首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
More than 40 national and regional geochemical mapping projects in the world carried out from 1973 to 1988 do not conform to common standards. In particular they have many analytical deficiencies. In the period 1988 to 1992, the International Geochemical Mapping project (Project 259 of UNESCO's IGCP Program) prepared recommendations designed to standardize geochemical mapping methods. The analytical requirements are an essential component of the overall recommendations. They included the following: 71 elements should be analyzed in future mapping projects; the detection limits of trace and ultratrace elements must be lower than the corresponding crustal abundances; and the Chinese GSD and Canadian STSD standard sample series should be used for the correlation of global data. A proposal was also made to collect 5000 composite samples, at very low sampling densities to cover the whole Earth's land surface. In 1997 an IUGS Working Group on Global Geochemical Baselines was formed to continue the work which began with IGCP 259. From 1997 up to now, new progress has been made especially in China and FOREGS countries under the aegis of this working group, including the study of suitable sampling media, development of a multi-element analytical system, new proficiency test for selection of competent laboratories and role of wide-spaced mapping in mineral exploration. One of the major problems awaiting solution has been the inability of many laboratories to meet the IGCP recommendations to generate high quality geochemical maps. Fortunately several laboratories in China and Europe have demonstrated an ability to meet the requirements and they will be well placed to render technical assistance to other countries.  相似文献   

2.
The Task Group on Global Geochemical Baselines,operating under the auspices of both the International Union of Geological Sciences(IUGS) and the International Association of Geochemistry(IAGC),has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth's surface or near-surface environment.The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified.In order to accomplish this long-term goal,the activities of the Task Group include:(1) developing partnerships with countries conducting broad-scale geochemical mapping studies;(2) providing consultation and training in the form of workshops and short courses;(3) organizing periodic international symposia to foster communication among the geochemical mapping community;(4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database;(5) acting as a repository for data collected by those projects meeting the criteria for standardization;(6) preparing complete metadata for the certified projects;and(7) preparing,ultimately,a global geochemical database.This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.  相似文献   

3.
Digital Element Earth   总被引:3,自引:0,他引:3  
The resources and environmental problems are the two most fundamental issues facing all nations in the world. Everything in and on the Earth – minerals, animals and plants – is made from one, or generally some combination of, chemical elements, which are scientifically listed in the periodic table. Thus it is important to understand the present abundance and spatial distribution of all the elements across the Earth’s surface. Such kinds of data can only be obtained at present and for the foreseeable future by on-earth geochemical mapping at all scales. The 30-year efforts made by Chinese geochemists in carrying out multi-element, multi-media, multi-scale geochemical mapping projects to delineate 39–76 element distribution at home and abroad culminated in a successful case of high-quality geochemical data acquirement. The new idea for a four-level plan for global geochemical mapping was advanced to obtain global data in the foreseeable future and the collection of updated geochemical information. Such information needs to be easily accessible not only by the science community, but also by industry, agriculture, governments, and even individuals, by all who would make an effort to promote sustainable living on our planet. The concept of a Digital Element Earth (DEE) fulfills the aims.  相似文献   

4.
《《幕》》2005,28(1):59-60
It has been a tradition to organize very successful UNESCO Postgraduate Courses on Geochemical Prospecting Methods in the former Czechoslovakia from mid 70‘s. The first certificated course-GEOCHIM PRAHA UNESCO 1975 was launched on September 5, 1975 and lasted till October 25,1975. Since that time this course has been organized biannually by the Czech Geological Survey in Prague together with the Dionyz SEtúr Geological Survey in Bratislava and sponsored by the Division of Earth Sciences (UNESCO/Paris) and the International Association of Geochemistry and Cosmochemistry (IAGS). The course was specialized on both theoretical and practical training in classical geochemical prospecting methods.  相似文献   

5.
Geochemical Mapping—Evolution of Its Aims, Ideas and Technology   总被引:1,自引:1,他引:0  
The development of geochemical mapping progressed from local geochemical prospecting through regional geochemical exploration and regional geochemical mapping to national and global geochemical mapping. This paper discusses the evolution of aims, ideas and methodology of geochemical mapping in Western countries, Russia and China. The sophistication of geochemical mapping methodology will make great contributions to solving resources and environmental problems in the 21^st century.  相似文献   

6.
Mercury is a pollutant of concern due to its toxic and bioaccumulative properties. Studies on the distribution and hazard of mercury in the environment are mainly focused on its forms, toxicity and the environment standard, and progresses and results have been achieved. But these studies in the past were concentrated on the scales of laboratory or smaller districts merely, such as a small unit of mineral area, vegetable base, paddy field, lake, etc. Multi-target regional geochemical survey carried out by China Geological Survey from the 1990s to now is a fundamental and commonweal geological survey, large-scale and systematical inquisition and research were conducted in 19 provinces (or municipalities directly under the Central Government) in the eastern overlay region of China, and the purpose is to provide the basic geochemical data for national economic construction, adjustment of industrial and agricultural structures and sustainable social development. Geochemical studies aim at investigating soils in these regions and 52 elements have been tested, producing a great amount of data at the same time. Methods: based on the data from 3061 samples of surface soil and 832 samples of deep soil from the project of multi-purpose geochemical survey in the Chengdu Basin, Sichuan, China, this paper describes the correlation relationship between Hg and other 48 elements and their spatial distribution in surface and deep soils of these areas by applying the method of linear regression and factor analysis.  相似文献   

7.
Because of the importance of geological factors on health an International Working Group on Medical Geology was established in 1998, with the primary aim of increasing awareness of this issue among scientists, medical specialists, and the general public. In 2000 a new project was established by UNESCO. The primary aim of the projects was to bring together, on a global scale, scientists working in this field in developing countries with their colleagues in other parts of the world. The International Council of Scientific Unions (ICSU) also sponsored international short courses in this subject, a cooperation involving The Geological Survey of Sweden, US Geological Survey and the US Armed Forces of Pathology. In 2006 a new association was established: International Medical Geology Association, IMGA. Regional Divisions all over the world have been established. Two text books have been published, the most recent one by Elsevier 2005: Essentials of Medical Geology which has received two prestigious international awards. A website ( http://www.medicalgeology.org ) and regular newsletters have been published. Short courses on medical geology, have been held since 2001 in more than 30 countries. Medical geology will also be one of the ten main topics within the Year of Planet Earth declared by UN General Assembly December 22, 2005. Medical geology is also one of the five topics within the GeoUnion initiative. The international impact has been tremendous. Universities all around the world are starting courses and education in medical geology, the first centers are under construction, symposias have been held and a world wide collaboration has started between geoscientists, environmental researchers, epidemiologists, toxicologists, pathologists and other scientists.  相似文献   

8.
All geochemical measurements require the taking of field samples, but the uncertainty that this process causes is often ignored when assessing the reliability of the interpretation, of the geochemistry or the health implications. Recently devised methods for the estimation, optimisation and reduction of this uncertainty have been evaluated by their application to the investigation of contaminated land. Uncertainty of measurement caused by primary sampling has been estimated for a range of six different contaminated land site investigations, using an increasingly recognized procedure. These site investigations were selected to reflect a wide range of different sizes, contaminants (organic and metals), previous land uses (e.g. tin mining, railway sidings and gas works), intended future use (housing to nature reserves) and routinely applied sampling methods. The results showed that the uncertainty on measurements was substantial, ranging from 25% to 186% of the concentration values at the different sites. Sampling was identified as the dominant source of the uncertainty (〉70% of measurement uncertainty) in most cases. The fitness-for-purpose of the measurements was judged using the optimized contaminated land investigation (OCLI) method. This identifies the optimal level of uncertainty that reduces to overall financial loss caused by the measurement procedures and the misclassification of the contamination, caused by the uncertainty. Generally the uncertainty of the actual measurements made in these different site investigations was found to be sub-optimal, and too large by a factor of approximately two. The uncertainty is usually limited by the sampling, but this can be reduced by increasing the sample mass by a factor of 4 (predicted by sampling theory). It is concluded that knowing the value of the uncertainty enables the interpretation to be made more reliable, and that sampling is the main factor limiting most investigations. This new approach quantifies this problem for the first time, and allows sampling procedures to be critically evaluated, and modified, to improve the reliability of the geochemical assessment.  相似文献   

9.
Dr  JanPasava 《《幕》》2004,27(3):216-217
It has been a tradition to organize very successful UNESCO Postgraduate Courses on Geochemical Prospecting Methods in the former Czechoslovakia from mid 70‘s. The first certificated course--GEOCHIM PRAHA UNESCO 1975 was launched on September 5, 1975 and lasted till October 25, 1975. Since that time this course has been organized biannually by the Czech Geological Survey in Prague together with the Dionyz Stur Geological Survey in Bratislava and sponsored by the Division of Earth Sciences (UNESCO/Paris) and the International Association of Geochemistry and Cosmochemistry (IAGS). The course was specialized on both theoretical and practical training in classical geochemical prospecting methods. A team of internationally experienced geoscientists as Drs.J.Pokorny, F.Mma, J.Manour, V.Lomozova Z. Sulcek,I. Rubeska, A.Spackova, V.Sixta, J.Juna,J.Veselu, J.Dornic and others, co-ordinated by Dr. Zdenek Pacal from the Czech Geological Survey in Prague has soon earned high international reputation and the GEOCHIM CSSR UNESCO Postgraduate Course developed into one of the most successful Postgraduate Training Programmes of UNESCO.  相似文献   

10.
http://www.sciencedirect.com/science/article/pii/S1674987111000193   总被引:2,自引:0,他引:2  
Geochemical subsoil data obtained from China and European laboratories have been compared in this study. 787 C horizon subsoil samples from FOREGS (Forum of European Geological Surveys) geochemical baselines mapping project were sent to China’s IGGE (Institute of Geophysical and Geochemical Exploration) laboratory and composited to 190 samples according to the 160 km 160 km GNT (Global Terrestrial Network) cells. In addition to the FOREGS elemental analysis package, Au, Pt, Pd, B, Ge, Br, Cl, Se, N, Li and F were also analyzed by using the IGGE’s 76 element analytical scheme. Geochemical data statistics, scatter plotting, and geochemical map compilation techniques have been employed to investigate differences between FOREGS and IGGE analytical results. The results of two datasets, the IGGE’s analysis data for composited samples, and the FOREGS average data of samples in each GNT cell, agree extremely well for about 23 elements, viz: SiO2, Sr, Al2O3, Zr, Ba, Fe2O3, Ti, Rb, Mn, Gd, CaO, Ga, MgO, P, Pb, Na2O, Y, Th, As, U Sc, Cr, and Co. There are slight differences between-laboratory biases shown as proportional errors between the datasets for Ni, K2O, Tb, Tl, Cu, S, Sm, La, Ce, Pr, Nd, Eu, Ho, Er, Tm, Yb, Lu, Ta, Nb, Hf, and Dy. For Cd, Cs, Be, Sb, In, Mo, I, Sn, and Te, the correlation of the two datasets and the similarity of the geochemical maps are fairly good, but obvious biases exist between the two datasets at values near detection limits. Sensitivities of FOREGS analytical methods for W, Bi, Sn, Te, Be, and I are insufficient to produce reportable values in at least 80% of the samples. Although the detection limits of Ag for both FOREGS and IGGE are sufficient to provide reportable values, a large bias was found between the two datasets. This study demonstrates that consistent analytical data for certain elements of global geochemical mapping samples can be achieved by different qualified laboratories, such as China’s IGGE laboratory and some European laboratories. For some elements, such as Ag, further research on the selection of the proper analytical methods and on the development of quality control methods should be undertakendwith final recommendations adhered to by all participants of the global geochemical mapping program.  相似文献   

11.
新一轮全球地球化学填图:中国的机遇和挑战   总被引:4,自引:0,他引:4  
论述从1988年联合国教科文组织相继批准实施国际地球化学填图(IGCP259)和全球地球化学基准(IGCP360)项目以来,中国和欧洲在制定全球地球化学填图的方法指南及技术标准方面作出的决定性贡献。文中指出,中国的"环境地球化学监控网络及动态地球化学填图"项目、欧洲的FOREGS地球化学基准值填图项目为全球其他国家开展类似工作提供了示范,但地球化学家预期10年内获得全球地表地球化学概貌的愿望至今未能实现。挪威和中国的地球化学家通过IAHS/ICCE正在酝酿"Global geochemical mapping and the sediment-bound flux of major world rivers"重大国际合作项目,以开展新一轮全球地球化学填图。通过国际极地年,IPY317项目首先从北极地区启动。新一轮全球地球化学填图项目计划以中国提出的"全球地球化学填图的泛滥平原沉积物采样草案"和挪威提出的"三角洲中河漫滩沉积物的采样草案"作为实施方案,因而巩固和扩大了中国地球化学填图技术在全球的优势地位。论文在分析中国面临的机遇与挑战后,建议政府主管部门对新一轮全球地球化学填图给予优先支持。  相似文献   

12.
Research undertaken by IGCP 259 (International Geochemical Mapping) indicates that wide-spaced sampling is a fundamental concept of international geochemical mapping as it appears to provide the only practical way to obtain a relative rapid (10–20 years) overview of global geochemistry. The main aim of this study is to test the suitability of floodplain sediment as a global sampling medium.Thirteen floodplain sediment samples and 13 stream sediment samples were taken at the exit of 13 super large drainage basins (SCB). The areal extents of these basins are in the order of 1000–10,000 km2. Within each SCB, 3–11 stream sediment samples each representing a component catchment basin (CCB) of 100–1000 km2 were also taken. Fourty nine elements were analyzed. The results were compared with the average values derived from calculating thousands of stream sediment data available from China's National Geochemical Mapping (RGNG) program. Strong similiarities were demonstrated in distribution and trends among the three levels of data. The set of floodplain sediment data shows great coincidence with RGNR stream sediment data.  相似文献   

13.
《Applied Geochemistry》2001,16(11-12):1309-1321
“IGCP” Projects 259 (International Geochemical Mapping) and 360 (Global Geochemical Baseline) under the aegis of UNESCO's International Geochemical Correlation Program made recommendations for standardizing geochemical mapping protocols and for conducting a wide-spaced sampling of the Earth's land surface based on a Global Reference Network of approximately 5000 160×160 km cells. A pilot study has been conducted throughout China during which these recommendations were implemented. During the pilot study, 500 floodplain samples representing drainage basins ranging in area from 1000 to 6000 km2 were collected throughout China and analyzed. The widely spaced sampling used for the pilot study was compared to the very dense sampling (× million samplings of sediment for all of China) used for China's Regional Geochemical National Reconnaissance Program. The geochemical maps generated from the wide-spaced sampling are strikingly similar to those generated from data based on the detailed sampling. Such low density floodplain sampling presents a relatively low-cost way to get a quick overview of the geochemistry of a large area of the Earth's surface. The implementation of this project in the Asia–Pacific region and the problems encountered are discussed in the present paper.  相似文献   

14.
全球地球化学填图——历史发展与今后工作之建议   总被引:3,自引:0,他引:3       下载免费PDF全文
谢学锦 《中国地质》2008,35(3):357-374
区域性与国家性的地球化学填图已取得进展,如何在可期待的未来以极低密度采样获得周期表内大多数元素在全球的分布,有赖于对填图理念的更新及采样介质、采样部署与采样方法研究的进展。英国Webb等发现在数平方千米至数十平方千米汇水盆地之河口采集水系沉积物样品,其分析结果可大致逼近其上游汇水盆地内土壤中元素之平均值。挪威及中国的研究工作表明在更大河流(其汇水盆地达数百、数千以至数万平方千米)的河口采样,这一规律依旧适用。看来,这种分形规律还可进一步延展至世界上一些汇水盆地达数十万至百万以上平方千米的主要入海河口,但这方面尚需作更多的研究。在这种新的填图理念指导下,提出了为实现全球地球化学填图的短期研究与试点计划和长期全面实现之规划。  相似文献   

15.
国际地球化学填图新进展   总被引:3,自引:1,他引:3  
欧洲和中国在国际地球化学填图中起着积极而重要的作用,而且进展也是最显著的。欧洲地球化学基准值填图计划于1996年被欧洲26个国家地质调查局长论坛(FOREGS)正式批准。经过近10年的工作,于2005年出版了电子版欧洲地球化学图集。中国不仅自己开展了多层次地球化学填图计划,而且还与发展中国家合作开展了全球尺度和成矿带尺度地球化学填图合作。欧洲和中国无论是在全球尺度,还是在区域尺度地球化学填图做法上都存在较大的差异。在采样介质上中国使用统一的采样介质,在分析技术上中国使用几种大型设备作为骨干配合使用多方法分析系统;欧洲恰恰相反,欧洲在采样介质上趋向于多介质,而分析技术上只使用少数几种大型设备。欧洲的做法尽管使用多介质采样获得了元素在更多天然介质中的分布信息,但使用单一分析技术,使得很多关键元素没有分析出来,如贵金属元素Ag,Au,Ir,Os,Pd,Pt,Rh,Ru;卤族元素F,Cl,Br,I;分散元素Ge,In,Se,Te;与生命密切相关的元素N,S,B等。尽管欧洲强调以环境为目的,但很多与环境密切相关的元素都没有分析,所以欧洲的全球尺度地球化学填图的信息量大打折扣。这些不统一的做法,特别是在全球尺度地球化学填图不统一的做法,会影响到以后全球地球化学图的编制。  相似文献   

16.
Geochemical mapping in China   总被引:5,自引:0,他引:5  
China's National Geochemical Mapping Project (Regional Geochemistry-National Reconnaissance, RGNR project) was initiated in 1979. From 1978 to 1982, cooperative research projects were carried out for the preparation and distribution of standard reference samples and for the development of field sampling techniques, multi-element analytical methodology and a unified data quality monitoring procedure. Large pilot surveys were also commenced in several provinces. After five years of technical preparation, the project came into its full implementation. More than 5 million km2 of Chinese land surface has been covered by this project. During 1993–1995, another national geochemical project, under the name of ‘Environmental geochemical monitoring network and dynamic geochemical maps in China’ as a pilot survey to choose the suitable sampling medium for the global geochemical mapping application, was carried out in China. The remarkable achievements of China's geochemical mapping projects are widely recognized. Nearly 66% of new discoveries of economic mineralization by MGMR were attributed to the RGNR project. New concepts and new methodologies have emerged through these projects. They also made a great contribution to the international activity toward standardization of geochemical mapping methodology and the possible realization of wide-spaced global geochemical mapping.  相似文献   

17.
全球地球化学填图   总被引:19,自引:10,他引:19       下载免费PDF全文
作指出了1973年至今世界上50余项地球化学填图计划中普遍存在的缺陷大都涉及分析问题。1988-1992年实施的国际地质对比计划IGCP259项目旨在使全世界地球化学填图方法标准化。在此项目中对分析问题提出了若干规定,主要是要求今后的填图计划应统一分析71种元素,痕量及超痕量元素的检出限必须低于相应的地壳丰度值及采用中国的GSD和加拿大的STSD标样系列,以使全球数据可以对比,在其后开始延续至今的全球地球化学填图计划IGCP360,旨在用极低密度采样早日覆盖全球大陆,讨论了正在实行的两种极低密度采样方案,并提出通过极低密度采集地极少量样品示范性实现IGCP259项目对分析要求的具体建议。  相似文献   

18.
全球变化中的地球化学基线值研究及中国的研究现状   总被引:1,自引:0,他引:1  
介绍了“全球地球化学制图”(IGM)项目及其在中国的进展情况。展望了我国地球化学基线值研究工作方向及研究重点。  相似文献   

19.
化探数据处理的新技术   总被引:4,自引:1,他引:4       下载免费PDF全文
本文论述了一种新的空间点数据处理系统(NASSD)在化探数据处理扣的应用效果,以NASSD处理平均采样密度为每15000km^2一个,样品总数为529个泛滥平原沉积物数据,制作 的中国铜和银地球化学图,可以较清晰地指示出中国已知大型,超大型铜和银矿床的分布,以传统的数据处理方法无论是处理上述的极低密度采样数据处理还是每1km^2~50km^2一个的区域水系沉积物测量数据,在制作(以相同含量间隔表示  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号