此使用ATI法对GLDAS土壤含水量数据降尺度反演柴达木盆地平原区土壤湿度是可靠的。平原区日蒸散量与土壤湿度呈明显的正相关关系,决定系数R2整体在096以上,在影响蒸散的各考虑因素中,土壤湿度对蒸散的影响远大于其他因素。  相似文献   

8.
吉林西部陆面遥感蒸散模型研究   总被引:4,自引:0,他引:4  
基于地表能量平衡的基本理论,结合吉林西部实际资料,建立了吉林西部蒸散量估算的遥感模型。采用实测资料利用上述模型计算得到吉林西部地区的月、年蒸发量。经检验,计算值与实测值基本接近,绝大部分月份蒸散量的相对误差都在10%以内。该模型对任意地表类型及任何月份的蒸散量估算都具有较高的精度。  相似文献   

9.
为提高地表能量平衡系统(SEBS)模型在干旱水分胁迫条件下估算地表通量的精度,引入归一化植被水分指数(NDWI)作为干旱水分胁迫信息,以线性、指数、S曲线3种不同形式结合到SEBS模型的kB-1系数中,使得kB-1随着水分胁迫的增加而减小,从而提高SEBS模型估算地表通量的精度。以黑河流域盈科绿洲为研究区域,选取2008—2009年的气象和通量观测数据对模型进行标定和验证。研究结果表明:存在干旱水分胁迫时,与原始SEBS模型相比,考虑干旱水分胁迫信息的SEBS模型能够更为准确地估算地表通量。这种方案能够较为有效地改善原始SEBS模型低估感热通量高估潜热通量的现象,将感热通量的偏差减小35 W/m2,潜热通量的偏差减小25 W/m2。  相似文献   

10.
利用遥感方法估算华北平原陆面蒸散量   总被引:3,自引:0,他引:3  
本文主要讨论了遥感技术在水文学领域的应用。利用基于能量平衡原理的SEBS模型,结合NOAA/AVHRR数据,通过遥感方法估算了华北平原的区域陆面蒸散量,并分析了不同潜水埋深条件下植被指数对蒸散发的影响。通过遥感估算方法得到,华北平原6~8月份是蒸散量较高时期,变化幅度较大;1、2月和11、12月是蒸散量较低时期,变化幅度较小。其日蒸散量变化范围在0~8mm之间;年蒸散量在520-1100mm之间,平均为700-800mm。地下水埋深较浅的沿海、黄河沿岸以及河南黄河以北的农业区为蒸散发的高值区。在不同潜水埋深条件下,蒸散量与植被指数之间均存在线性正相关性。且在潜水埋深介于1~2m的情况下,陆面蒸散与植被指数间的关系最明显,两者之间的相关性达到0.669。  相似文献   

11.
基于热红外遥感的农田蒸散估算方法研究综述   总被引:3,自引:0,他引:3  
农田蒸散是农田土壤蒸发和作物蒸腾的总称,基于热红外遥感的农田蒸散估算方法研究是农业遥感领域重要前沿课题之一。经过30多年的发展,基于热红外遥感的遥感蒸散算法逐渐成熟并广泛应用于农业、气象以及水文等多个领域。简要回顾基于热红外遥感地表温度与空气温度温差的经验方法、地表能量平衡的单层和双层模型、基于热红外遥感数据源的彭曼公式以及遥感参数化的Priestley-Taylor模型等多种遥感蒸散模型的基本原理、核心算法以及存在问题等研究。针对这些方法的优缺点,指出了基于热红外遥感的农田蒸散估算方法在农业遥感中尚需解决的关键问题,并提出可能的解决途径。  相似文献   

12.
区域蒸散发遥感估算方法及验证综述   总被引:7,自引:0,他引:7  
张荣华  杜君平  孙睿 《地球科学进展》2012,27(12):1295-1307
蒸散发是地表水热平衡的重要参量,也是农作物生长状况和产量的重要指标。与传统的蒸散发计算方法相比,遥感技术经济、适用、有效,在非均匀下垫面的区域蒸散发监测上具有明显的优越性。系统回顾了5种常用的区域蒸散发遥感估算方法,包括经验统计模型、与传统方法相结合的遥感模型、地表能量平衡模型、温度—植被指数特征空间模型以及陆面过程与数据同化等,分析了这些模型的最新研究进展及各自的优缺点,并对地表蒸散发的地面验证方法进行了概述。最后简要分析了区域蒸散发遥感估算存在的问题,并展望了其未来发展趋势。多源遥感数据协同反演与非遥感参数遥感化、蒸散发模型改进与多模型集成、陆面过程与遥感数据同化、遥感蒸散发估算及地面验证中的尺度问题与空间代表性问题研究等将会是未来区域蒸散发研究中的重点发展方向。  相似文献   

13.
基于遥感的区域蒸散量监测方法——ETWatch   总被引:11,自引:1,他引:10       下载免费PDF全文
ETWatch是用于区域蒸散遥感监测的业务化运行系统,集成了具有不同应用优势的遥感蒸散模型,并以Pen-man-Monteith公式为基础建立下垫面表面阻抗估算方法,利用逐日气象数据与遥感反演参数,获得逐日连续的蒸散分布图。所生成的从流域级到地块级的数据产品能动态反映区域蒸散发的时空变化规律。基于ETWatch方法,对2002-2005年海河流域和河北省馆陶县的蒸散状况进行了连续监测。利用地面观测资料对蒸散遥感监测产品的验证表明,涡度相关观测数据能量闭合率在0.9以上时,1 km级的日蒸散结果的平均偏差约10%;对于地块级(30 m)的ET,受混合像元的影响,相对于土壤水分消耗法测量的作物蒸散发,遥感监测作物蒸散发的平均误差在12.7%左右。  相似文献   

14.
遥感技术应用于地表面蒸散发的研究进展   总被引:31,自引:4,他引:27  
蒸散既是地表水分循环的重要组成部分,也是能量平衡的主要项。地表热量、水分收支状况在很大程度上决定着地理环境的组成和演变,清楚地认识蒸散发,对了解大范围内能量平衡和水分循环具有重要意义。目前,已发展了从 传统方法、模拟方法到遥感方法的很多种方法用于估算蒸散发。遥感方法以其能够获知大范围地表特征信息的优势为较准确估算地表蒸散发提供了可能,从而受到人们的日益重视。介绍了研究蒸散发的各种方法,并探讨了利用遥感方法研究蒸散发的优缺点和未来的发展前景。  相似文献   

15.
基于蒸散发数据同化的径流过程模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用集合卡尔曼滤波算法,以遥感反演的蒸散发作为观测数据,构建一种基于新安江模型的蒸散发同化系统;根据同化后的蒸散发,采用粒子群算法估计新安江模型的土壤张力水蓄量,进而改进模型的径流模拟效果。选取地表能量平衡系统模型进行汉江流域蒸散发(ETSEBS)反演,采用基于GRACE水储量距平数据的水量平衡蒸散发(ETGRACE)进行验证,结果显示ETSEBS总体表现好于蒸散发产品ETGLDAS、ETZhang、ETMODIS,且相关系数(R)、均方根误差(ERMS)、偏差(B)为0.93、11.93 mm/月、-3.47 mm/月,表明SEBS模型能够较好地估算蒸散发。将同化方案在旬河流域进行应用,结果显示同化后径流的纳什效率系数(ENS)为0.85,较同化前0.81明显提高,且模型对枯水期径流的低估问题有一定改善,对径流峰值模拟效果提高明显。  相似文献   

16.
黄河流域蒸散量分布式模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统区域蒸散计算模型中净辐射及其各组成要素的计算直接采用国外经验公式或点上观测资料空间内插的不足,利用基于中国气象站观测资料建立的净辐射及其各组成要素的计算公式和遥感反演的地表反照率,以黄河流域作为研究区域,在考虑地形起伏和下垫面多样性等地表非均匀性因素的基础上,实现了黄河流域净辐射及其各组成要素的分布式模拟;在印证流域尺度存在蒸散互补相关关系的基础上,将净辐射、气温、水汽压等系列要素分布式拟合结果与基于区域蒸散互补理论的AA(Advection-Aridity model)模型耦合,实现了黄河流域蒸散量的分布式模拟。与基于水量平衡的黄河流域多年平均蒸散量空间分布图对照表明,二者趋势分布吻合很好,分区验证的最小相对偏差为1.14%,最大为26.80%,全流域平均相对偏差为1.50%,且分布式蒸散拟合结果更加细致地体现了蒸散量的空间变化情况。集成的区域蒸散分布式模型,以蒸散互补理论为基础,考虑了区域蒸散对近地层大气的反馈作用,仅以数字高程模型和常规气象站观测数据为输入项,应用方便。  相似文献   

17.
流域内水循环各环节的水量及其时空分布是不断变化的,掌握流域水循环与水平衡状况是进行流域水资源合理开发利用的重要基础。以2000—2019年黑河流域水文显著变化期为研究时段,综合应用TRMM与GPM卫星观测的降水量、遥感估算的蒸散发量等数据并结合气象站点、水文站点等观测数据,对流域降水、蒸散发与径流等水循环要素的水平衡进行了分析。结果表明:祁连山区是主要产流区,向中游年均下泄水量约为45.11×108 m3。其中,消耗于中游的年均量约为29.92×108 m3,约占66%;补充下游的年均量约为15.19×108 m3,约占34%。民乐—张掖盆地是黑河中游水资源消耗的主要区域,年均消耗的上游来水和当地降水量达43.97×108 m3,约占中游消耗量的75%;中游农田蒸散发年均消耗水量约20.3×108 m3,占总消耗量的35%;上游区降水量增加是黑河干流出山口径流量增加的主因,对径流量增加的贡献率为96%,导致年均径流增加0.35×108 m3,潜在蒸散发对径流增加几乎没有贡献。根据目前黑河干流上游径流量变化与中游水资源消耗现状,如果未来水文周期变化导致上游径流减少,中下游用水矛盾凸显的风险较大。地表水循环遥感观测可作为流域水平衡分析的方法之一,分析流域地表水水资源的空间分布状况、揭示水资源变化趋势与原因,支撑水资源合理配置,陆面实际蒸散发是水平衡分析不确定性的主要来源,准确估测不同类型下垫面实际蒸散发量是提升分析可靠性的关键。基于互补相关的陆面实际蒸散发估算方法相对简单,但其中用于计算湿环境蒸散发量的Priestley-Taylor公式中乘性经验系数受地形影响空间变异很大,区域上采用统一数值会对结果造成不可忽视的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号