首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partition coefficients for La, Sm, Ho and Lu (REE) between synthetic zircon and felsic, peralkaline liquid were determined at 800°C and 2 kbar water pressure by adding small amounts of REE to experimental charges and analyzing zircons in the quenched runs with an electron microprobe. The preferred zircon/liquid partition coefficients obtained by this method are: La, 1.4–2.1; Sm, 26–40; Ho, 340+; Lu, 72–126. These results confirm the strong heavy rare earth enrichment discovered by Nagasawa (1970) in zircon separates from dacites and granites, but they also introduce a modification to the supposed zircon/liquid partition coefficient pattern. The heavy REE end of the pattern is concave downward, in qualitative resemblance to some garnet/liquid and hornblende/liquid REE partitioning patterns.  相似文献   

2.
The crystal/liquid partition coefficients of Lu, Hf, Ti, Mn and Ca have been measured between olivine, clinopyroxene and basaltic melt. The Ti, Mn, and Ca partition coefficients were determined at natural abundance levels. The Lu and Hf partition coefficients were determined at doping levels ranging from 0.5 to 1.5 wt% “trace element” as oxide in order to allow analysis by electron microprobe. Olivine/liquid partition coefficients for Lu, Hf, Ti, Mn, and Ca were determined at 1 bar and temperatures from 1150 to 1177° C. Clinopyroxene/liquid partition coefficients were determined for Lu, Hf, Ti, and Mn at pressures of 10, 15, and 20 kbars and temperatures from 1250 to 1290° C. The olivine/liquid partition coefficients of Hf, Lu, Ti, and Ca are small. D(Hf-ol) is zero within the analytical uncertainty. Both D(Lu-ol) and D(Mn-ol) decrease with increasing temperature, but D(Ti-ol) and D(Ca-ol) are constant over the narrow temperature range studied. The partition coefficient results are summarized below.
T°C  相似文献   

3.
王超  刘志宏  宋健  高翔  孙理难 《岩石学报》2016,32(9):2856-2866
近年来古太平洋构造域的构造演化备受学者关注。本文报道的延边开山屯地区花岗闪长岩-石英闪长岩体LAICP-MS U-Pb年龄表明其形成时间为早侏罗世早期(198±1Ma),所采样品可根据Zr/Hf值分为高Zr/Hf值组花岗闪长岩和低Zr/Hf值组石英闪长岩。高Zr/Hf值组花岗闪长岩起源深度浅,富集Rb、Th、U、K等大离子亲石元素(LILEs),贫Nb、Ta、Ti等高场强元素(HFSEs),具壳源岩浆的特点。低Zr/Hf值组为壳源岩浆与来自深部的亏损地幔岩浆混合而成,岩石亏损Nb、Ta、Zr、Hf、Ti等高场强元素,具有典型的弧型岩浆地球化学特征。岩体中存在细粒闪长质包体,镜下可见针柱状磷灰石。开山屯岩体属钙碱性系列岩石,结合前人资料,认为其与该地区同时代火成岩组成北-东向分布的早侏罗世活动大陆边缘型火成岩带,而位于该带西侧的小兴安岭-张广才岭地区存在同时代弧后拉张带,两者构成典型的大陆弧与弧后拉张带模型,共同揭示了早侏罗世早期古太平洋板块对东北地区的俯冲作用。  相似文献   

4.
A new digestion procedure and chemical separation technique has been developed for measurement of Lu/Hf and Hf isotope ratios that does not require high‐pressure bombs or use of HF or HClO4 acids. Samples are digested in dilute HCl or HNO3 after flux‐fusion at 110 0 °C in the presence of lithium metaborate. High field strength elements (HFSE) and rare earth elements (REE) are separated from this solution by co‐precipitation with iron hydroxide. The dissolved precipitate (in 2 mol l?1 HCl) is loaded directly onto a standard cation exchange column which separates remaining sample matrix from the heavy REE (Lu+Yb), and the middle‐light REE and HFSE (Hf). The middle‐light REE and individual HFSE are then separated (10.5, 9 and 6 mol l?1 HCl) using a miniaturized column containing TEVA spec resin which provides a REE‐, Ti‐ and Zr‐free Hf cut. This chemical separation scheme can also be readily adapted for isotopic analysis of the Sm‐Nd system and/or the other HFSE (Ti, Zr). Total procedural blanks for this technique are < 10 0 pg and < 2 pg for Hf and Lu, respectively, even when digesting large (0.5 g) samples. We present data from replicate digestions of international rock reference materials which demonstrate this technique routinely reproduces Lu/Hf ratios to < 0.2% (2s) and 176 Hf/177 Hf isotope ratios to < 30 ppm (2s). Moreover, the technique is matrix‐independent and has been successfully applied to analysis of diverse materials including basalts, meteorites, komatiites, kimberlites and carbonatites. The relative simplicity of this technique, coupled with the ease of digestion (and sample‐spike equilibration) of large difficult‐to‐dissolve samples, and the speed (2 days) with which samples can be digested and processed through the chemical separation scheme makes it an attractive new method for preparing samples for Lu‐Hf isotopic investigation.  相似文献   

5.
刘福来  刘平华 《岩石学报》2009,25(9):2113-2131
北苏鲁仰口地区出露超高压的变辉长岩.锆石阴极发光图像和其内部矿物包体激光拉曼测试的联合研究结果表明,变辉长岩锆石具有弱发光效应的岩浆韵律环带的核和被改造的强发光效应的边.岩浆韵律环带的核部保存大量而复杂的矿物包体,包括普通辉石(Cpx)+斜方辉石(Opx)+斜长石(P1)+石英(Qtz)+黑云母(Bt)+钛铁矿(Ilm)+磷灰石(Ap);边部保存的矿物包体则相对较少,包括普通辉石(Cpx)+斜方辉石(Opx)+斜长石(Pl)+磷灰石(Ap).尽管岩浆韵律环带核部的稀土元素总合量比被改造的锆石边部明显偏高,但二者稀土元素配分模式具有明显的相似性,主要表现为轻稀土相对亏损,而重稀土明显富集,相应的(La/Yb)N=0.00015~0.00039,并具有明显的负Eu异常(Eu/Eu*=0.20~0.26)、相对明显的正Ce异常(Ce/Ce*=71.5~147.4)和较高的Th/U比值(1.97~2.69).上述特征表明,仰口地区变辉长岩中的锆石均为继承性的岩浆锆石,而没有新生的变质锆石.LA-(MC)-ICP-MS锆石原位U-Pb定年和Lu-Hf同位素分析结果表明,两件锆石样品Y1和Y2的年龄数据所构成的不一致线显示了十分接近的上交点和下交点年龄.其上交点年龄分别为785±15Ma(2σ)和784±12Ma(2σ),应代表原岩的形成时代,表明变辉长岩的原岩与Rodinia超大陆裂解的岩浆事件存在密切的成因关系;而下交点年龄分别为226±24Ma(2σ)和228±26Ma(2σ),与苏鲁其它类型超高压岩石中含柯石英锆石微区记录的变质年龄十分吻合,应代表变辉长岩的超高压变质时代.岩浆结晶锆石的核部具有明显偏高的176Lu/177Hf(0.00044~0.00291)和176Yh/177Hf(0.0165~0.1168)比值,而176Hf/177Hf比值变化于0.281956~0.282048之间,相应的εHf(t)=-8.5~-14.0,tDM2=2.03~2.32Ga,表明仰口地区变辉长岩的原岩起源于古元古代时期的富集地幔或发生部分熔融的下地壳残留体.被改造的岩浆结晶锆石的边部则具有明显偏低的176Lu/177Hf(0.00029~0.00060)和176Yh/177Hf(0.0112~0.0200)比值,而176Hf/177Hf(t)比值变化于0.281953~0.282002之间,相应的εHf(t)=-10.2~-11.9,tDM2=2.12~2.21Ga.与岩浆结晶锆石核部相比,被改造的岩浆锆石边部的176Lu/177Hf、176Yb/177Hf、176Hf/177Hf(t)比值和εHf(t)和tDM2值的变化范围更小,表明中-新三叠纪的超高压变质作用使岩浆结晶锆石边部的Lu-Hf同位素体系发生调整,更趋向于均一化.  相似文献   

6.
Trace element partitioning between apatite and silicate melts   总被引:7,自引:0,他引:7  
We present new experimental apatite/melt trace element partition coefficients for a large number of trace elements (Cs, Rb, Ba, La, Ce, Pr, Sm, Gd, Lu, Y, Sr, Zr, Hf, Nb, Ta, U, Pb, and Th). The experiments were conducted at pressures of 1.0 GPa and temperatures of 1250 °C. The rare earth elements (La, Ce, Pr, Sm, Gd, and Lu), Y, and Sr are compatible in apatite, whereas the larger lithophile elements (Cs, Rb, and Ba) are strongly incompatible. Other trace elements such as U, Th, and Pb have partition coefficients close to unity. In all experiments we found DHf > DZr, DTa ≈ DNb, and DBa > DRb > DCs. The experiments reveal a strong influence of melt composition on REE partition coefficients. With increasing polymerisation of the melt, apatite/melt partition coefficients for the rare earth elements increase for about an order of magnitude. We also present some results in fluorine-rich and water-rich systems, respectively, but no significant influence of either H2O or F on the partitioning was found. Furthermore, we also present experimentally determined partition coefficients in close-to natural compositions which should be directly applicable to magmatic processes.  相似文献   

7.
The Jiama deposit, a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet, China, exemplifies a typical porphyry metallogenic system. However, the mineral chemistry of its accessory minerals remains under-examined, posing challenges for resource assessment and ore prospecting. Utilizing electron microprobe analysis and LA-ICP-MS analysis, this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries, as well as granodiorite, quartz diorite, and dark diorite porphyries in the deposit. It also delved into the diagenetic and metallogenic information from these geochemical signatures. Key findings include: (1) The SiO2 content, rare earth element (REE) contents, and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries; (2) the volatile F and Cl contents in apatite, along with their ratio, indicate the Jiama deposit, formed in a collisional setting, demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment; (3) compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting, apatite in the Jiama deposit exhibits lower Ce and Ga contents. This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity. Nevertheless, the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.  相似文献   

8.
In an effort to obtain information about mineral/melt trace element partitioning during the high pressure petrogenesis of basic rocks, we determined rare earth and other trace element abundances in megacrysts of clinopyroxene, orthopyroxene, amphibole, mica, anorthoclase, apatite and zircon, and in their host basalts. In general, the ranges of mineral/melt partition coefficients established from experimental partitioning studies and phenocryst/matrix measurements overlap with the ranges of megacryst/host abundance ratios. Our data for Hf, Sc, Ta and Th partitioning represent some of the only estimates available. Consideration of phase equilibria, major element partitioning and isotopic ratios indicate that most of the pyroxene and amphibole megacrysts may have been in equilibrium with their host magmas at high pressures (mostly 10–25 kb). In contrast, it is unlikely that mica, anorthoclase, apatite and zircon megacrysts formed in equilibrium with their host basalts; instead, we conclude that they were precipitated from more evolved magmas and have been mixed into their present host magmas. Consequently, the trace element abundance ratios for megacryst/host should not be interpreted as partition coefficients, but only as guides for understanding trace element partitioning during high pressure petrogenesis. With this caveat, we conclude that the megacryst/ host trace element abundance data indicate that mineral/melt partition coefficients in basaltic systems during high pressure fractionation are not drastically different from partition coefficients valid for low pressure fractionation.  相似文献   

9.
Melt composition control of Zr/Hf fractionation in magmatic processes   总被引:9,自引:0,他引:9  
Zircon (ZrSiO4) and hafnon (HfSiO4) solubilities in water-saturated granitic melts have been determined as a function of melt composition at 800° and 1035°C at 200 MPa. The solubilities of zircon and hafnon in metaluminous or peraluminous melts are orders of magnitude lower than in strongly peralkaline melt. Moreover, the molar ratio of zircon and hafnon solubility is a function of melt composition. Although the solubilities are nearly identical in peralkaline melts, zircon on a molar basis is up to five times more soluble than hafnon in peraluminous melts. Accordingly, calculated partition coefficients of Zr and Hf between zircon and melt are nearly equal for the peralkaline melts, whereas for metaluminous and peraluminous melts DHf/DZr for zircon is 0.5 to 0.2. Consequently, zircon fractionation will strongly decrease Zr/Hf in some granites, whereas it has little effect on the Zr/Hf ratio in alkaline melts or similar depolymerized melt compositions.The ratio of the molar solubilities of zircon and hafnon for a given melt composition, temperature, and pressure is proportional to the Hf/Zr activity coefficient ratio in the melt. The data imply that this ratio is nearly constant and probably close to unity for a wide range of peralkaline and similar depolymerized melts. However, it changes by a factor of two to five over a relatively small interval of melt compositions when a nearly fully polymerized melt structure is approached. For most ferromagnesian minerals in equilibrium with a depolymerized melt, DHf > DZr. Typical values of DHf/DZr range from 1.5 to 2.5 for clinopyroxene, amphibole, and titanite. Because of the change in the Hf/Zr activity ratio in the melt, the relative fractionation of Zr and Hf by these minerals will disappear or even be reversed when the melt composition approaches that of a metaluminous or peraluminous granite. It is thus not surprising that fractional crystallization of such granitic magmas leads to a decrease in Zr/Hf, whereas fractional crystallization of depolymerized melts tends to increase Zr/Hf. There is no need to invoke fluid metasomatism to explain these effects. Results demonstrate that for ions with identical charge and nearly identical radius, crystal chemistry does not alone determine relative compatibilities. Rather, the effect of changing activity coefficients in the melt may be comparable to or even larger than elastic strain effects in the crystal lattice.  相似文献   

10.
 The parameters which control the behaviour of isovalent trace elements in magmatic and aqueous systems have been investigated by studying the distribution of yttrium, rare-earth elements (REEs), zirconium, and hafnium. If a geochemical system is characterized by CHArge-and-RAdius-Controlled (CHARAC) trace element behaviour, elements of similar charge and radius, such as the Y-Ho and Zr-Hf twin pairs, should display extremely coherent behaviour, and retain their respective chondritic ratio. Moreover, normalized patterns of REE(III) should be smooth functions of ionic radius and atomic number. Basic to intermediate igneous rocks show Y/Ho and Zr/Hf ratios which are close to the chondritic ratios, indicating CHARAC behaviour of these elements in pure silicate melts. In contrast, aqueous solutions and their precipitates show non-chondritic Y/Ho and Zr/Hf ratios. An important process that causes trace element fractionation in aqueous media is chemical complexation. The complexation behaviour of a trace element, however, does not exclusively depend on its ionic charge and radius, but is additionally controlled by its electron configuration and by the type of complexing ligand, since the latter two determine the character of the chemical bonding (covalent vs electrostatic) in the various complexes. Hence, in contrast to pure melt systems, aqueous systems are characterized by non-CHARAC trace element behaviour, and electron structure must be considered as an important additional parameter. Unlike other magmatic rocks, highly evolved magmas rich in components such as H2O, Li, B, F, P, and/or Cl often show non-chondritic Y/Ho and Zr/Hf ratios, and “irregular” REE patterns which are sub-divided into four concave-upward segments referred to as “tetrads”. The combination of non-chondritic Y/Ho and Zr/Hf ratios and lanthanide tetrad effect, which cannot be adequately modelled with current mineral/melt partition coefficients which are smooth functions of ionic radius, reveals that non-CHARAC trace element behaviour prevails in highly evolved magmatic systems. The behaviour of high field strength elements in this environment is distinctly different from that in basic to intermediate magmas (i.e. pure silicate melts), but closely resembles trace element behaviour in aqueous media. “Anomalous” behaviour of Y and REEs, and of Zr and Hf, which are hosted by different minerals, and the fact that these minerals show “anomalous” trace element distributions only if they crystallized from highly evolved magmas, indicate that non-CHARAC behaviour is a reflection of specific physicochemical properties of the magma. This supports models which suggest that high-silica magmatic systems which are rich in H2O, Li, B, F, P, and/or Cl, are transitional between pure silicate melts and hydrothermal fluids. In such a transitional system non-CHARAC behaviour of high field strength elements may be due to chemical complexation with a wide variety of ligands such as non-bridging oxygen, F, B, P, etc., leading to absolute and relative mineral/melt or mineral/aqueous-fluid partition coefficients that are extremely sensitive to the composition and structure of this magma. Hence, any petrogenetic modelling of such magmatic rocks, which utilizes partition coefficients that have not been determined for the specific igneous suite under investigation, may be questionable. But Y/Ho and Zr/Hf ratios provide information on whether or not the evolution of felsic igneous rocks can be quantitatively modelled: samples showing non-chondritic Y/Ho and Zr/Hf ratios or even the lanthanide tetrad effect should not be considered for modelling. However, the most important result of this study is that Y/Ho and Zr/Hf ratios may be used to verify whether Y, REEs, Zr, and Hf in rocks or minerals have been deposited from or modified by silicate melts or aqueous fluids. Received: 4 September 1995 / Accepted: 30 October 1995  相似文献   

11.
12.
An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite‐facies reworking of the ultrahigh‐pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U‐Pb ages are clearly categorized into two groups at 122–127 Ma and 188.2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of Grt, Cpx and Qz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite‐facies metamorphic age is in agreement not only with the adjacent diorite at 125.1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite‐facies metaigneous rocks in the Dabie orogen. In combination with major‐trace elements and zircon Lu‐Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab‐mantle interface in the continental subduction channel. This provides a direct link in petrogenesis between the granulitic, migmatic and magmatic rocks in the collisional orogen to active continental rifting, whereby high heat flow was transferred from the asthenospheric mantle into the thinned orogenic lithosphere for partia melting.  相似文献   

13.
Magmatic microgranular enclaves (MMEs) are widely developed in the Shaocunwu granodiorite at the northeast margin of the eastern Jiangnan orogenic belt.Field geology showed that the MMEs occur as irregular ellipsoids near the edge of the intrusion,and consist of diorite,dominantly composed of amphibole,biotite,and plagioclase grains,with minor acicular apatite.Zircon U-Pb dating showed the ages of the host granodiorites and MMEs are 145.9±1.1 Ma and 145.6±2.5 Ma,respectively,indicating both originated during coeval late Jurassic magmatism.Whole-rock geochemical results show that the host granodiorite and MMEs have similar rare earth and trace element partition curves in spider grams,and similar ~(87)Sr/~(86)Sr,and ~(147)Nd/~(144)Nd isotope ratios,and their zircon ~(177)Hf/~(176)Hf isotopic ratios are similar.Geochemical studies indicate that both the host granodiorite and MMEs formed by mixing of coeval magma.Zircon Ti thermometers and oxygen fugacity of the host granodiorite and the MMEs show high oxygen fugacity,similar to that of W-Cu (Mo) mineralized granitoids in the eastern Jiangnan orogenic belt.A similar magma mixing process was probably one of the mechanisms that generated the W-Cu (Mo) fertile melts.  相似文献   

14.
Robert Cullers 《Lithos》1988,21(4):301-314
A series of soil and stream sediments developed during intense weathering on the metaluminous Danburg granite, northeastern Georgia, U.S.A., have been analyzed mineralogically and chemically. The concentrations of Ba, Na, Rb and Cs in the silt and coarser fractions are controlled mainly by feldspars and biotite. Hf is controlled by zircon, and the REE (rare-earth elements) and Th are largely controlled by sphene. Variations in feldspar, sphene and zircon may produce small variations in Eu/Sm and La/Lu ratios. Ferromagnesian minerals control Ta, Fe, Co, Sc and Cr concentrations.

The mineralogical and chemical composition of the Danburg granite is more closely reflected in the silt than in the sand or gravel fractions of stream sediments. In the silt, the contents of Rb, REE, Th, Ta, Fe, Co and Sc and the ratios of La/Sc, Th/Sc, La/Co, Th/Co, Eu/Sm and La/Lu are similar to those in the unweathered granite. In contrast, these element contents or ratios in the sands and gravels are 0.05−3× the concentration in the unweathered granite. Ta and Ba contents are an exception to the above. The Ta and Ba contents of the sands and gravels are similar to those of the granite.

In the kaolinite-halloysite clays, the content of Na is depleted relative to the source. Rb, Cs, Ba, Hf and Ta are depleted or enriched in the clays relative to the source, while the REE, Th, Fe, Co, Sc and Cr are enriched. The Eu/Sm (Eu anomaly size) and La/Lu ratios, and the REE patterns of the clays are similar to those of the source.

Thus, the mineralogy and element contents of a siltstone developed from metaluminous, granitic sources during intense weathering would be expected to be more similar to the source rock than the sandstones and conglomerates. Claystones should contain similar REE patterns and Eu/Sm ratios as the source rock, but such fine-grained sediments might represent much larger areas of source rocks than the more locally derived sandstones or conglomerates.  相似文献   


15.
We present the results of a LA–ICPMS study of titanites and associated glasses from the mixed-magma phonolitic Fasnia Member of the Diego Hernández Formation, Tenerife, Canary Islands. We employ a method of identifying equilibrium mineral–melt pairs from natural samples using REE contents and a linear form of the lattice strain model equation (Blundy and Wood, 1994), where the Young's modulus (EM) for the 7-fold coordinated site is an output variable. For felsic magmas that contain crystals potentially derived from a variety of environments within the system, this approach is more rigorous than the use of solely textural criteria such as mineral–glass proximity. We then estimate titanite/melt partition coefficients for Y, Zr, Nb, REE, Hf, Ta, U and Th. In common with prior studies, we find that middle REE partition more strongly into titanite than either light or heavy REE, and that REE partitioning behavior in titanite is reasonably predicted by the lattice strain model. Titanite also fractionates Y from Ho, Zr from Hf, and Nb from Ta. Comparison with experimental data indicates that melt structure effects on partitioning are significant, most particularly in very highly polymerized melts. We use the data to estimate 7-fold coordination radii for trivalent Pr, Nd, Ho, Tm and Lu, and to make approximate predictions of titanite/melt partitioning of Ra, Ac and Pa. Interpolation of data for heavy REE does not predict the behavior of Y, indicating that factors other than charge and radius are involved in partitioning. Variations in Y/Ho induced by magmatic processes appear to be negatively correlated with temperature, and are expected to be greatest in near-minimum melts.  相似文献   

16.
Rare-earth element (REE) abundances and major chemical compositionsof six late Palaeozoic geosynclinal basalts at Nakaoku, theKii peninsula, southwest Japan are discussed from the generalviewpoint of geosynclinal basalt magma. The REE patterns ofbasalt samples are smoothly and progressively enriched relativeto Leedey chondrite. The lighter REE are considerably fractionated,whereas concentrations of heaviest REE remain approximatelyconstant. Each fractionation pattern probably corresponds toresidual liquid at different stages during the solidificationof magma in depth. The partition coefficients of REE betweenmagma (i.e. liquid) and crystallizing solid can be calculated,assuming that the partition coefficient of Lu is nearly unity,because the Lu contents show little change among samples. Byusing the REE contents and partition coefficients, solidifiedpercentages for various stages of the magmatic process werecalculated; the percentage shows a good correlation with thesolidification index calculated from major chemical compositions.Some major compositions are also correlative with the solidifiedpercentage calculated from REE data. The Nakaoku basalts when plotted on a silica-alkali diagramshow a change of type from tholeiitic to alkali basalt duringthe solidifying process in depth. These petrochemical aspectsof the Nakaoku basaltic body are compatible with the resultsof experimental melting study at moderate pressures of about10 kb carried out by Green & Ringwood (1967). The spatialcoexistence of tholeiitic and alkali basalt in the Japaneselate Palaeozoic geosyncline found by Sugisaki & Tanaka (1971b)and disclosed here in the Nakaoku basalts, is not uncommon phenomenon.  相似文献   

17.
This study shows that the intrusive rocks distributed in the Aoyiqieke-Tamuqi area on the southern margin of the Tarim Block are composed of gabbro, diorite, granodiorite and granite, which constitute regionally a nearly EW-trending tectono-magmatic belt. Petrochemically the diorite, granodiorite and granite belong to the calc-alkaline, high-K series, with Na2O/K2O ratios varying between 0.83 and 2.63. M/F ratios in the diorite are within the range of 0.44–0.70 and those of the granodiorite ( granite) are 0.45–0.87. Petrochemistry data show that the intrusive complexes are of the I type and their ΣREE is slightly variable, within the range of 178.31–229.01 × 10−6. The LREE/HREE ratios of the diorite and granite are 3.78–5.13 and 6.69–7.66, respectively. The plutons usually show moderate negative Eu anomalies with δEu values ranging from 0.53 to 0.82, showing almost no difference among different rocks. The (La/Yb)N values of diorite and granite are 12.39−14.86 and 22.07−26.03, respectively. The diorite and granite possess very similar REE distribution patterns, indicating that they were both derived from the same source. As for their trace element ratios, the diorite has higher Nb/Ta ratios than the granite, which are 15.73−17.16 and 12.03−15.01, respectively. It can be seen that the Nb/Ta ratios of the diorite are much closer to the average mantle (17.5). Their Zr/Hf ratios are very close to each other, within the range of 29−34. Th/Y ratios in the diorite are 0.42−0.80 (all less than unity) while those of the granite are 1.02−2.04. Some difference is also noticed in Ti/V between the diorite and the granite (52.6−54.2 for the former and 52.6−54.2 for the latter). As compared with ocean ridge granites, both diorite and granite are characterized by remarkable LILE enrichment, as well as by moderate negative Ba and postive Ce anomalies. The contents of Nb and Ta in the diorite and granite are equivalent to those of the ocean ridge granites, but the contents of Zr, Hf, Sm, Y, and Yb are all lower than those of the ocean ridge granites, indicating that these granites are similar to the island-arc granites of Chile. From their geochemical characteristics, it is considered that the intrusive rocks in the area studied were formed in an island-arc environment at the continental margin.  相似文献   

18.
Data are reported for rare earth elements (REE), Y, Th, Zr, Hf, Nb and Ta in four geological reference materials using sodium peroxide (Na2O2) sintering and inductively coupled plasma-mass spectrometry. The described procedure was used by students during their thesis work. A compilation of their reference material data acquired over one year of laboratory work demonstrates the ease and reliability of the method and the high reproducibility of the analytical results. Relative standard deviations of up to thirty six measurements of one reference material were lower than 5% for Y and the REE. Reproduciblities of Zr, Hf, Nb, Ta and Th were higher at between 5% and 10%, and can be attributed to the inhomogeneous distribution of zircon and other trace mineral phases and uncorrected drift effects. The concentration data are compared to reference and literature values and demonstrate that the procedure is also accurate. New data on G-3 show some systematic deviations from G-2, which are statistically significant.  相似文献   

19.
Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in eightfold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g., Wood and Blundy 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and silica-oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48–59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2–16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6–32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in sixfold coordination is substantially greater than that of Mg2+; hence, we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between eightfold Ca sites and sixfold Fe and Mg sites such that Yb and Lu exist dominantly in sixfold coordination. We also outline a REE-based method of identifying pyroxene/melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in eightfold coordination in pyroxene. Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y and Ho, Zr and Hf, and Nb and Ta.  相似文献   

20.
Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating and geochemical data for the Permian gabbros and diorites in the Hunchun area are presented to constrain the regional tectonic evolution in the study area. Zircons from gabbro and diorite are euhedral-subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios (0.26–1.22), implying their magmatic origin. The dating results indicate that the gabbro and diorite formed in the Early Permian (282±2 Ma) and in the Late Permian (255±3 Ma), respectively. In addition, the captured zircons with the weighted mean age of 279±4 Ma are also found in the diorite, consistent with the formation age of the gabbro within uncertainty. The gabbros belong chemically to low-K tholeiitic series, and are characterized by low rare earth element (REE) abundances, flat REE pattern, weak positive Eu anomalies (δEu), and depletion in high field strength elements (HFSEs, Nb, Ta, and Ti), similar to the high-aluminum basalts from island arc setting. Initial Hf isotopic ratios of zircons from the gabbro range from +7.63 to +14.6, suggesting that its primary magma could be mainly derived from partial melting of a depleted lithospheric mantle. The diorites belong to middle K calc-alkaline series. Compared with the gabbros, the diorites have higher REE abundance, weak negative Eu anomalies, and more depletion in HFSEs (Nb, Ta, and Ti), similar chemically to the volcanic rocks from an active continental margin setting. Initial Hf isotopic ratios and Hf two-stage model ages of zircons from the diorite range from +11.22 to +14.17 and from 424 to 692 Ma, respectively, suggesting that its primary magma could be mainly derived from partial melting of the Early Paleozoic and/or Neoproterozoic accretted lower crust. Taken together, it is suggested that geochemical variations from the Early Permian gabbros to the Late Permian diorites reveal that the subduction of the Paleo-Asian oceanic plate beneath the Khanka Massif and collision between the arc and continent (Khanka Massif) happened in the late stage of the Late Paleozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号