首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
侯增谦  杨志明 《地质学报》2009,83(12):1779-1817
中国大陆环境斑岩型矿床包括斑岩型Cu(-Mo、-Au)、斑岩型Mo、斑岩型Au和斑岩型Pb-Zn等矿床类型,主要产出于青藏高原大陆碰撞带、东秦岭大陆碰撞带和中国东中部燕山期陆内环境,在地球动力学背景、深部作用过程、岩浆起源演化、流体与金属来源等方面与岩浆弧环境斑岩型矿床存在重要差异.在大洋板块俯冲形成的岩浆弧,主要发育斑岩Cu-Au矿床或富金斑岩Cu矿(岛弧)和斑岩Cu-Mo及斑岩Mo矿床(陆缘弧).相比,在大陆碰撞带,晚碰撞构造转换环境发育斑岩Cu、Cu-Mo和Cu-Au矿床,矿床受斜交碰撞带的走滑断裂系统控制,后碰撞地壳伸展环境则主要发育斑岩Cu-Mo矿床,矿床受垂直于碰撞带的正断层系统控制;在陆内造山环境,早期发育斑岩Cu-Au矿床,晚期发育斑岩Pb-Zn矿床,它们主要沿古老的但再活化的岩石圈不连续带分布,受网格状断裂系统控制;在后造山(或非造山)伸展环境,则大量发育斑岩Mo矿和斑岩Au矿,它们则主要围绕大陆基底-克拉通(或地块)边缘分布,受再活化的岩石圈不连续带控制.大陆环境斑岩Cu(-Mo,-Au)矿床的含矿斑岩多为高钾钙碱性和钾玄质,以高钾为特征,显示埃达克岩地球化学特性.岩浆通常起源于加厚的新生镁铁质下地壳或拆沉的古老下地壳.上地幔通过三种可能的方式向岩浆系统供给金属Cu(和Au):①提供大批量的幔源岩浆并底垫于加厚下地壳底部,构成含Cu岩浆的源岩;②提供小批量的软流圈熔体交代和改造下地壳,并诱发其熔融;③与拆沉的下地壳岩浆熔体发生反应.大陆环境含Mo岩浆系统高SiO_2、高K_2O,岩相以花岗斑岩为主,花岗闪长斑岩次之,既不同于Climax型,又有别于石英二长斑岩型Mo矿床,岩浆起源于古老的下地壳.金属Mo主要为就地熔出,部分萃取于上部地壳.大陆环境含Pb-Zn花岗斑岩多属铝过饱和型,与S型花岗岩相当,以高δ~(18)O(>10‰)和高放射性Pb为特征,Sr-Nd-Pb同位素组成反映其来源于中下地壳的深熔作用,金属Pb-Zn主要来源于深融的壳层.大陆环境含Au岩浆系统以富B花岗闪长斑岩为主,常与矿前闪长岩密切共生.Sr-Nd-Pb同位素显示,含Au岩浆主要来源于上部地壳,但曾与幔源岩浆发生相互作用.金属Au部分来源于上地壳,部分来源于地幔岩浆.大陆环境斑岩型矿床显示各具特色的蚀变类型和蚀变分带,其中,斑岩型Cu(-Mo,-Au)矿热液蚀变遵循Lowell and Guilbert模式;斑岩型Mo矿主要发育钙硅酸盐化、钾硅酸盐化和石英-绢云母化;斑岩型Pb-Zn矿主要发育绿泥石-绢云母化和绢云母-碳酸盐化,缺乏钾硅酸盐化;斑岩型Au矿强烈发育中度泥化.斑岩型矿床的成矿流体初始为高温、高fO_2、高S、富金属的岩浆水,由浅成侵位的长英质岩浆房在应力松弛环境下出溶而来,晚期有天水不同程度地混入.Cu、Mo、Pb-Zn通常沉淀于流体分相和流体沸腾过程中,而Au则主要沉淀于岩浆-热液过渡阶段.  相似文献   

2.
肖波 《地质与勘探》2011,47(1):43-53
世界范围内,巨型斑岩型矿床外围通常发育有同时代且具有成因联系的矽卡岩-脉状金属矿床;二者往往互为找矿标志,共同组成斑岩成矿系统.形成于印度-欧亚大陆后碰撞背景,与中新世adakitic质侵入岩有关的冈底斯斑岩Cu-Mo矿床成矿带已成我国重要的矿产基地.位于冈底斯中段的驱龙巨型斑岩Cu-Mo矿床(>1000Mt Cu)是...  相似文献   

3.
大陆碰撞成矿论   总被引:54,自引:2,他引:52  
侯增谦 《地质学报》2010,84(1):30-58
基于经典的板块构造而建立的成矿理论已日臻完善,完好地解释了增生造山成矿作用及汇聚边缘成矿系统发育机制,但却无法解释碰撞造山成矿作用及大陆碰撞带成矿系统。通过对青藏高原碰撞造山与成矿作用的详细研究,并与中国秦岭和其它碰撞造山带综合对比,本文系统提出了一套全新的大陆碰撞成矿理论,简称"大陆碰撞成矿论",初步阐明了大陆碰撞带成矿系统和大型矿床的成矿动力背景、深部作用过程和形成机制。该理论认为,伴随大陆三段式碰撞过程而发育的主碰撞陆陆汇聚环境、晚碰撞构造转换环境和后碰撞地壳伸展环境,是大陆碰撞带成矿系统和大型矿床的主要成矿构造背景。对应于三段式碰撞而在深部出现的俯冲板片断离、软流圈上涌和岩石圈拆沉过程,是导致大规模成矿作用的异常热能驱动力。伴随三段式碰撞而分别出现的压-张交替或压扭/张扭转换的应力场演变,是驱动成矿系统形成发育的构造应力机制。大陆碰撞产生的不同尺度的高热流、不同起源的富金属流体流、不同级次的走滑-剪切-拆离-推覆构造系统和张性裂隙系统,是形成成矿系统和大型矿床的主导因素。成矿金属在碰撞形成的壳/幔混源高fO2岩浆-热液系统、地壳深熔低fO2岩浆-热液系统、剪切变质-富CO2流体系统以及逆冲推覆构造驱动的区域卤水系统和浅位岩浆房诱发的对流循环流体系统中,伴随成矿金属的积聚与淀积是形成大型矿床的关键机制。"大陆碰撞成矿论"还强调,完整的大陆碰撞过程可以引发三次大规模成矿作用,形成一系列标示性的大型矿床:在主碰撞陆陆汇聚成矿期,大陆碰撞引发地壳加厚与深熔,产生富W-Sn壳源花岗岩,形成花岗岩型Sn-W矿床;大陆俯冲板片断离诱发软流圈上涌,产生富金属的壳/幔混源花岗闪长岩,形成岩浆-热液型或叠合型Pb-Zn-Mo-Fe矿床;大陆碰撞从变质地体排挤出富CO2流体,在剪切带形成造山型Au矿,从造山带排泄出建造流体,在前陆盆地形成MVT型Zn-Pb矿。在晚碰撞构造转换成矿期,大规模走滑断裂系统诱发壳幔过渡带和富集地幔减压熔融,其岩浆在浅部地壳岩浆房出溶成矿流体,分别形成斑岩型Cu(-Mo-Au)矿床和碳酸岩型REE矿床;深切岩石圈的剪切作用与下地壳变质产生含Au富CO2流体,形成造山型Au矿;逆冲推覆构造驱动地壳流体长距离迁移汇聚、走滑拉分导致流体大量排泄和充填,形成Pb-Zn-Cu-Ag矿。在后碰撞地壳伸展成矿期,新生下地壳部分熔融产生富金属、富水、高fO2埃达克质岩浆浅成侵位和流体出溶,产生斑岩型Cu矿;中上地壳部分熔融层(岩浆房)驱动地热流体系统,在地热区发育热泉型Cs-Au矿,在构造拆离带形成热液脉型Pb-Zn-Sb和Sb-Au矿。  相似文献   

4.
碰撞造山带斑岩型矿床的深部约束机制   总被引:19,自引:8,他引:11  
在印度-亚洲大陆碰撞过程中,俯冲板片断离触发了幔源岩浆底侵作用、下地壳部分熔融和冈底斯岩基带以及同岩基斑岩的产生.在此过程中,幔源岩浆分离结晶的产物、下地壳岩石部分熔融残余和地壳分异过程中下沉的镁铁质块体,构成了加厚下地壳.随着造山岩石圈的冷却和加厚下地壳重力不稳定性的增加,岩石圈拆沉作用触发了后碰撞斑岩型岩浆活动.与此相应,碰撞造山带斑岩型矿床可以形成于同碰撞和后碰撞两个不同的构造阶段.同碰撞成矿作用发生于岩基带形成时期,成矿物质主要来自于底侵幔源岩浆及更深部的含矿流体,其触发机制是俯冲板片的断离.后碰撞成矿作用发生于加厚下地壳冷却之后,成矿物质主要来自于新生矿源层和更深部的含矿流体,其触发机制为岩石圈拆沉作用.在同碰撞构造阶段,伴随着幔源岩浆的底侵作用,深部流体和幔源岩浆所含的成矿物质被注入到岩基岩浆中,与从岩基岩浆源区萃取的成矿物质汇聚在一起,一部分受岩基热的驱使上升成矿.由于流体中成矿元素的浓度强烈依赖于压力,另一部分成矿元素则滞留在难熔残余中形成新的矿源层.当发生岩石圈拆沉作用时,由此矿源层部分熔融形成的斑岩岩浆将相对富含成矿物质,导致碰撞造山带第二次成矿作用大爆发.  相似文献   

5.
文章通过阴极发光研究结合SHRIMPU_Pb法精确定年,发现青藏高原南部冈底斯斑岩铜矿带含矿斑岩中的锆石由残留、变质、岩浆3种类型组成,其年龄分别为(51.1±4.8)Ma、(21.1±2.6)Ma和(14.47±0.5)Ma。LA_ICP_MS分析表明残留锆石的特点是Y(1121×10-6)、HREE(641×10-6)和MREE(182×10-6)含量高,U(207×10-6)、Th(171×10-6)和Hf(0.96%)含量低。与残留锆石和岩浆锆石相比,变质锆石Th/U比值明显降低(0.54)。在3种类型的锆石中都具有明显的负Eu异常和正Ce异常,但岩浆锆石以Ce异常变化大为特征。冈底斯铜矿带含矿斑岩中识别出的这3个锆石阶段与冈底斯碰撞造山带演化中的3个重要构造事件相对应。作为印度与亚洲大陆碰撞拼贴的主缝合带,这种一致性允许我们提出这样一个构造模式:50~60Ma之前印度与亚洲大陆碰撞期间发生地幔镁铁质岩浆底侵,形成了含矿斑岩的源区;约21Ma前,由于软流圈物质上涌,同时造成了底侵镁铁质岩石部分熔融形成含矿岩浆和地壳快速隆升;约15Ma前,伴随着高原南部地壳隆升后的伸展塌陷,含矿岩浆侵位,形成了冈底斯斑岩铜矿带。  相似文献   

6.
胡文峰  张烨恺  刘金华  郭亮  周炼 《地球科学》2019,44(6):1923-1934
选取西藏冈底斯成矿带的驱龙、达布斑岩型铜钼矿及鸡公村石英脉型钼矿为研究对象,分别挑选含矿斑岩和石英脉中的黄铜矿、辉钼矿进行Cu、Mo同位素测定.结果表明,西藏冈底斯斑岩型黄铜矿的δ^65/63Cu介于0.01‰~0.98‰,辉钼矿的δ^97/95Mo介于-0.34‰^-0.15‰,热液脉型矿床中辉钼矿的δ^97/95Mo介于-0.35‰^-0.23‰.形成于陆-陆碰撞造山后的冈底斯斑岩型铜钼矿床的Cu同位素与俯冲带产出的斑岩型矿床中的Cu同位素组成具有一定的相似性,均表现为单峰分布的特征.驱龙斑岩型矿床中热液脉与含矿斑岩中的δ^65/63Cu具有一致性,可能反映了二者在来源上具有一致性.在冈底斯斑岩型铜钼矿床中,不同蚀变带具有不同的Cu、Mo同位素组成,自蚀变中心向外,δ^65/63Cu与δ^97/95Mo表现出负相关趋势,可能与成矿流体的性质密切相关.冈底斯石英脉型钼矿较斑岩型铜钼矿δ^97/95Mo相对偏负,结合两类矿床的成矿年代,可能暗示两类矿床的成矿物质是同一源区连续演化的结果.  相似文献   

7.
柴达木盆地南缘祁漫塔格-鄂拉山地区发育斑岩-矽卡岩型铜多金属矿床,成矿主元素为Cu、Mo、Pb、Zn,大部分矿床伴生Au、Ag。斑岩型和矽卡岩型矿(化)体共生于同一个矿区之中,是这类矿床的一个重要特点。与成矿有关的侵入体是印支期的中酸性小岩体,它们具有浅成_超浅成和高侵位等特点。斑岩-矽卡岩矿床的成岩年龄和成矿年龄一致,形成于中三叠世至晚三叠世。它们是东昆仑造山带晚碰撞造山阶段壳-幔作用(幔源岩浆底侵-岩浆混合)的产物,与东昆仑地区这一时期的矽卡岩型铁多金属矿床、热液脉状多金属矿床,以及造山型金矿床共同构成了一个矿床成矿系列。  相似文献   

8.
中亚成矿域斑岩铜矿床基本特征   总被引:9,自引:2,他引:7  
中亚成矿域发育许多大型和超大型斑岩铜矿床,是世界上重要的斑岩铜矿成矿域。我们对9个大型和超大型斑岩铜矿床进行了研究,包括地质特征、含矿岩体地球化学、SIMS锆石U-Pb定年和成矿流体成分等,结合前人成果,我们认为中亚成矿域斑岩铜矿床具有如下特点:(1)成矿时代为古生代和中生代,成矿高峰期为泥盆纪和石炭纪;(2)含矿岩浆为钙碱性中酸性岩浆和少量的碱性岩浆,含矿岩体为花岗闪长岩、闪长岩、英云闪长岩和少量的二长岩;(3)含矿岩浆大多数源于新生的洋壳,少量有古老的基底物质和围岩物质参与;(4)成矿构造背景主要为岛弧,少量为陆缘弧和岛弧向陆缘弧过渡的环境;(5)矿床可分为三类,包括斑岩型Cu-Au、Cu(Au,Mo)和Cu-Mo矿床;(6)成矿流体可分为两类,包括氧化性H2O-Na Cl-CO2-SO2体系和少量的还原性H2O-Na Cl-CH4-CO2体系;(7)成矿系统可分为三类,包括简单的斑岩系统和少量的斑岩-矽卡岩成矿系统和斑岩-浅成低温热液成矿系统。  相似文献   

9.
本文在综述斑岩铜矿(PCDs)最新研究进展基础上,结合最新资料,重点阐释了中国大陆非弧环境PCDs的地球动力学背景、成矿岩浆起源、岩浆-流体系统演化、成矿金属(Cu,Au,Mo)和H2O来源及富集过程。中国大型PCDs除少量产于岩浆弧外,主要产于碰撞造山环境的构造转换和地壳伸展阶段、陆内造山环境的岩石圈伸展和崩塌阶段以及活化克拉通的边缘及内部。这些非弧环境成矿斑岩多呈彼此孤立的近等间距分布的岩株或岩瘤产出,以高钾为特征,显示埃达克岩地球化学亲和性。成矿岩浆主要起源于加厚的镁铁质新生下地壳或拆沉的古老下地壳,少数起源于遭受早期俯冲板片流体/熔体交代改造过的富集地幔。大陆碰撞和陆内俯冲引起的地壳大规模增厚和紧随其后的板片撕裂、断离、岩石圈拆沉和软流圈上涌,是形成这些成矿岩浆的主要动力机制。与岩浆弧环境斑岩类似,非弧环境斑岩也相对富水(>4%H2O)和高f(O2)值(ΔFMQ≥+2),但H2O不是来自俯冲板片,而是主要来自新生下地壳的角闪石分解或/和幔源富水超钾质岩浆水注入;金属Cu(Au)主要来自新生的镁铁质下地壳中含Cu硫化物的熔融分解,或者来自拆沉下地壳熔体与金属再富集的地幔岩反应,而金属Mo则主要来自具有高Mo丰度的大陆地壳。不论在岩浆弧还是非弧环境,成矿岩浆通常相对富集成矿金属(Cu,Au,Mo),但PCDs的形成并不要求成矿岩浆在初始阶段就异常富集金属组分,但要求金属硫化物相在岩浆流体出溶前没有从岩浆中饱和分离。浅成侵位的斑岩体(1~6 km)虽然可以出溶成矿流体,但大型PCDs通常要求成矿流体出溶自深部(侵位深度≥6 km)、有镁铁质岩浆持续补给的稳定大体积岩浆房。斑岩体可以分凝出不混溶的低盐度的气相和高盐度的液相,岩浆房则直接出溶出高温低盐度的富金属超临界流体。高盐度液相和低密度的超临界气相流体均可以迁移金属,伴随大规模热液蚀变,形成PCDs。  相似文献   

10.
作为贱金属主要来源的斑岩铜矿床,大多数产出于大陆边缘和岛弧环境。普遍认为,被俯冲洋壳板片释放流体交代的地幔楔部分熔融形成的玄武质岩浆,在相对封闭系统结晶分异和/或同化混染形成含铜长英质岩浆。然而,我们的研究表明,在西藏碰撞造山带,发育一条具有巨大成矿潜力的中新世斑岩铜矿带,含铜斑岩具有埃达克岩地球化学特性,来源于被加厚的藏南镁铁质下地壳,但俯冲的新特提斯洋壳板片部分熔融也不能完全被排除。斑岩铜矿形成于陆-陆后碰撞伸展时期(13~18Ma),即青藏高原迅速抬升之后。横切碰撞造山带的南北向正断层系统,类似于岛弧环境下的横切弧的断层系统,成为埃达克质斑岩岩浆快速上升和就位的通道与场所,并使岩浆热液系统中大量的含矿流体充分地分离而成矿。  相似文献   

11.
斑岩Cu-Mo-Au矿床:新认识与新进展   总被引:59,自引:0,他引:59  
侯增谦 《地学前缘》2004,11(1):131-144
斑岩型矿床作为一种最重要的铜钼和铜金矿床类型一直得到人们的普遍重视 ,近些年来又取得了重要研究进展 ,主要体现在 5个方面 :①岛弧和陆缘弧是斑岩型矿床产出的重要环境 ,但大陆碰撞造山带也具有产出斑岩型矿床的巨大潜力。按矿床产出的构造环境 ,可以分为弧造山型斑岩矿床和碰撞造山型斑岩矿床 ;②弧造山型含矿斑岩主要为钙碱性和高钾钙碱性 ,而碰撞造山型含矿斑岩则主要为高钾钙碱性和橄榄安粗质 (shoshonitic)。两种环境的含矿斑岩多具有埃达克岩 (adakite)岩浆亲合性 ,但前者主要来源于俯冲的大洋板片 ,后者主要来源于碰撞加厚的下地壳。大洋板片的部分熔融缘于俯冲角度的平缓化 ,而加厚下地壳的熔融起因于俯冲大陆板片的断离 (slabbreakoff) ;③在弧造山环境 ,大洋俯冲板片的膝折 (kink)或撕裂 (slabtear)不仅导致俯冲角度变缓 ,而且引起弧地壳耦合变形 ,产生切弧断裂 ,控制斑岩铜系统的时空分布。俯冲板片撕裂引发软流圈上涌 ,诱发大洋板片熔融 ,产生含矿岩浆 ;④在碰撞造山环境 ,大陆俯冲板片的裂离导致软流圈上涌 ,向下地壳注入新生物质 ,并诱发下地壳物质熔融 ,产生含矿岩浆。碰撞后地壳伸展形成横切碰撞带的正断层系统 ,为斑岩侵位提供运移通道 ,并导致岩浆流体大量分凝和铜钼金淀积。不论  相似文献   

12.
Most porphyry Cu–Mo–Au deposits are found in magmatic arcs worldwide, and are associated with hydrous, high-fO2, calc-alkaline magmas, derived from a mantle wedge that was metasomatized by the fluids from a subducted oceanic slab. Recently, such deposits have been documented as occurring widely in collisional settings, where they are associated with potassic magmas generated during the collisional process, but the genesis of the fertile magmas and the mechanism of metallic enrichment remain controversial. Here we present new geochemical and Sr–Nd–Hf isotopic data from the post-collisional fertile and barren porphyries of the Miocene Gangdese porphyry belt in the Tibetan orogen, an orogen formed by the collision of India and Asia in the early Cenozoic. Both types of porphyry are characterized by high K2O contents, and have geochemical affinities with adakite, but the fertile magmas were most likely derived from the melting of a thickened juvenile mafic lower-crust, formed by the underplating of earlier asthenospheric melts at the base of crust, whereas the derivation of the barren magmas involved variable amounts of old lower-crust in Tibet. The melting of sulfide-bearing phases in the juvenile mantle components of the Tibetan lower-crust probably provided Cu, Au, and S to the fertile magmas. The breakdown of amphibole during melting at the source released the fluids necessary for the formation of the porphyry Cu deposits in Tibet. The thickened crust (up to 70–80 km), due to collision, is thought to be responsible for a decrease in the fO2 of the fertile magmas during their ascent to the upper crust, thus preventing the generation of more porphyry Cu–Au and epithermal Au deposits in this collisional zone.  相似文献   

13.
Sharang is a low-fluorine, calc-alkaline porphyry Mo deposit hosted mainly in a granite porphyry of a multi-stage plutonic complex in the northern Gangdese metallogenic belt, largely with stockwork and ribbon-textured mineralization. The observed age estimates suggest that the formation of the magmatic host complex (52.9–51.6 Ma) and the ore deposit itself (52.3 Ma) occurred during the main stage of the India–Asia collision. The host rocks are characterized by lower zircon εHf(t) values than those of the pre-ore and post-ore rocks. This suggests that the Lhasa terrane basement might play an important role in the formation of Sharang ore-forming intrusions. In view of the framework of magmatic–metallogenic events we suggest that slab roll-back may have induced melting of juvenile crust and ancient continental complexes during the India–Asia collision. This proposal focuses exploration for additional molybdenum deposits on the collision zone.  相似文献   

14.
初论大陆环境斑岩铜矿   总被引:43,自引:1,他引:42  
世界范围内大型-巨型斑岩铜矿多数产于岩浆弧(岛弧、陆缘弧)环境,含矿斑岩岩浆起源与大洋板块的俯冲作用有关。综合研究了与大洋板块俯冲无关、产于中国大陆环境的若干大型-巨型斑岩铜矿。研究发现,这些大陆环境的斑岩铜矿,虽然其基本地质特征与岩浆弧环境斑岩铜矿具有广泛的类似性,但其动力学背景、含矿斑岩性质、岩浆起源演化、金属富集过程及其构造控制机制却独具特色。这些大陆环境斑岩铜矿至少可产出于4类环境:晚碰撞走滑环境、后碰撞伸展环境、后造山伸展环境和非造山崩塌环境。大陆环境含矿斑岩以高钾质为特征,多具高钾钙碱性和钾玄质特征,通常显示埃达克岩地球化学亲和性。其岩浆通常起源于加厚的新生镁铁质下地壳或拆沉的古老下地壳。陆间碰撞期的地壳大规模增厚以及其后的软流圈上涌和岩石圈拆沉,是形成含矿岩浆的主导性机制。含矿岩浆的金属初始富集通常经历两阶段过程:(1)幔源物质直接供给金属阶段;(2)伴随含水、高氧逸度埃达克质岩浆演化金属富集阶段。在第一阶段,幔源物质主要通过两种形式供给金属:(1)以幔源组分为主的新生下地壳直接熔融;(2)拆沉下地壳熔融产生的埃达克质熔体与地幔岩石圈发生水/岩反应。在第二富集阶段,下地壳角闪榴辉岩熔融过程中角闪石大量分解产生富水的、高度氧化的埃达克质熔体,其分异演化使金属元素作为不相容元素得以在残浆中富集。大陆环境含矿斑岩的浅成侵位主要受大规模走滑断裂系统、切割造山带的断裂系统和基底线性断裂构造控制。与走滑断裂系统相伴发育的走滑拉分盆地、切割造山带的张性断裂与平行造山带的逆冲断裂带交汇部位以及不同方向的线性断裂构成的棋盘格子构造,常常控制斑岩岩浆-热液系统的空间定位。  相似文献   

15.
拉抗俄Cu-Mo矿床是冈底斯成矿带东段典型的斑岩型矿床,前人对该矿床进行了初步的矿床地球化学研究,但欠缺系统性.在系统的野外地质调查基础上,对拉抗俄斑岩Cu-Mo矿床的含矿斑岩开展了详细的地球化学和年代学研究,旨在精确确定矿床含矿斑岩的成岩年龄、岩石成因及源区特征.岩石地球化学特征显示,含矿花岗闪长斑岩富硅,相对贫镁和钙,SiO2含量为62.51%~72.41%,MgO含量为0.59%~1.30%,CaO含量为0.95%~3.44%;碱含量高,Na2O含量为3.51%~4.75%,K2O含量为3.30%~4.97%;偏铝质或弱的过铝质,A/CNK比值为0.90~1.01;相对富集大离子亲石元素Rb、Ba、Th、U、Sr,明显亏损Nb、Ta、Ti、P、Zr等高场强元素.岩体稀土总量较低,为82.80×10-6~132.09×10-6;富集轻稀土,且轻重稀土分异明显;具有弱的Eu负异常和弱Ce负异常.采用LA-ICP-MS锆石U-Pb同位素测年技术对含矿花岗闪长斑岩进行定年,岩体成岩年龄为13.58±0.42 Ma,系中新世岩浆活动的产物.锆石εHf(t)值为-3.99~4.49,Hf同位素两阶段模式年龄tDM2为808~1 349 Ma.研究结果显示拉抗俄含矿花岗闪长斑岩具有埃达克岩地球化学特征,其岩浆源区主要来源于新生地壳部分熔融的组分,在岩浆侵位过程中遭受了古老地壳物质的混染,岩石形成于印度-亚洲大陆碰撞造山带的后碰撞伸展构造背景.   相似文献   

16.
The Lakange porphyry Cu–Mo deposit within the Gangdese metallogenic belt of Tibet is located in the southern–central part of the eastern Lhasa block, in the Tibetan Tethyan tectonic domain. This deposit is one of the largest identified by a joint Qinghai–Tibetan Plateau geological survey project undertaken in recent years. Here, we present the results of the systematic logging of drillholes and provide new petrological, zircon U–Pb age, and molybdenite Re–Os age data for the deposit. The ore‐bearing porphyritic granodiorite contains elevated concentrations of silica and alkali elements but low concentrations of MgO and CaO. It is metaluminous to weakly peraluminous and has A/CNK values of 0.90–1.01. The samples contain low total REE concentrations and show light REE/heavy REE (LREE/HREE) ratios of 17.51–19.77 and (La/Yb)N values of 29.65–41.05. The intrusion is enriched in the large‐ion lithophile elements (LILE) and depleted in the HREE and high field‐strength elements (HFSE). The ore‐bearing porphyritic granodiorite yielded a Miocene zircon U–Pb crystallization age of 13.58 ± 0.42 Ma, whereas the mineralization within the Lakange deposit yielded Miocene molybdenite Re–Os ages of 13.20 ± 0.20 and 13.64 ± 0.21, with a weighted mean of 13.38 ± 0.15 Ma and an isochron age of 13.12 ± 0.44 Ma. This indicates that the crystallization and mineralization of the Lakange porphyry were contemporaneous. The ore‐bearing porphyritic granodiorite yielded zircon εHf(t) values between ?3.99 and 4.49 (mean, ?0.14) and two‐stage model ages between 1349 and 808 Myr (mean, 1103 Myr). The molybdenite within the deposit contains 343.6–835.7 ppm Re (mean, 557.8 ppm). These data indicate that the mineralized porphyritic granodiorite within the Lakange deposit is adakitic and formed from parental magmas derived mainly from juvenile crustal material that partly mixed with older continental crust during the evolution of the magmas. The Lakange porphyry Cu–Mo deposit and numerous associated porphyry–skarn deposits in the eastern Gangdese porphyry copper belt (17–13 Ma) formed in an extensional tectonic setting during the India–Asia continental collision.  相似文献   

17.
西藏冈底斯南部陆陆碰撞早期成矿作用分析   总被引:4,自引:0,他引:4  
冈底斯带南部发育有大量的斑岩铜钼矿床和矽卡岩型铜铅锌多金属矿床,形成了斑岩铜矿带和多金属矿带.前人的研究表明,成矿带内的矿床形成年代大都小于30Ma,处于碰撞后期伸展构造环境.本文对冈底斯带中南部的甲龙矽卡岩型铁矿、撒当金银矿床(点)和多底沟矽卡岩型钼矿床(点)开展了年代学研究,结果显示:甲龙铁矿黑云母二长花岗斑岩的锆石LA-ICP-MS U-Pb年龄为61.1 ±0.4Ma,MSWD=0.94;撒当赋矿安山岩锆石LA-ICP-MS U-Pb年龄为62.6±0.5Ma,MSWD=1.51;多底沟钼矿床(点)3件辉钼矿Re-Os模式年龄为64.3±0.8Ma ~ 69.2±3.3Ma,加权平均模式年龄为66.7±6.4Ma(MSWD=8.1).三个矿床(点)的同位素年龄表明成岩成矿事件和印度-欧亚板块陆陆碰撞早期构造岩浆事件有关.结合前人工作,我们提出冈底斯中南部发生了大规模与陆陆碰撞早期岩浆事件有关的成矿作用,形成了大面积分布的矿床,具有良好的找矿前景,应引起更多关注.  相似文献   

18.
中冈底斯成矿带查个勒矿床含矿岩体的年代学及成因   总被引:8,自引:2,他引:6  
查个勒矿床是中冈底斯成矿带(即中部拉萨地体)目前发现的一个中-大型矽卡岩+斑岩型矿床,但是其成岩成矿时代一直缺乏年代学约束。本文报道该矿床含矿岩体的LA-ICPMS法锆石U-Pb定年、辉钼矿Re-Os定年、地球化学及Hf同位素数据。花岗斑岩锆石U-Pb年龄明显可分为两组,206Pb/238U加权平均年龄分别为72.2~70.1Ma、65.2~64.4Ma,前者记录了早期的构造岩浆事件,后者代表了岩浆的结晶年龄;而辉钼矿Re-Os等时线年龄为71.5±1.3Ma,所代表的查个勒主成矿期年龄与早期的构造岩浆事件一致;结合65~64Ma时期的岩浆侵位、林子宗群大规模火山活动以及以亚贵拉矿床为代表的成矿作用,表明在印度与欧亚大陆初始碰撞过程中都可能产生不同规模的成矿作用。查个勒含矿岩体具富硅、富钾,贫钛、磷的特征,铝饱和指数(A/CNK)为1.05~1.27,富集大离子亲石元素Rb、Th、U,亏损高场强元素Nb、Ta、Zr、Ti等,并具有不均一的锆石εHf(t)值(-7.9~-2.2)和古老地壳Hf同位素模式年龄(tDMC=1.3~1.6Ga),属于过铝质"S"型花岗岩类。本文认为中冈底斯成矿带南部晚白垩世岩浆活动和成矿作用很可能是与雅鲁藏布江洋盆闭合之后初始碰撞幔源岩浆底侵导致的拉萨微陆块古老地壳物质的部分熔融有关,岩浆在上升过程中有不同程度的分离结晶。同时本文认为冈底斯成矿带成矿元素组合的分带性与新特提斯洋壳俯冲消减-碰撞过程中岩浆产生的源区物质有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号