首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地震触发的岩质边坡崩塌常造成巨大的灾害,特定地质条件下边坡地震动力响应及破坏机制是工程中的重要难题。以翠华山水湫池崩塌为研究对象,开展振动台试验,研究地震作用下受断层控制的岩质边坡动力响应及破坏机制。试验发现,当断层倾角大于临界角时,不连续界面处的部分反射波与透射波转变为滑行波,使得断层处加速度响应出现突变;模型边坡内部加速度峰值放大系数变化特征表现出显著的三阶段变化趋势;水平加速度响应呈现出随高程增加不断增大的特征,而竖直加速度峰值放大系数增加幅度较小;模型边坡的固有频率变化曲线可以分为3个阶段,整体呈现下降的趋势,表明模型动力特性发生变化。通过对比振动台试验与水湫池崩塌原型,发现含断层结构岩质边坡的主要破坏模式为边坡顶部在地震荷载作用下首先出现贯通的竖直拉裂缝,随后断层上盘破碎岩体裂解破坏,最终沿断层面发生剪切滑动。研究工作将为秦岭花岗岩地震山崩的风险预警提供研究示范,并为开发秦岭山崩遗迹提供科技支撑。  相似文献   

2.
城市地质遗迹景观调查研究是城市地质工作的一项重要内容,而探索地质遗迹景观的成因则是挖掘其科学价值和实施保护措施的关键问题。以中国山崩奇观的翠华山山崩为研究对象,采用典型天然地震记录作为地震输入条件,借助离散元动力分析模块,对翠华山山崩的动力响应规律进行了数值模拟,再现了地震山崩的启动、加速、解体、堆积的全过程。研究结果表明:地震惯性力作用使山体质点加速度和速度产生放大效应,特别是山体顶部的动力放大效应最为显著,加速度放大系数达2.0; 翠花山山崩具有高速远程的特点,其前缘的崩塌体最大水平速度达44ms-1,崩落水平距离达460m,堵塞沟谷形成堰塞湖; 地震山崩的整个破坏过程包括4个阶段,分别为启动阶段、加速阶段、减速阶段和堆积阶段。  相似文献   

3.
利用振动台模型试验探讨反倾层状岩质边坡的动力响应规律,通过输入不同频率、激振强度、持时的正弦波,监测模型边坡的加速度响应,着重分析频率对模型边坡加速度动力响应特性的影响。试验结果表明:①地震波频率对模型边坡动力响应的影响有两种不同的表现形式。当输入波频率小于等于模型边坡自振频率时,随着频率的增大,模型边坡的高程放大效应增强。②当输入波频率大于模型边坡自振频率时,随着频率的增大,模型边坡的高程放大效应减弱甚至消失。模型边坡的动力响应随高程的增加经历先减小后增大的变化趋势;模型边坡底部的加速度响应相对增强,甚至大于中上部响应强度;模型边坡各点的加速度放大系数基本小于1.0。③频率小于等于模型边坡自振频率的地震波往往造成模型边坡顶部和浅表部的变形破坏,频率大于模型边坡自振频率的地震波则造成模型边坡底部的变形破坏。④频率、激振强度、持时均对模型边坡的动力响应产生影响,但频率的影响最为显著,激振强度次之,持时的影响最弱。  相似文献   

4.
以云贵高原某典型土质边坡为原型,采用了4种加速度震动波输入模式,设计完成了比例为1:6的小型振动台模型试验,结合FLAC3D数值模拟对边坡动力响应特性和边坡变形破坏规律进行分析。结果表明:当输入加速度低于某个临界值时,整个坡体的加速度响应基本保持一致,各部位放大效应增加不明显,当输入加速度逐渐增加,高于临界值时,坡体的卓越频率得到充分激励,各部位加速度响应大幅增加,此时边坡最易发生变形破坏,且加速度响应沿着坡高方向有显著的放大效应;剪应变增量时程曲线反映出在边坡震动破坏过程中,滑体后缘以张拉为主,中部及下部以剪切为主,而且剪出口剪应变增量的变化尤为关键,其增幅速度直接导致该部位抗剪强度降低速度增快;边坡震动变形破坏模式为崩塌-剪切滑移破坏,变形破坏过程可分为4个阶段。   相似文献   

5.
为了探讨黄土基覆层边坡动力破坏特征与加速度的响应关系,采用1∶20振动台试验,设置输入地震波幅值逐级增大,实时监测边坡裂缝试验全周期内发育规律,应用MATLAB动力破坏特征检测系统获取地表裂缝的基本信息,提出边坡表面动力破坏特征,并结合各工况监测点加速度峰值变化规律进行分析。得到如下结论:(1)输入加速度峰值0.6g时,坡顶和坡脚的裂缝宽度、裂缝面积均有跳跃性增长,表明土岩接触面部位土体已发生累进剪切破坏,滑面和坡面上的加速度峰值响应突变,振幅突变较大,表明边坡已经发生破坏。(2)沿坡面和滑面加速度放大系数均呈非线性增加,而沿坡面的放大系数在各工况下明显比沿滑面的大,说明加速度沿高程放大效应明显。(3)拉裂缝和剪切裂缝面积突增是边坡破坏的重要特征,贯通裂缝产生和加速度响应突变可以作为边坡动力破坏的依据。  相似文献   

6.
顺层岩质边坡地震动力响应研究   总被引:1,自引:0,他引:1  
地震作用下边坡的动力响应研究是边坡动力稳定分析的基础,利用FLAC3D有限差分软件建立一个顺层岩质边坡动力数值模拟模型,对其在竖向和水平向地震耦合作用下的动力响应全过程进行研究。研究表明,地震竖向和水平向耦合作用模拟比简单的模拟水平向振动更加接近实际情况,对岩土体的破坏更大;顺层岩质边坡在耦合地震作用下存在垂直放大和临空面放大作用;坡面水平向和竖向加速度均随高程增加呈增大趋势,在结构面处增大特别明显;竖向地震波产生的水平与竖向拉裂是触发斜坡体产生初期崩滑破坏的主控因素;边坡动力响应特征值的放大效应表明,其放大系数值从大到小依次是:竖向加速度>水平加速度>竖向速度>水平速度;耦合地震波作用下,随着av /aH的增大,坡面监测各点横向位移基本呈增大趋势,说明竖向地震作用起了重要的破坏作用。  相似文献   

7.
地震工程的观点认为水平地震力是引起岩土体破坏的决定性因素,竖向地震力的影响则微不足道。鉴于汶川地震中表现出竖向地震力对边坡和建筑造成极大破坏,本文利用FLAC软件对不同坡高、坡角的边坡在不同周期、振幅的纵波作用下边坡动力响应规律做了数值模拟研究。结果表明:坡高较低时,振动加速度在1/2坡高以下范围内随高程逐渐增大, 1/2坡高以上则保持不变,当坡高增大时,振动加速度变化出现律动性,坡顶附近较其他部位存在明显的放大; 坡角的增大会造成振动加速度放大幅度的增大; 振动加速度随动力振幅的增大而增大,并呈明显的线性关系; 振动加速度随地震波周期的增大逐渐减小。  相似文献   

8.
本文以攀枝花机场12#滑坡Ⅱ-Ⅱ’断面治理工程为研究对象,以有限差分软件FLAC3D为研究工具,通过对坡体以及支挡结构的动力响应分析,得到如下结论:(1)坡体各测点峰值加速度出现时间稍微落后于输入地震波的峰值时间,表明由于边坡材料的阻尼作用,边坡动力响应存在滞后现象;(2)加速度放大系数总体随高程增加而增加,具有明显的高程放大效应。且突变点的存在表明支挡结构对于边坡的加速度放大效应具有一定的抑制作用;(3)外凸边坡处加速度响应较其他位置更为强烈,体现了明显的临空面放大效应;(4)地震对于抗滑桩桩身弯矩以及锚索预应力的影响不大,表明锚索抗滑桩加固边坡具有一定的抗震作用。  相似文献   

9.
研究地震作用下黄土-泥岩边坡动力响应特征,对边坡的稳定性评价和抗震设计具有重要指导意义。基于边坡的离心机振动台试验和数值模拟分析,研究地震波振幅对边坡地震动响应的影响规律,结果表明:由坡体深部至浅表层,黄土-泥岩边坡的水平向和垂向加速度放大效应呈非线性增加,且水平向大于垂直向,在坡体顶部到达最大,表现为趋表效应和高程效应;在边坡内部岩性接触部位,黄土层内动力响应较大,泥岩中动力响应较小,表现为岩性效应;随着输入地震波振幅的增加,坡体动力响应表现为先增大后减小的趋势,当输入振幅达0.3g时,坡体动力响应最大。黄土-泥岩边坡的变形破坏过程为:随输入地震波振幅增加,坡顶逐渐形成拉张裂缝,不断扩展,坡体中上部溜土,产生向临空面方向的位移,坡体中部发生鼓胀隆起,局部坡体振动松散,岩土体滑落至坡脚堆积。  相似文献   

10.
董金玉  杨国香  伍法权  祁生文 《岩土力学》2011,32(10):2977-2982
5•12汶川大地震触发了大量的顺层岩质滑坡,对其进行研究很有必要。根据动力模型试验的相似关系,设计制作了1个坡角大于岩层倾角的尺寸(高×长×宽)为1.6 m×1.75 m×0.8 m的顺层模型边坡,并完成了大型振动台试验。试验结果表明,在坡体表面和内部竖直方向上,加速度放大系数随着坡体高程增加而增大,并且随着高程增加,加速度放大系数增大的速度加快;在坡体内同一高程上,坡面处的加速度放大系数大于一定水平深度坡体内部的加速度放大系数,表现出趋表效应;地震波输入频率对坡体动力响应有明显影响,随着频率的增加,越接近坡体的自振频率,加速度放大效应越显著;加速度放大系数随着输入波振幅的增加,总体上表现为递减趋势;通过和均质边坡振动台试验加速度监测数据对比,发现坡体结构对坡体加速度放大系数也有一定的影响,结构面对地震波的反射和折射作用加大了坡体加速度的放大效应。,对试验过程中坡体破坏特征的描述和分析发现,边坡的破坏模式为地震诱发-坡肩拉裂张开-坡面中部出现裂缝-裂缝贯通-发生高位滑坡-转化为碎屑流-堆积坡脚。研究成果对地震灾区滑坡形成机制的认识和减灾防灾有一定的价值。  相似文献   

11.
地震波的频率特性是地震动的最重要特征之一,斜坡的地震动力响应是地震波各频率组分对斜坡体共同作用的结果。依托于含水平厚软弱夹层斜坡的大型振动台模型试验,着重分析了该斜坡在天然随机波(2008年汶川波)作用下的水平向加速度响应频谱特征。首先,基于Hilbert-Huang频谱变换,对所有原始数据进行了有效的降噪处理,并获得了重构数据的Hilbert边际谱。接着,开展了坡表水平向加速度边际谱在不同高程处和不同激振强度下的变化特征分析,并将频谱特征与时域峰值加速度(PHA)响应和斜坡的宏观变形破坏特征进行对比分析。结果表明:(1)随着高程增加,边际谱幅值也相应增加且谱线出现多个波峰。坡体上部尤其是坡肩是地震作用的敏感部位,随着激振强度增加,加速度波的震动能量从一开始集中在2个频段(即7~11 Hz和15~20 Hz,高频)逐渐向1个频段(7~11 Hz,低频)变化;(2)在激振强度为0.2g~0.5g时,第一卓越频率(最大谱峰值对应的频率)和第二卓越频率(次大谱峰值对应的频率)在数值上呈大幅度、无规律的波动,预示在该震动阶段,坡体结构内部正在经历一个较大的变化(恶化),但未出现宏观变形;(3)时域峰值加速度随高程和激振强度增加的变化规律与最大谱峰值的变化规律较接近,但局部变化受次大谱峰值响应的影响明显;(4)在低频区(5 Hz),在软弱夹层及其周围(相对高程0.25~0.75)出现了明显的响应低值区,且边际谱的形状和数值在该部位呈无规律性变化;(5)斜坡的变形破坏过程明显受坡表而非坡顶变形的控制,其应存在使得一个地震波与坡体相互作用效应最大的共振高程,该高程范围与以第二卓越频率(16 Hz)作为共振频率所估算的高程较为吻合。  相似文献   

12.
隧道仰坡地震动力响应特性振动台模型试验研究   总被引:2,自引:0,他引:2  
吴冬  高波  申玉生  周佳媚 《岩土力学》2014,35(7):1921-1928
为研究地震作用下山岭隧道仰坡的动力响应特性及仰坡坡体和衬砌结构的相互作用,设计并完成了隧道洞口段大型振动台模型试验。试验结果表明,地震作用下仰坡的加速度反应存在显著的非线性放大效应和趋表效应;当输入地震波幅值超过0.6g时,土体的非线性反应明显增强,加速度放大系数显著降低,表现出放大效应饱和的特性,且沿坡体竖直向上,加速度分布逐渐表现出平均化的趋势;隧道洞口段仰坡水平向动力反应受隧道结构存在的影响较小,可简化为自然边坡进行分析;仰坡的动力失稳是影响衬砌结构安全性的重要因素,当输入地震波幅值较小时,竖直向地震作用下衬砌主要受力部位受力要大于水平向地震作用,当幅值较大时,水平向地震动对衬砌结构的影响则明显大于竖向地震动;均质仰坡的破坏部位主要位于仰坡坡肩至坡面上部,破坏过程表现为地震力诱发-坡肩土体拉裂张开-坡肩土体倾倒崩塌-崩塌的土体沿坡面滑落碰撞-形成碎屑流堆积于坡脚。模型试验的结果能为山岭隧道洞口段的理论分析、计算和设计提供指导和依据。  相似文献   

13.
设计和制作了三段式锁固型岩质边坡模型,并进行了大型振动台试验,对三段式锁固型岩质边坡在地震作用下的动力响应和变形破坏模式进行了分析.研究结果表明:三段式锁固型边坡模型的自振频率随振动次数的增加而逐渐降低,阻尼比则随振动次数的增加而逐渐增大;边坡模型水平加速度放大系数表现出明显的高程放大效应和趋表效应;在不同类型输入波的作用下,边坡加速度响应存在着明显的差异;加速度放大系数随着输入波频率的增加表现出先增加后减小的变化规律,且在频率为15 Hz时峰值加速度放大系数达到最大值;随着输入波振幅的增加,坡体加速度放大系数总体上表现为先增加后减小的变化趋势;在地震波的作用下,位于坡体顶部裂缝和底部软弱夹层之间的锁固段出现多条裂缝,并不断发展呈X型贯通,最终在坡体内部形成3级滑面,并在持续的振动作用下,边坡沿着3级滑面发生滑动破坏.   相似文献   

14.
为研究地震作用下隧道洞口段顺层边坡的动力响应特征及动力破坏模式,基于动力模型试验的相似关系,设计完成了隧道洞口段顺层边坡振动台缩尺模型试验.试验结果表明,地震作用下模型边坡具有典型的地形放大效应,模型边坡具有明显的坡表动力放大效应,相同条件下与坡内相比坡表的动力放大效应较大;地震动输入方向及强度对模型边坡的动力响应特征具有影响,相同条件下与输入垂直地震动相比输入水平地震动时模型边坡的动力放大效应较大;隧道结构改变了模型边坡的局部动力响应特征,对坡体的动力放大效应具有放大作用;地震作用下模型边坡的动力破坏模式为地震诱发-最上层结构面逐渐形成滑带-最上层结构面以上滑体滑动破坏-滑体堆积坡脚.   相似文献   

15.
地震波的频率特性是地震动的最重要特征之一,斜坡的地震动力响应是地震波各频率组分对斜坡体共同作用的结果。依托于含水平厚软弱夹层斜坡的大型振动台模型试验,本文着重分析了该斜坡在天然随机波(2008年汶川波)作用下的水平向加速度响应频谱特征。首先,基于Hilbert-Huang频谱变换,对所有原始数据进行了有效的降噪处理,并获得了重构数据的Hilbert边际谱。接着,开展了坡表水平向加速度边际谱在不同高程处和不同激振强度下的变化特征分析,并将频谱特征与时域峰值加速度(PHA)响应和斜坡的宏观变形破坏特征进行对比分析,结果表明:(1)随着高程增加,边际谱幅值也相应增加且谱线出现多个波峰。坡体上部尤其是坡肩是地震作用的敏感部位,随着激振强度增加,加速度波的震动能量从一开始集中在2个频段(即7~11 Hz和15~20 Hz,高频)逐渐向1个频段(7~11Hz,低频)变化;(2)在激振强度为0.2g~0.5g时,第一卓越频率(最大谱峰值对应的频率)和第二卓越频率(次大谱峰值对应的频率)在数值上呈大幅度、无规律的波动,预示在该震动阶段,坡体结构内部正在经历一个较大的变化(恶化),但未出现宏观变形;(3)时域峰值加速度随高程和激振强度增加的变化规律与最大谱峰值的变化规律较接近,但局部变化受次大谱峰值响应的影响明显。(4)在低频区(5Hz),在软弱夹层及其周围(相对高程0.25~0.75),出现了明显的响应低值区,且边际谱的形状和数值在该部位呈无规律性变化;(5)斜坡的变形破坏过程明显受坡表而非坡顶变形的控制,其应存在使得一个地震波与坡体相互作用效应最大的“共振高程”,该高程范围与以第二卓越频率(16Hz)作为共振频率所估算的高程较为吻合。  相似文献   

16.
降雨、地震作用下,隧道洞口边坡易产生严重破坏,有必要研究隧道洞口边坡及支挡结构的动力响应特性。以中国西南某隧道洞口边坡为例,通过振动台模型试验,分析降雨、地震作用下预应力锚索桩板墙加固隧道洞口边坡的动力响应与破坏模式。研究结果表明:(1)隧道洞口边坡破坏过程为坡顶张拉裂缝―坡脚剪切溃裂―边坡整体滑移破坏。由于雨水入渗,坡表土体在地震作用下易产生局部浅层破坏。边坡破坏模式为张拉-剪切型。(2)随峰值加速度增加,桩身PGA放大系数显著增大,应重视该类支护结构在地震作用下的惯性放大效应。(3)桩后峰值土压力随峰值加速度增加而增大,由“S型”分布逐渐转变为倒三角形分布。峰值加速度大于0.4g时,锚索轴力逐渐增加,充分发挥张拉作用。(4)桩土压力与加速度傅里叶谱幅值集中于低频段,地震波沿高程传播存在“高频滤波效应”。(5)桩身位移谱幅值随峰值加速度增加而逐渐增大,沿桩身向上呈增加趋势;位移谱主频分布于1~4 Hz,卓越频率为2.5 Hz,与地震荷载的主频较接近。(6)桩体加速度间的关联性较好,桩体加速度、动土压力、桩体应变、锚索轴力相关性随输入峰值加速度增加而逐渐降低。  相似文献   

17.
顺倾层状边坡沿软弱带剪切方式破坏是滑坡的主要类型之一。采用块体砌筑斜坡振动台模型,在多维多参数地震动作用下,考虑斜坡不同工况下力学参数弱化的过程,研究了层状碎裂结构岩质边坡的地震动力响应和失稳破坏模式。结果表明:斜坡地震动特性和斜坡地质结构是决定斜坡地震动力稳定性以及破坏模式的决定因素;斜坡水平动力响应具有明显的高程和坡表放大效应,高程对斜坡的垂直动力响应影响较小,地震动放大效应与结构面力学强度、地震波波形、频谱特性等均有一定的关系,正弦波较天然波对坡体放大效应影响更为显著;坡体裂纹依托优势结构面在最弱部位起裂萌生扩展,并向节理面追踪形成蠕滑段和锁固段,节理面强度参数在外界地质营力作用下发生弱化,使潜在滑带出现由后缘向前端搭接贯通的前进式破坏模式和由前端向后缘的后退式破坏模式的分化,滑体也由高位剪出向溃散破坏演变。  相似文献   

18.
地震波的频率特性是地震动的最重要特征之一,斜坡的地震动力响应是地震波各频率组分对斜坡体共同作用的结果。依托于含水平厚软弱夹层斜坡的大型振动台模型试验,本文着重分析了该斜坡在天然随机波(2008年汶川波)作用下的水平向加速度响应频谱特征。首先,基于Hilbert-Huang频谱变换,对所有原始数据进行了有效的降噪处理,并获得了重构数据的Hilbert边际谱。接着,开展了坡表水平向加速度边际谱在不同高程处和不同激振强度下的变化特征分析,并将频谱特征与时域峰值加速度(PHA)响应和斜坡的宏观变形破坏特征进行对比分析,结果表明:(1)随着高程增加,边际谱幅值也相应增加且谱线出现多个波峰。坡体上部尤其是坡肩是地震作用的敏感部位,随着激振强度增加,加速度波的震动能量从一开始集中在2个频段(即7~11 Hz和15~20 Hz,高频)逐渐向1个频段(7~11Hz,低频)变化;(2)在激振强度为0.2g~0.5g时,第一卓越频率(最大谱峰值对应的频率)和第二卓越频率(次大谱峰值对应的频率)在数值上呈大幅度、无规律的波动,预示在该震动阶段,坡体结构内部正在经历一个较大的变化(恶化),但未出现宏观变形;(3)时域峰值加速度随高程和激振强度增加的变化规律与最大谱峰值的变化规律较接近,但局部变化受次大谱峰值响应的影响明显。(4)在低频区(5Hz),在软弱夹层及其周围(相对高程0.25~0.75),出现了明显的响应低值区,且边际谱的形状和数值在该部位呈无规律性变化;(5)斜坡的变形破坏过程明显受坡表而非坡顶变形的控制,其应存在使得一个地震波与坡体相互作用效应最大的“共振高程”,该高程范围与以第二卓越频率(16Hz)作为共振频率所估算的高程较为吻合。  相似文献   

19.
顺层岩质高边坡地震变形破坏机制三维数值反演研究   总被引:1,自引:0,他引:1  
何铮  徐卫亚  石崇  李明卫  赵谊 《岩土力学》2009,30(11):3512-3518
提出了工程地质分析与三维反演模拟相结合的方法,以揭示边坡地震渐进破坏的失稳过程和失稳机制。结合西南某水电站顺层岩质高边坡工程实例。研究该高边坡地震后工程地质特性,恢复边坡震前的地形地貌,建立地震前未滑塌边坡的三维模型。利用FLAC3D对模型进行动力-时程响应分析,绘制位移、速度、加速度三量放大系数等值线图,判断地震破坏位置。数值模拟结果与边坡实际滑塌情况相符。应用工程地质分析与三维反演模拟结合的方法,揭示了边坡后发型阶段性逐级滑塌的破坏机制以及大夹角折线形的后缘破坏面形状。三维数值反演研究中采用的岩体动力参数,为正演研究提供了参考。  相似文献   

20.
王帅帅  高波  隋传毅  闻毓民 《岩土力学》2014,35(Z1):278-284
针对洞口段均质围岩仰坡、含软弱夹层仰坡和桁架梁加固仰坡围岩3种工况,开展大型振动台模型试验,分析隧道洞口段仰坡模型土破坏形态。试验结果表明,均质边坡洞口段模型土在动力作用下坡肩土体先出现张拉裂缝,随着激振加速度增加,坡肩土体局部出现倾倒崩塌,最后沿坡面滑落堆积;含软弱夹层边坡在地震力作用下,仰坡坡脚部位土体挤压破碎,坡顶表面沿软弱夹层位置出现张拉裂缝,上覆土体沿软弱夹层滑动,最后土体大规模崩塌、滑落;洞口段加固边坡在动力作用下基本保持整体稳定,只部分梁格出现了局部的掉块,模型土顶部出现沿隧道轴向的细微裂缝。分析了隧道洞口段衬砌结构破坏形态,试验结果表明均质边坡洞口段AB两段衬砌模型裂缝分布较CD段复杂,认为洞口段地震影响深度为AB两段衬砌的长度,对应于实际工程中40 m;受软弱夹层影响,跨软弱夹层部衬砌模型裂缝形态较复杂;仰坡加固后,洞口段衬砌模型受力改善。研究结果可为山岭隧道洞口段边坡抗减震研究和设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号