首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   

2.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

3.
The Dharwar Craton is a composite Archean cratonic collage that preserves important records of crustal evolution on the early Earth. Here we present results from a multidisciplinary study involving field investigations, petrology, zircon SHRIMP U–Pb geochronology with in-situ Hf isotope analyses, and whole-rock geochemistry, including Nd isotope data on migmatitic TTG (tonalite-trondhjemite-granodiorite) gneisses, dark grey banded gneisses, calc-alkaline and anatectic granitoids, together with synplutonic mafic dykes along a wide Northwest – Southeast corridor forming a wide time window in the Central and Eastern blocks of the Dharwar Craton. The dark grey banded gneisses are transitional between TTGs and calc-alkaline granitoids, and are referred to as ‘transitional TTGs’, whereas the calc-alkaline granitoids show sanukitoid affinity. Our zircon U–Pb data, together with published results, reveal four major periods of crustal growth (ca. 3360-3200 Ma, 3000-2960 Ma, 2700-2600 Ma and 2570-2520 Ma) in this region. The first two periods correspond to TTG generation and accretion that is confined to the western part of the corridor, whereas widespread 2670-2600 Ma transitional TTG, together with a major outburst of 2570–2520 Ma juvenile calc-alkaline magmatism of sanukitoid affinity contributed to peak continental growth. The transitional TTGs were preceded by greenstone volcanism between 2746 Ma and 2700 Ma, whereas the calc-alkaline magmatism was contemporaneous with 2570–2545 Ma felsic volcanism. The terminal stage of all four major accretion events was marked by thermal events reflected by amphibolite to granulite facies metamorphism at ca. 3200 Ma, 2960 Ma, 2620 Ma and 2520 Ma. Elemental ratios [(La/Yb)N, Sr/Y, Nb/Ta, Hf/Sm)] and Hf-Nd isotope data suggest that the magmatic protoliths of the TTGs emplaced at different time periods formed by melting of thickened oceanic arc crust at different depths with plagioclase + amphibole ± garnet + titanite/ilmenite in the source residue, whereas the elemental (Ba–Sr, [(La/Yb)N, Sr/Y, Nb/Ta, Hf/Sm)] and Hf-Nd isotope data [εHf(T) = −0.67 to 5.61; εNd(T) = 0.52 to 4.23; ] of the transitional TTGs suggest that their protoliths formed by melting of composite sources involving mantle and overlying arc crust with amphibole + garnet + clinopyroxene ± plagioclase + ilmenite in the residue. The highly incompatible and compatible element contents (REE, K–Ba–Sr, Mg, Ni, Cr), together with Hf and Nd isotope data [εHf(T) = 4.5 to −3.2; εNd(T) = 1.93 to −1.26; ], of the sanukitoids and synplutonic dykes suggest their derivation from enriched mantle reservoirs with minor crustal contamination. Field, elemental and isotope data [εHf(T) = −4.3 to −15.0; εNd(T) = −0.5 to −7.0] of the anatectic granites suggest their derivation through reworking of ancient as well as newly formed juvenile crust. Secular increase in incompatible as well as compatible element contents in the transitional TTGs to sanukitoids imply progressive enrichment of Neoarchean mantle reservoirs, possibly through melting of continent-derived detritus in a subduction zone setting, resulting in the establishment of a sizable continental mass by 2700 Ma, which in turn is linked to the evolving Earth. The Neoarchean geodynamic evolution is attributed to westward convergence of hot oceanic lithosphere, with continued convergence resulted in the assembly of micro-blocks, with eventual slab break-off leading to asthenosphere upwelling caused extensive mantle melting and hot juvenile magma additions to the crust. This led to lateral flow of hot ductile crust and 3D mass distribution and formation of an orogenic plateaux with subdued topography, as indicated by strain fabric data and strong seismic reflectivity along an E-W crustal profile in the Central and Eastern blocks of the Dharwar Craton.  相似文献   

4.
The Late Paleozoic magmatism in central Inner Mongolia provides important insights on the tectonic evolution and crustal growth in the Central Asian Orogenic Belt (CAOB), which formed due to the closure of the Paleo-Asian Ocean (PAO). This paper presents new zircon UPb ages and Hf isotopic compositions as well as whole-rock geochemical data on a suite of volcanic rocks from the Late Paleozoic Baoligaomiao Formation and coeval intrusions in the Baiyinwula region of the Mongolian Arc. This study revealed that the magmatic sequences evolution includes: (1) early andesites (317–311 Ma) with enrichment in large ion lithophile elements (LILEs), depletion in high field strength elements (HSFEs), and positive zircon εHf (t) values from +9.0 to +15.5, indicating a derivation from enriched mantle; (2) felsic rocks emplaced from 306 Ma to 292 Ma, with relatively lower εHf (t) values from +6.3 to +11.3, implying juvenile crust as the primary magma source; and (3) A-type igneous rocks (280–278 Ma). The comparison of palaeontological, lithostratigraphical, and magmatic evolution in Late Paleozoic between different tectonic units in the eastern part of CAOB has displayed that the subduction of Paleo-Asian oceanic crust caused the opening of the Hegenshan Ocean along the southern margin of Mongolian Arc in Devonian; and the Baoligaomiao Formation volcanic rocks and coeval intrusions have recorded early northwards subduction and subsequent slab rollback of Hegenshan oceanic crust.  相似文献   

5.
1 Introduction Mesozoic volcano-intrusive rocks are widely distributed in the Da Hinggan Range of northeastern China, and are considered as one of the most spectacular geological sights in eastern Asia. Recently, studies on granites with high εNd(t) values and Phanerozoic crustal growth in the Centra Asian Orogenic Belt have greatly promoted fundamental research into the geology of this area (Jahn et al., 2000, 2001, 2004; Wu et al., 2000, 2002, 2003). However, work on the eruption time,…  相似文献   

6.
Detrital zircon U-Pb geochronology combined with Hf isotopic and trace element data from metasedimentary rocks of the Aracuai Belt in southeastern Brazil provide evidence for break-up of the Congo-Sao Francisco Craton. The U-Pb age spectra of detrital zircons from metasediments of the Rio Doce Group(RDG) range from 900-650 Ma and define a maximum depositional age of ca. 650 Ma. Zircon trace element and whole rock data constrain an oceanic island arc as source for the deposition setting of the protoliths to the metasediments. Zircon ε_(Hf)(t) values from these rocks are positive between +1 and +15, supporting previous evidence of a Neoproterozoic extensional phase and oceanic crust formation in a precursor basin to the Aracuai Belt. Recrystallization of detrital zircon at ca. 630 Ma is compatible with a regional metamorphic event associated with terrane accretion to the Paleoproterozoic basement after transition from an extensional to a convergent regime. The juvenile nature, age spectra and trace element composition recorded in detrital zircons of metasediments from the Aracuai Belt correspond with zircons from metasedimentary rocks and oceanic crust remnants of other orogenic belts to its south. This suggests that rifting and oceanic crust formation of the entire orogenic system, the so-called Mantiqueira Province, was contemporaneous, most likely related to the opening of a large ocean. It further indicates that the cratonic blocks involved in the orogenic evolution of the Mantiqueira Province were spatially connected as early as 900 Ma.  相似文献   

7.
SHRIMP zircon U-Pb dates, combined with in-situ Hf isotopic data, provide new constraints on the petrogenesis and protolith of peralkaline, metaluminous and peraluminous intrusions and rhyolitic tuffs in the Emeishan large igneous province, with significant bearing on crustal melting associated with mantle plumes. Syenite and A-type granitic intrusions from Huili, Miyi and Taihe in the center of this large igneous province yield U-Pb dates at ∼260 Ma, consistent with the ages obtained for mafic layered intrusions in the same province. Zircon from these rocks exhibits a wide range of initial Hf isotope ratios (εHf(t) = −1.4 to +13.4), with corresponding TDM1 of 400-900 Ma. The highest εHf(t) value is only marginally lower than that of depleted mantle reservoir at 260 Ma, suggesting that their source is primarily juvenile crust added during Emeishan volcanism, with incorporation of variable amounts of Neoproterozoic crust. The trigger of crustal melting is most likely related to advective heating associated with magmatic underplating. In contrast, the 255-251 Ma peraluminous granites from Ailanghe and 238 Ma rhyolitic tuff from Binchuan, have negative initial εHf values of −1.3 to −4.4, and of −7.7 to −14, respectively. Hf isotopic model ages and presence of inherited zircons indicate their derivation from Mesoproterozoic and Paleoproterozoic crust, respectively. Given the time lag relative to the plume impact (∼260 Ma) and insignificant mantle contribution to 255-238 Ma magmatism, conductive heating is suggested as the trigger of crustal melting that resulted in formation of delayed felsic magmas. The involvement of older crust in younger felsic magmas is consistent with upward heat transfer to the lithosphere during plume impregnation, if the age of crust is inversely stratified, i.e., changes from Paleoproterozoic to Mesoproterozoic to Neoproterozoic to Permian with increasing depth. Such crust may have resulted from episodic, downward crustal growth during the evolution of the western Yangtze Craton.  相似文献   

8.
The Aqishan-Yamansu belt in the Eastern Tianshan (NW China) contains many intermediate to felsic intrusive rocks and spatially and temporally associated Fe (-Cu) deposits. Zircon U-Pb dating of the Bailingshan granitoids, including diorite enclaves (in granodiorite), diorite, monzogranite and granodiorite, and andesitic tuff from the Shuanglong Fe-Cu deposit area yielded ages of 329.3 ± 2.1 Ma, 323.4 ± 2.6 Ma, 313.0 ± 2.0 Ma, 307.5 ± 1.7 Ma and 318.0 ± 2.0 Ma, respectively. These new ages, in combination with published data can be used to subdivide magmatism of the Bailingshan intrusive complex into three phases at ca. 329–323 Ma, ca. 318–313 Ma and ca. 308–297 Ma. Of the analyzed rocks of this study, the Shuanglong diorite enclave, diorite and andesitic tuff show calc-alkaline affinities, exhibiting LILE enrichment and HFSE depletion, with negative Nb and Ta anomalies. They have high MgO contents and Mg# values, with depleted εHf(t) and positive εNd(t) values, similar crustal-derived Nb/Ta and Y/Nb ratios, low Th/Yb and Th/Nb, and high Ba/La ratios, which are consistent with them being sourced from a depleted mantle wedge metasomatized by slab-derived fluids and crustal contamination. However, the monzogranite and granodiorite are metaluminous with characteristics of low- to high-K calc-alkaline I-type granites. The granitic rocks are enriched in LILE, depleted in HFSE and have significant Eu anomalies, with high Y contents and low Sr/Y ratios, resembling typical of normal arc magmas. Depleted εHf(t) and positive εNd(t) values with corresponding young TDMC ages of zircons, as well as Nb/Ta, Y/Nb, Th/U and La/Yb ratios suggest that the granitic rocks were probably formed by re-melting of juvenile lower crust or pre-existing mantle-derived mafic–intermediate igneous rocks. Integrating published data, we conclude that the Bailingshan granitoids (excluding the Shuanglong diorite and diorite enclave) were derived from re-melting of juvenile lower crust and mantle-derived mafic–intermediate igneous rocks, with mantle components playing a more prominent role in the formation of the younger and more felsic rocks. A comprehensive review, including our new data, suggests that the Aqishan-Yamansu belt formed as a fore-arc basin during the Carboniferous (ca. 350–300 Ma) when the Kangguer oceanic slab subducted beneath the Yili-Central Tianshan block. The ongoing southward subduction of the slab resulted in the closure of the Aqishan-Yamansu fore-arc basin (ca. 320–300 Ma), due to slab steepening and rollback followed by slab breakoff and rebound. During the Aqishan-Yamansu fore-arc basin inversion, the main phase of the Bailingshan granitoids emplaced in the Aqishan-Yamansu belt, accompanied by contemporary Fe and Fe-Cu mineralization.  相似文献   

9.
The Malani Igneous Suite (MIS) in NW India represents one of the largest and well‐preserved Precambrian felsic igneous provinces, with minor mafic volcanics and dykes. The SIMS (Secondary Ion Mass Spectrometric) zircon U‐Pb geochronology yielded 776.8 ± 4.5 to 758.5 ± 6.9 Ma ages for rhyolites from Jodhpur region and Sindreth Basin while dacite sample from Punagarh Basin was dated to 760.5 ± 10 Ma. Zircons from rhyolitic and dacitic lavas have oxygen isotopic compositions that can be grouped into low δ18OV‐SMOW (4.12 to ‐1.11‰) and high (δ18O = 8.23‐5.12‰) categoroes, respectively. The low δ18O zircons have highly radiogenic Hf isotopic compositions (εHf(t)= +13.0 to +3.6) suggesting high temperature bulk cannibalization of upper level juvenile crust as the essential process for magma generation. Older than 800 Ma xenocrystic zircons in dacite have high δ18O values whereas 795 Ma ones have mantle‐like Hf‐O isotopic compositions, reflecting a significant shift in tectono‐thermal regime in NW India during 800‐780 Ma. A synchronous transition in the South China Block and Madagascar suggests a spatially and temporally linked geodynamic system. Geochemical data in combination with the new isotopic results point towards an overall convergent plate margin setting undergoing localized lithospheric extension. The NW India and South China blocks together with Madagascar and the Seychelles lay either along the periphery of Rodinia or off the supercontinent with the age of convergent plate margin magmatism coinciding with breakup of the supercontinent.  相似文献   

10.
Mafic to felsic gneisses along the northern margin of the North China Craton (NMNCC), in western Liaoning province, China, were previously assumed to be part of Archean metamorphic basement but are here identified as younger (Permian–Early Triassic) intrusions. LA–ICP–MS zircon U–Pb isotopic dating reveals that the magmatic precursors of the mafic gneisses were emplaced from 295 ± 3 to 259 ± 2 Ma and that the magmatic precursors of the dioritic and monzogranitic gneisses were emplaced at 267 ± 1 and 251 ± 2 Ma, respectively, thus recording a continuum of Permian to Early Triassic magmatism. The mafic and dioritic rocks exhibit zircon εHf(t) values from ?20.7 to ?3.3, suggesting they were mainly derived from a metasomatized lithospheric mantle source, possibly involving some crustal contamination. The monzogranitic rocks display their zircon εHf(t) values of +0.9 to +4.7, indicating the acidic magma was derived from partial melting of juvenile crustal materials from the depleted mantle source. Crustal model ages (T DM C ) obtained from zircon Hf isotopes of these monzogranitic rocks range from 976 to 1,215 Ma, with an average of 1,074 ± 32 Ma, possibly implying an episode of Grenvillian crustal growth in western Liaoning province. These new lines of evidence show that the NMNCC witnessed abundant magmatic activity and interaction of the crust and mantle during the Permian and Early Triassic and that the mafic magmatism was earlier than the monzogranitic activity. These findings indicate that the monzogranitic activity was the result of underplating of mafic magma with an enriched mantle source. In the context of regional Late Paleozoic to Early Mesozoic magmatic activity, the Permian magmatism occurred in an Andean-style continental margin setting when the Paleo-Asian oceanic plate was subducted beneath the NMNCC, and in this context, the Late Permian to Early Triassic magmatism may have been linked to post-collisional extension and asthenospheric upwelling, suggesting that the western Liaoning province in the NMNCC may be an eastward extension of the Late Paleozoic to Early Mesozoic active continental margin.  相似文献   

11.
《International Geology Review》2012,54(10):1171-1188
ABSTRACT

The East Kunlun Orogenic Belt (EKOB) in northern Tibet provides an important record of the amalgamation of the Wanbaogou oceanic basalt plateau and the Qaidam Block. Here we report geochemical, geochronological, and Hf isotopic data for newly identified late Silurian–Early Devonian mafic–ultramafic igneous complexes from the EKOB at the northern margin of the Tibetan Plateau. These complexes are dominantly composed of gabbro and pyroxenite rocks. Three complexes yield zircon U–Pb ages of 398.8 ± 1.8, 420.2 ± 1.2, and 413.4 ± 0.78 Ma. The εHf(t) values of zircons range from +0.8 to +3.3 with TDM1 ages of 897 to 998 Ma. Modelling of the geochemical data indicates that these igneous complexes have a hybrid origin, involving depleted mantle fluids derived from a previous subduction event and crustal materials. The geochemical and geochronological data suggest that these complexes formed in a post-collisional setting linked to break-off of a subducted oceanic slab, which occurred after the Wanbaogou oceanic basalt plateau amalgamated with the Qaidam Block in the late Silurian–Early Devonian.  相似文献   

12.
In this paper,we report an integrated study of U-Pb age and Hf isotope compositions of zircons from biotite plagioclase gneiss at Lianghe in western Yunnan.The zircons preserved inherited core and rim texture.Igneous zircon grains and rims yielded a weighted mean ~(206)Pb/~(238)U age of 120.4±1.7 Ma,theirε_(Hf)(120 Ma)values were mainly negative ranging from-13.9 to-10.7,with Hf model ages between 1.9 Ga and 2.0 Ga,some zircons had positiveε_(Hf)(120 Ma)values ranging from 0.2 to 2.1.The inherited cores ...  相似文献   

13.
Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses this relationship to examine the tectonic and geodynamic implications of the mingling of mafic and felsic magmas.Mafic magmatic enclaves(MMEs) show complex relationships with the hosting Xiaocuo granite in Fujian area,including lenticular to rounded porphyritic microgranular enclaves containing abundant felsic/mafic phenocrysts,elongate mafic enclaves,and back-veining of the felsic host granite into mafic enclaves.LA-ICP-MS zircon U-Pb analyses show crystallization of the granite and dioritic mafic magmatic enclave during ca.132 and 116 Ma.The host granite and MMEs both show zircon growth during repeated thermal events at-210 Ma and 160-180 Ma.Samples from the magma mingling zone generally contain felsic-derived zircons with well-developed growth zoning and aspect ratios of 2-3,and maficderived zircons with no obvious oscillatory zoning and with higher aspect ratios of 5-10.However,these two groups of zircons show no obvious trace element or age differences.The Hf-isotope compositions show that the host granite and MMEs have similar ε_(Hf)(t) values from negative to positive which suggest a mixed source from partial melting of the Meso-Neoproterozoic with involvement of enriched mantlederived magmas or juvenile components.The lithologies,mineral associations,and geochemical characteristics of the mafic and felsic rocks in this study area indicate that both were intruded together,suggesting Early Cretaceous mantle—crustal interactions along the southeastern China continental margin.The Early Cretaceous magma mingling is correlated to subduction of Paleo-Pacific plate.  相似文献   

14.
Carboniferous magmatism is one of the most important tectonothermal events in the Central Asian Orogenic Belt(CAOB). However, the final closure time of the Kalamaili Ocean between East Junggar and Harlik Mountain is still debated. Early Carboniferous(332 Ma) and late Carboniferous(307–298 Ma) granitic magmatism from Kalamaili fault zone have been recognized by LA-ICP-MS zircon U-Pb dating. They are both metaluminous highly fractionated I-type and belong to the high-K calc-alkaline. The granitoids for early Carboniferous have zircon ε_(Hf)(t) values of-5.1 to +8.5 with Hf model ages(T_(DM2)) of 1.78–0.83 Ga, suggesting a mixed magma source of juvenile material with old continental crust. Furthermore, those for late Carboniferous have much younger heterogeneous zircon ε_(Hf)(t) values(+5.1 to +13.6) with Hf model ages(T_(DM2)=1.03–0.45 Ga) that are also indicative of juvenile components with a small involvement of old continental crust. Based on whole-rock geochemical and zircon isotopic features, these high-K granitoids were derived from melting of heterogeneous crustal sources or through mixing of old continental crust with juvenile components and minor AFC(assimilation and fractional crystallization). The juvenile components probably originated from underplated basaltic magmas in response to asthenospheric upwelling. These Carboniferous highly fractionated granites in the Kalamaili fault zone were probably emplaced in a post-collisional extensional setting and suggested vertical continental crustal growth in the southern CAOB, which is the same or like most granitoids in CAOB. This study provides new evidence for determining the post-accretionary evolution of the southern CAOB. In combination with data from other granitoids in these two terranes, the Early Carboniferous Heiguniangshan pluton represents the initial record of post-collisional environment, suggesting that the final collision between the East Junggar and Harlik Mountain might have occurred before 332 Ma.  相似文献   

15.
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province (ELIP), southwestern China. Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection, and crustal magmas have rarely been studied. Here we investigate a suite of mafic dykes and I-type granites that yield zircon U-Pb emplacement ages of 259.9 ± 1.2 Ma and 259.3 ± 1.3 Ma, respectively. The εHf(t) values of zircon from the DZ mafic dyke are –0.3 to 9.4, and their corresponding TDM1 values are in the range of 919–523 Ma. The εHf(t) values of zircon from the DSC I-type granite are between –1 and 3, with TDM1 values showing a range of 938–782 Ma. We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time. The δ18O values of zircon from the DSC I-type granite ranges from 4.87‰ to 7.5‰. The field, petrologic, geochemical and isotopic data from our study lead to the following salient findings. (i) The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar. (ii) The DZ mafic dyke and high-Ti basalts have the same source, i.e., the Emeishan mantle plume. The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite, with low degree partial melting (<10%). (iii) The Hf-O isotope data suggest that the DSC I-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material. (iv) The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume, which partially melted the overlying crust, generating the felsic magma.  相似文献   

16.
Abstract

New zircon laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectroscopy U–Pb ages, and Hf isotope and whole-rock geochemical data are reported for Mesozoic igneous rocks from the eastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China, in order to document the petrogenesis of the igneous rocks and reconstruct the early Mesozoic tectonic setting of the region. Zircons from five representative igneous rocks are euhedral–subhedral and display oscillatory growth zoning or striped absorption in cathodoluminescence images, suggesting a magmatic origin. The dating results indicate that granite, gabbro, and rhyolite from the eastern Songnen–Zhangguangcai Range Massif formed during Late Triassic (204–211 Ma). The Late Triassic granitoids and rhyolites have an affinity to A-type granites or rhyolites. Their zircon εHf(t) values and Hf two-stage model ages range from –3.8 to +3.8 and from 999 to 1485 Ma, respectively, indicating that their primary melts were derived from the partial melting of the Meso-Proterozoic crust. The geochemistry of coeval gabbros, which reflects primary magma composition, shows a significant large ion lithophile element (e.g. Ba and Sr) enrichment and high field strength element (i.e. Zr, Hf, Nb, Ta, and Ti) depletion. Based on zircon εHf(t) values (–4.2 to +2.8) and Hf single-stage model ages (746–1031 Ma), we conclude that the mafic magma is the product of partial melting of lithospheric mantle that was metasomatically enriched by fluids derived from the subducted oceanic crust. The Late Triassic magmatism along the eastern margin of the Eurasian continent has bimodal magma compositions, indicating an extensional setting after the final closure of the Palaeo-Asian Ocean rather than being related to subduction of the Palaeo-Pacific Plate beneath the Eurasian continent. The occurrence of Late Triassic igneous rocks on the eastern side of the Mudanjiang Fault suggests that this fault does not represent the suture zone between the Songnen–Zhangguangcai Range and Jiamusi massifs.  相似文献   

17.
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3±1.8 Ma and 229.9±1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene(47–52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features(A/CNK1.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive εHf(t) values ranging from +13.91 to +15.54(mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg~# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma(mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic(~230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous subterranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.  相似文献   

18.
In the eastern Himalayan syntaxis, the southern Lhasa terrane is dominated by middle- to high-grade metamorphic rocks (Nyingchi Complex), which are intruded by felsic melts. U-Pb zircon dating and zircon Hf isotopic composition of these metamorphic and magmatic rocks provide important constraints on the tectono-thermal evolution of the Lhasa terrane during convergent process between Indian and Asian continents. U-Pb zircon data for an orthogneiss intruding the Nyingchi Complex yield a protolith magma crystallization age of 83.4 ± 1.2 Ma, with metamorphic ages of 65-46 Ma. This orthogneiss is characterized by positive εHf (t) values of + 8.3 and young Hf model ages of ~ 0.6 Ga, indicating a derivation primarily from a depleted-mantle or juvenile crustal source. Zircons from a quartz diorite yield a magma crystallization age of 63.1 ± 0.6 Ma, with εHf (t) values of − 8.2 to − 2.7, suggesting that this magma was sourced from partial melting of older crustal materials. Zircon cores from a foliated biotite granite show ages ranging from 347 to 2690 Ma, with age peaks at 347-403 Ma, 461-648 Ma and 1013-1183 Ma; their zircon εHf (t) values range from − 30.6 to + 6.9. Both the U-Pb ages and Hf isotopic composition of the zircon cores are similar to those of detrital zircons from the Nyingchi Complex paragneiss, implying that the granite was derived from anatexis of the Nyingchi Complex metasediments. The zircon rims from the granite indicate crustal anatexis at 64.4 ± 0.7 Ma and subsequent metamorphism at 55.1 ± 1.3 and 41.4 ± 2.3 Ma. Our results suggest that the late Cretaceous magmatism in the southern Lhasa terrane resulted from Neo-Tethys oceanic slab subduction and we infer that Paleocene crustal anatexis and metamorphism were related to the thermal perturbation caused by rollback of the northward subducted Neo-Tethyan oceanic slab.  相似文献   

19.
The Mianlue Belt is located in the central China and regarded as a tectonic mélange belt, representative of suture zone formed in the early Mesozoic between North and South China Blocks. However, its forming age has been controversial for a long time. This study provides the reliable LA‐ICPMS U‐Pb zircon dating and in‐situ Hf isotopes from the meta‐volcanics, gabbro and plagiogranite in this belt. Of which, two meta‐andesites yielded the ages of 934 Ma and 933 Ma, two meta‐dacites give the ages of 999 Ma and 873 Ma, and another plagiogranite define an age of 923 Ma, respectively, evidently older than those previously thoughted. Their Hf isotopes are quite coincident. The andesites have the εHf(t)= ‐0.03 ~ +11.76 with the TDMC of 1032‐1629 Ma, εHf(t) = +9.81~ +16.06 and the TDMC = 867‐1185 Ma for dacite and εHf(t) = +8.65 ~ +16.66 and the TDMC = 805~1123 Ma for plagiogranite, suggesting an important crustal growth in the early Neoproterozoic. In addition, the gabbro yielded younger ages of 224‐213 Ma and variable ages from 1225 Ma to 280 Ma in some inherited zircons, consistent with early Mesozoic mafic dykes in South Qinling belt. Their TDMC range from 1.2 to 2.7 Ga, indicating early‐middle Proterozoic crustal residence involved minor Neo‐Archean crustal materials. All new results lead us to propose that most of components in the Mianlue Belt were generated in the early Neoproterozoic and related to the subduction process in the northern margin of the Yangtze block, representative of an important juvenile crust growth in South Qinling during the Neoproterozoic.  相似文献   

20.
刘建辉  刘福来  丁正江  刘平华  王舫 《岩石学报》2014,30(10):2941-2950
古老陆壳物质的发现与鉴别是探索地球早期陆壳形成与演化历史的重要内容之一,锆石U-Pb年龄结合Hf同位素研究是该研究的重要手段。本文通过对胶北地体内一个长英质副片麻岩中的锆石开展系统的原位U-Pb定年和微量、稀土元素分析,获得了多个太古宙早期的锆石。根据这些锆石的阴极发光图像、Th/U比值及稀土元素球粒陨石标准化配分模式,它们具有典型岩浆锆石的特征,其中2个分析点给出了3413Ma和3400Ma(~3.4Ga)的锆石U-Pb年龄,7个分析点给出3547±19Ma(MSWD=1.16)的锆石U-Pb年龄,指示太古宙早期的陆壳岩浆事件;结合华北克拉通其它地区的类似研究结果,暗示华北克拉通可能曾经存在比现今出露面积更大的太古宙早期的古老陆壳。这些古老锆石的Hf同位素分析显示,它们的εHf(t)值在-6.19~0.95之间,平均为-2.54,两阶段Hf模式年龄在3737~4353Ma之间,平均值为~4.1Ga,远大于锆石的U-Pb年龄,指示华北克拉通存在~4.1Ga的地壳增生作用及古老陆壳(3.55Ga)的再循环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号