首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
Fluxes of methane (CH4) and carbon dioxide (CO2) to the atmosphere at 52 sites within a salt marsh were measured by a dark static chamber technique from mid July to mid September. Mean CH4 fluxes ranged from 0.2 mg m?2 d?1 to 11.0 mg m?2 d?1, with an overall average of 1.6 mg m?2 d?1. Flux of CH4 was inversely correlated (r2=0.23, p = 0.001) with salinity of the upper porewater at the site, suggesting the dominant role of SO4 2? in inhibiting methanogenesis in salt-marsh sediments. The combination of salinity and water table position was able to explain only 29% of the variance in CH4 emission. Mean soil flux of CO2 ranged from 0.3 g m?2 d?1 to 3.7 g m?2 d?1, with an overall average of 2.5 g m?2 d?1; it was correlated with aboveground biomass (positive, r2=0.38, p = 0.001) and position of the water table (negative, r2 = 0.55, p = 0.001). The combination of biomass and water table position accounted for 63% of the variance in CO2 flux. There were high variations in gas flux within the six plant communities. The sequences were CH4: upland edge > panne > pool > middle marsh > low marsh > high marsh, and CO2: middle marsh > low marsh > upland edge > high marsh > panne > pool. Compared to other salt-marsh systems, this Bay of Fundy marsh emits small amounts of CH4 and CO2.  相似文献   

2.
Eddy covariance based methane flux in Sundarbans mangroves,India   总被引:1,自引:0,他引:1  
We report the initial results of the methane flux measured using eddy covariance method during summer months from the world’s largest mangrove ecosystem, Sundarbans of India. Mangrove ecosystems are known sources for methane (CH4) having very high global warming potential. In order to quantify the methane flux in mangroves, an eddy covariance flux tower was recently erected in the largest unpolluted and undisturbed mangrove ecosystem in Sundarbans (India). The tower is equipped with eddy covariance flux tower instruments to continuously measure methane fluxes besides the mass and energy fluxes. This paper presents the preliminary results of methane flux variations during summer months (i.e., April and May 2012) in Sundarbans mangrove ecosystem. The mean concentrations of CH4 emission over the study period was 1682 ± 956 ppb. The measured CH4 fluxes computed from eddy covariance technique showed that the study area acts as a net source for CH4 with daily mean flux of 150.22 ± 248.87 mg m?2 day?1. The methane emission as well as its flux showed very high variability diurnally. Though the environmental conditions controlling methane emission is not yet fully understood, an attempt has been made in the present study to analyse the relationships of methane efflux with tidal activity. This present study is part of Indian Space Research Organisation–Geosphere Biosphere Program (ISRO–GBP) initiative under ‘National Carbon Project’.  相似文献   

3.
Cycling of methane (CH4) in Tomales Bay, a 28-km2 temperature estuary in northern California with relatively low inputs of organic carbon, was studied over a 1-yr period. Water column CH4 concentrations showed spatial and temporal variability (range=8–100 nM), and were supersaturated with respect to the atmosphere by a factor of 2–37. Rates of net water column CH4 production-oxidation were determined by in situ experiments, and were not found to be significantly different from zero. Fluxes across the sediment-water interface, determined by direct measurement using benthic chambers, varied from ?0.1 μmol m?2 d?1 to +16 μmol m?2 d?1 (positive fluxes into water). Methane concentrations in the two perennial creeks feeding the bay varied annually (140–950 nM); these creeks were a significant CH4 source to the bay during winter. In addition, mass-balance calculations indicate a significant additional inter CH4 source, which is hypothesized to result from storm-related runoff from dairy farms adjacent to the bay. Systemwide CH4 budgets of the 16-km2 inner bay indicate benthic production (110 mol d?1) and atmospheric evasion (110 mol d?1) dominated during summer, while atmospheric evasion (160 mol d?1) and runoff from dairy farms (90 mol d?1) dominated during winter.  相似文献   

4.
Sediment oxygen uptake and net sediment-water fluxes of dissolved inorganic and organic nitrogen and phosphorus were measured at two sites in Fourleague Bay, Louisiana, from August 1981, through May 1982. This estuary is an extension of Atchafalaya Bay which receives high discharge and nutrient loading from the Atchafalaya River. Sediment O2 uptake averaged 49 mg m?2 h?1. On the average, ammonium (NH4 +) was released from the sediments (mean flux =+129 μmol m?2 h?1), and NO3 ? was taken up (mean flux =?19 μmol m?2h?1). However, very different NO3 ? fluxes were observed at the two sites, with sediment uptake at the upper, river-influenced, high NO3 ? site (mean flux =?112 μmol m?2 h?1) and release at the lower, marine-influenced low NO3 ? site (mean flux =+79 μmol m?2 h?1). PO4 3? fluxes were low and often negative (mean flux =?8 μmol m?2 h?1), while dissolved organic phosphorus fluxes were high and positive (mean flux =+124 μmol m?2 h?1). Dissolved organic nitrogen fluxes varied greatly, ranging from a mean of +305 μmol m?2 h?1 at the lower bay, to ?710 μmol m?2 h?1 at the upper bay. Total dissolved nitrogen and phosphorus fluxes indicated the sediments were a nitrogen (mean flux =+543 μmol m?2 h?1) and phosphorus source (mean flux =+30 μmol m?2 h?1) at the lower bay, and a nitrogen sink (mean flux =?553 μmol m?2 h?1) and phosphorus source (mean flux =+17 μmol m?2 h?1) in the upper bay. Mean annual O∶N ration of the positive inorganic sediment fluxes were 27∶1 at the upper bay and 18∶1 at the lower bay. Based on these data we hypothesize that nitrification and denitrification are important sediment processes in the upper bay. We further hypothesize that Atchafalaya River discharge affects sediment-water fluxes through seasonally high nutrient loading which leads to net nutrient uptake by sediments in the upper bay and release in the lower bay, where there is less river influnces.  相似文献   

5.
The present study evaluated the effect of plant species on methane (CH4) emission and microbial populations in three types of soil–plant systems. Results showed large variation of CH4 flux rate ranging from 1.35 to 212.61 mg CH4 m?2 h?1. Emission peak of CH4 occurred in July. No significant difference was found in the non-vegetation system spanning 2 years. Compared with non-vegetation, vegetation systems had much higher flux of CH4, and obvious seasonal variation was observed. The polyculture system planted with Zizania latifolia (Z. latifolia) and Phragmites australis (P. australis) released higher CH4 fluxes than the mono system (P. australis), reflecting that Z. latifolia growth could simulate CH4 emission. The fluorescence in situ hybridization (FISH) results support the characteristics of CH4 fluxes. Much higher methanotrophs amount and lower methanogens amount from the mono system than those from the polyculture system was observed indicating that Z. latifolia growth may limit the oxygen transportation resulting in higher CH4 emission. The polyculture system has the highest potential of CH4 emission.  相似文献   

6.
Gas flux measurements have for the first time been taken from vents and soil of eastern Romania mud volcanoes, the largest geological structures in Europe releasing methane into the atmosphere. In the quiescent phase, the methane emission from single vents is up to 28 t yr?1. Diffuse soil microseepage is of the order of 102?105 mg m?2 day?1. A total output of at least 1200 tonnes of CH4 per year can be conservatively estimated over the area investigated alone (~ 2.3 km2). Helium fluxes are up to five orders of magnitude higher than the average flux in a stable continental area, pointing to a close link between mud volcanoes and crustal degassing through faults crossing the deep hydrocarbon reservoirs. These data represent a key contribution towards refining global CH4‐emission estimates, which indicate mud volcanoes as a significant and unavoidable source of greenhouse gases for the atmosphere.  相似文献   

7.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

8.
Benthic metabolism and nutrient exchange across the sediment-water interface were examined over an annual cycle at four sites along a freshwater to marine transect in the Parker River-Plum Island Sound estuary in northeastern Massachusetts, U.S. Sediment organic carbon content was highest at the freshwater site (10.3%) and decreased along the salinity gradient to 0.2% in the sandy sediments at the marine end of the estuary. C:N ratios were highest in the mid estuary (23:1) and lowest near the sea (11:1). Chlorophyll a in the surface sediments was high along the entire length of the estuary (39–57 mg chlorophyll a m−2) but especially so in the sandy marine sediments (172 mg chlorophyll a m−2). Chlorophyll a to phaeophytin ratios suggested most chlorophyll is detrital, except at the sandy marine site. Porewater sulfide values varied seasonally and between sites, reflecting both changes in sulfate availability as overlying water salinity changed and sediment metabolism. Patterns of sediment redox potential followed those of sulfide. Porewater profiles of inorganic N and P reflected strong seasonal patterns in remineralization, accumulation, and release. Highest porewater NH4 + values were found in upper and mid estuarine sediments, occasionally exceeding 1 mM N. Porewater nitrate was frequently absent, except in the sandy marine sediments where concentrations of 8 μM were often observed. Annual average respiration was lowest at the marine site (13 mmol O2 m−2 d−1 and 21 mmol TCO2 m−2 d−1) and highest in the mid estuary (130 mmol O2 m−2 d−1 and 170 mmol TCO2 m−2 d−1) where clam densities were also high. N2O and CH4 fluxes were low at all stations throughout the year: Over the course, of a year, sediments varied from being sources to sinks of dissolved organic C and N, with the overall spatial pattern related closely to sediment organic content. There was little correlation between PO4 3− flux and metabolism, which we attribute to geochemical processes. At the two sites having the lowest salinities, PO4 3− flux was directed into the sediments. On average, between 22% and 32% of total system metabolism was attributable to the benthos. The mid estuary site was an exception, as benthic metabolism accounted for 95% of the total, which is attributable to high densities of filter-feeding clams. Benthic remineralization supplied from less than 1% to over 190% of the N requirements and 0% to 21% of the P requirements of primary producers in this system. Estimates of denitrification calculated from stoichiometry of C and N fluxes ranged from 0% for the upper and mid estuary site to 35% for the freshwater site to 100% of sediment organic N remineralization at the marine site. We hypothesize that low values in the upper and mid estuary are attributable to enhanced NH4 + fluxes during summer due to desorption of exchangeable ammonium from rising porewater salinity. NH4 + desorption during summer may be a mechanism that maintains high rates of pelagic primary production at a time of low inorganic N inputs from the watershed.  相似文献   

9.
Gaseous methane loss from a brackish, intertidal salt marsh sediment was measured in April, June, August, and October 1977. Twenty-four sediment cores were taken on each date. Annual loss of methane carbon from the mud flats was 10.7 g CH4?C per m2 per year, a value closer to freshwater values than marine systems. Loss of methane fromSpartina peat was low.  相似文献   

10.
若尔盖高原沼泽湿地CH4排放研究   总被引:26,自引:0,他引:26  
若尔盖高原沼泽湿地海拔 3400 m,面积 4038km2,是我国面积最大的高原沼泽湿地分布区。2001年 5~9月的非冰冻期,其主要沼泽类型木里苔草沼泽的CH4排放通量范围是 0.51~ 8.20 m g/(m 2· h),平均值为 2.87 m g/(m 2· h);乌拉苔草沼泽CH4排放通量范围是 0.36~10.04 m g/(m 2· h),平均值为 4.51 m g/(m 2· h)。在空间分布上,不同沼泽类型之间CH4排放通量具有一定的差异。在季节变化上,没有明显的排放高峰。根据代表性观测点的CH4平均排放量、日数和沼泽总面积推算,非冰冻期若尔盖高原沼泽湿地CH4的排放量为 0.052Tg/a。  相似文献   

11.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

12.
冻土区甲烷排放研究进展   总被引:6,自引:0,他引:6  
冻土区土牡表面和活动层土的CH排放和吸收表现出强烈的时空变化性。根据多年冻土中CH含量的模拟结果表明,全球尺度上,平均每米厚度多年冻土含有CH65Tg。在未来的200年间,多年冻土融化所导致的大气CH附加年源强变化于2~25Tg。  相似文献   

13.
Determining the net exchange of constituents between a mangrove estuary system and the adjacent ocean has been re-examined using an extensive dataset from the Sungai Merbok a short, tidally energetic estuary in Malaysia. Previous analysis of the data had indicated that the time-mean sectionally averaged flow was not consistent with mass balance, apparently preventing meaningful estimation of net nutrient fluxes from the mangrove system. In this case the problem was aggravated by the lack of river gauge data and uncertainties introduced by the use of deflected-vane current meters to make the flow measurements. In an alternative approach to the analysis, we have sought to put bounds on the net discharge and hence obtain limits for the nutrient output from the estuary. Tide gauge measurements have been used in conjunction with the section flow data to determine the hypsometry of the mangrove system and hence yield an unbiased estimate of tidal transport Qt. A salt balance condition, appropriate to a mixed estuary is then applied to permit an estimate of Qf, the freshwater discharge. Qf determined this way is found to be close to zero and certainly less than estimates for the period (mean ≈7 m3 s?1) based on rainfall records and catchment area. The implication is that the combined effects of evaporation and transpiration are removing a large proportion of the fresh water entering the mangrove system from the rivers. The very low net discharge indicates total nitrogen exchange is dominated by the covariance of Qt with the sectionally averaged concentration Nt. The considerable variation in this latter term combined with the large amplitude of Qt results in a high variability of the nitrate flux so that the estimate of the mean (0.5 g s?1) is subject to substantial sampling uncertainty (SE=12 g s?1). The application of the salt balance condition to flux studies in other estuarine systems is considered. Particular attention is drawn to the requirements of this approach to flux determination and especially the need for good timing control to allow the proper determination of the tidal diffusion flux of salt and other components.  相似文献   

14.
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.  相似文献   

15.
Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m 2 h 1, respectively, in 2004, and 898.59 and 2,154.17 mg m 2 h 1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m 2 h 1 and 0.72 and 1.88 mg m 2 h 1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 + CH4 + N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.  相似文献   

16.
Sedimentary methane (CH4) fluxes and oxidation rates were determined over the wet and dry seasons (four measurement campaigns) in Pulicat lake, an extensive shallow estuary in south India. Dissolved CH4 concentrations were measured at 52 locations in December 2000. The annual mean net CH4 flux from Pulicat lake sediments was 3.7 × 109 g yr-1 based on static chamber measurements. A further 1.7 × 109g yr-1 was estimated to be oxidized at the sediment-water interface. The mean dissolved concentration of CH4 was 242nmol |-1 (ranging between 94 and 501 nmol |-1) and the spatial distribution could be explained by tidal dynamics and freshwater input. Sea-air exchange estimates using models, account only for ∼13% (0.5 × 109 g yr-1) of the total CH4 produced in sediments, whereas ebullition appeared to be the major route for loss to the atmosphere (∼ 63% of the net sediment flux). We estimated the total atmospheric source of CH4 from Pulicat lake to be 0.5 to 4.0 × 109g yr-1.  相似文献   

17.
Groundwater may be highly enriched in dissolved carbon species, but its role as a source of carbon to coastal waters is still poorly constrained. Exports of deep and shallow groundwater-derived dissolved carbon species from a small subtropical estuary (Korogoro Creek, Australia, latitude ?31.0478°, longitude 153.0649°) were quantified using a radium isotope mass balance model (233Ra and 224Ra, natural groundwater tracers) under two hydrological conditions. In addition, air-water exchange of carbon dioxide and methane in the estuary was estimated. The highest carbon inputs to the estuary were from deep fresh groundwater in the wet season. Most of the dissolved carbon delivered by groundwater and exported from the estuary to the coastal ocean was in the form of dissolved inorganic carbon (DIC; 687 mmol m?2 estuary day?1; 20 mmol m?2 catchment day?1, respectively), with a large export of alkalinity (23 mmol m?2 catchment day?1). Average water to air flux of CO2 (869 mmol m?2 day?1) and CH4 (26 mmol m?2 day?1) were 5- and 43-fold higher, respectively, than the average global evasion in estuaries due to the large input of CO2- and CH4-enriched groundwater. The groundwater discharge contribution to carbon exports from the estuary for DIC, dissolved organic carbon (DOC), alkalinity, CO2, and CH4 was 22, 41, 3, 75, and 100 %, respectively. The results show that CO2 and CH4 evasion rates from small subtropical estuaries surrounded by wetlands can be extremely high and that groundwater discharge had a major role in carbon export and evasion from the estuary and therefore should be accounted for in coastal carbon budgets.  相似文献   

18.
An experiment was conducted to quantify the effects of different levels of nutrient enrichment on the plant communities of temperate coastal lagoons, specifically the lagoons of the northeast U.S. Ten mesocosms, each containing coastal water, lagoon sediments, and plants and animals found in natural lagoons, were subjected to five levels of enrichment. Two mesocosms served as controls, and received no experimental nutrient additions. The remaining 8 mesocosms were enriched in duplicate with ammonium plus phosphate at 1.0 and 0.11 mmol N or P m?2 d?1, 2.0 and 0.19 mmol N or P m?2 d?1, 4.0 and 0.35 mmol N or P m?2 d?1, and 8.0 and 0.67 N or P mmol m?2 d?1. At all levels of enrichment, and through much of the experiment, water column concentrations of dissolved inorganic nitrogen (DIN) were drawn down to background levels. Despite the efficient drawdown of added DIN even at the highest loadings, differences in plant biomass among the 5 treatments were difficult to detect. Enrichment at the highest loadings increased standing stocks of phytoplankton for one month mid-experiment. No significant effect of loading could be detected for dry biomass of eelgrass (Zostera marina), epiphytic material, drift macroalgae, or for all plant components combined. The experiment has demonstrated that the enrichment responses of coastal lagoons can be diverse, especially at intermediate loadings.  相似文献   

19.
To determine the removal of regenerated nitrogen by estuarine sediments, we compared sediment N2 fluxes to the stoichiometry of nutrient and O2 fluxes in cores collected in the Childs River, Cape Cod, Massachusetts. The difference between the annual PO4 3− (0.2 mol P m−2 yr−1) and NH4 + (1.6 mol N m−2 yr−1) flux and the Redfield N∶P ratio of 16 suggested an annual deficit of 1.5 mol N m−2 yr−1. Denitrification predicted from O2∶NH4 + flux ratios and measured as N2 flux suggested a nitrogen sink of roughly the same magnitude (1.4 mol N m−2 yr−1). Denitrification accounted for low N∶P ratios of benthic flux and removed 32–37% of nitrogen inputs entering the relatively highly nutrient loaded Childs River, despite a relatively brief residence time for freshwater in this system. Uptake of bottom water nitrate could only supply a fraction of the observed N2 flux. Removal of regenerated nitrogen by denitrification in this system appears to vary seasonally. Denitrification efficiency was inversely correlated with oxygen and ammonium flux and was lowest in summer. We investigated the effect of organic matter on denitrification by simulating phytoplankton deposition to cores incubated in the lab and by deploying chambers on bare and macroaglae covered sediments in the field. Organic matter addition to sediments increased N2 flux and did not alter denitrification efficiency. Increased N2 flux co-varied with O2 and NH4 + fluxes. N2 flux (261±60 μmol m−2 h−1) was lower in chambers deployed on macroalgal beds than deployed on bare sediments (458±70 μmol m−2 h−1), and O2 uptake rate was higher in chambers deployed on macroalgal beds (14.6±2.2 mmol m−2 h−1) than on bare sediments (9.6±1.5 mmol m−2 h−1). Macroalgal cover, which can retain nitrogen in the system, is a link between nutrient loading and denitrification. Decreased denitrification due to increasing macroalgal cover could create a positive feedback because decreasing denitrification would increase nitrogen availability and could increase macroalgae cover.  相似文献   

20.
Pore water profiles of dissolved Si, Ca2+, SO42-, CH4, and TCO2 (Dissolved Inorganic Carbon; DIC) were determined from multicores and gravity cores collected at nine sites off Southern California, the west coast of Mexico, and within the Gulf of California. These sites were located within the eastern North Pacific oxygen minimum zone at depths of 400 to 900 m and in settings where bottom water oxygen concentrations were <3 μM and sediments were laminated. Pore water profiles were defined at a resolution of millimeters (whole core squeezing), centimeters (sectioning and squeezing) and meters (gravity core sectioning and squeezing), and diffusive fluxes were calculated for different zones within the sediment column. The flux of dissolved silica across the sediment-water interface (SWI) ranged from 0.3 to 3.4 mmol Si m-2d-1, and TCO2 fluxes ranged from 0.8 to 4.6 mmol C m-2d-1. A positive correlation (r = 0.74) existed between these fluxes, yet these two constituents exhibited significantly different diagenetic behavior downcore; dissolved Si generally reached a constant concentration (between 450 and 900 μM) in the upper few cm, whereas TCO2 concentrations increased monotonically with depth.Methane was detected at micromolar levels in sediment intervals between 0 and 60 cm and at five sites, increased to millimolar levels at depths of 80 to 170 cm. At the horizon marking the appearance of millimolar levels of methane, there was a distinct change in slope of the sulfate and TCO2 gradients. A flux budget for this horizon was determined by using linear fits to pore water profiles; these budgets indicate that the upward TCO2 flux away from this horizon is 40 to 50% greater than the downward sulfate flux to this horizon. Given that the TCO2 flux to this horizon from below was quite small, this imbalance suggests that anaerobic oxidation of methane by sulfate is not the only process producing TCO2 within this horizon. A budget for TCO2 at this horizon is balanced when 40 to 80% of the sulfate flux is attributed to organic carbon remineralization. Of the DIC that diffuses across the SWI, 20 to 40% is generated by reactions occurring within or below this deep reaction horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号