首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several scenarios for the formation of accretion and decretion disks in single and binary Ae and Be stars are proposed. It is shown that, in order for a rapidly rotating main-sequence Be star to lose mass via a disk, the star’s rotation must be quasi-rigid-body. Estimates show that such rotation can be maintained by the star’s magnetic field, which is probably a relict field. The evolution of single Be main-sequence stars is numerically simulated allowing for mass loss via the stellar wind and rotational mass loss assuming rigid-body rotation. The stellar wind is the factor that determines the maximum mass of Be stars, which is close to 30M . The evolution of Be stars in close binaries is analyzed in the approximation adopted in our scenario. Long gamma-ray bursts can be obtained as a result of the collapse of rapidly rotating oxygen—neon degenerate dwarfs—the accreting companions of Be stars—into neutron stars.  相似文献   

2.
The evolution of Population I stars with initial masses 60 M M ZAMS ≤ 120 M is computed up to the Wolf-Rayet stage, when the central helium abundance decreases to Y c ≈ 0.05. Several models from evolutionary sequences in the core helium-burning stage were used as initial conditions when solving the equations of radiative hydrodynamics for self-exciting stellar radial pulsations. The low-density envelope surrounding the compact core during the core helium burning is unstable against radial oscillations in a wide range of effective temperatures extending to T eff ~ 105 K. The e-folding time of the amplitude growth is comparable to the dynamical time scale of the star, and, when the instability ceases growing, the radial displacement of the outer layers is comparable to the stellar radius. Evolutionary changes of the stellar radius and luminosity are accompanied by a decrease in the amplitude of radial pulsations, but, at the effective temperature T eff ≈ 105 K, the stellar oscillations are still nonlinear, with a maximum expansion velocity of the outer layers of about one-third the local escape velocity. The period of the radial oscillations decreases from 9 hr to 4 min as stellar mass decreases from M = 28 M to M = 6 M in the course of evolution. The nonlinear oscillations lead to a substantial increase of the radii of the Lagrangian mass zones compared to their equilibrium radii throughout the instability region. The instability of Wolf-Rayet stars against radial oscillations is due to the action of the κ mechanism in the iron-group ionization zone, which has a temperature of T ~ 2 × 105 K.  相似文献   

3.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

4.
We model the Galactic ensemble of helium stars using population synthesis techniques, assuming that all helium stars are formed in binaries. In this picture, single helium stars are produced by mergers of helium remnants of the components of close binaries (mainly, the merging of helium white dwarfs) or in the disruption of binaries with helium components during supernova explosions. The estimated total birthrate of helium stars in the Galaxy is 0.043 yr?1; the total number is 4 × 106; and the binarity rate is 76%. We construct a subsample of low-mass (MHe ? 2M) helium stars defined by observational selection effects: the limiting magnitude (VHe ≤ 16), ratio of the magnitudes of the components in binaries (VHeVcomp), and lower limit for the semiamplitude of the radial velocity required for detecting binarity (Kmin = 30 km s?1). The parameters of this subsample are in satisfactory agreement with observations of helium subdwarfs. In particular, the binarity rate in the selection-limited sample is 58%. We analyze the relations between the orbital periods and masses of helium subdwarfs and their companions in systems with various combinations of components. We predict that the overwhelming majority (~97%) of unobserved companions to helium stars will be white dwarfs, predominantly, carbon-oxygen white dwarfs.  相似文献   

5.
We show that semi-detached close binary systems with massive (4–25M) black holes are formed in the evolution of massive stellar binaries in which the initial mass of the primary exceeds ~25M. The mass exchange in such systems is maintained by the nuclear evolution of the donor and by its magnetic and induced stellar winds. The donor in such systems can be a main-sequence star, subgiant, non-degenerate helium star, or white dwarf. The evolution of corresponding systems with black-hole masses of 10M is investigated.  相似文献   

6.
The evolution of rapidly rotating 8, 4, and 2 M main-sequence stars is considered together with hydrodynamical transfer in their interiors. The conditions under which turbulent erosion, semiconvection, and shear turbulence lead to partial mixing of the matter in the radiative envelope and central regions of the stars are determined. The enhancement of the surface helium abundance with time depends on both the intensity of partial mixing in their interiors and mass loss by the stellar wind. The ratio of the number densities of helium and hydrogen at the surface can rise by the end of main-sequence stage by ~30% for a 8 M star and ~10?20% for a 4 M star, depending on the mass-loss rate. Partial mixing of the matter in the radiative envelope and in the central region of the star can provide an explanation for the observed enhancement of the atmospheric helium abundances of early B stars toward the end of their main-sequence evolution. The enhancement of the surface helium abundance in a 2 M star is so small that it cannot be detected, and is appreciably lower than the enhancement beneath the surface.  相似文献   

7.
We analyze the late stages of evolution of massive (M 0 ? 8 M ) close binaries, from the point of view of possible mechanisms for the generation of gamma-ray bursts. It is assumed that a gamma-ray burst requires the formation of a massive (~1 M ), compact (R ? 10 km) accretion disk around a Kerr black hole or neutron star. Such Kerr black holes are produced by core collapses of Wolf-Rayet stars in very close binaries, as well as by mergers of neutron stars and black holes or two neutron stars in binaries. The required accretion disks can also form around neutron stars that were formed via the collapse of ONeMg white dwarfs. We estimate the Galactic rate of events resulting in the formation of rapidly rotating relativistic objects. The computations were carried out using the “Scenario Machine.”  相似文献   

8.
The results of hydrodynamical calculations of radially pulsating helium stars with masses 0.5MM≤0.9M, bolometric luminosities 600L≤5×103L, and effective temperatures 1.5×104 K≤Teff≤3.5×104 K are presented. The pulsation instability of these stars is due to the effects of ionization of iron-group elements in layers with temperatures T~2×105 K. The calculations were carried out using opacities for the relative mass abundances of hydrogen and heavy elements X=0 and Z=0.01, 0.015, and 0.02. Approximate formulas for the pulsation constant Q over the entire range of pulsation instability of the hot helium stars in terms of the mass M, radius R, effective temperature Teff, and heavy-element abundance Z are derived. The instability of BX Cir to radial pulsations with the observed period Π=0.1066 d occurs only for a mass M≥0.55M, effective temperature Teff≥23000 K, and heavy-element abundance Z≥0.015. The allowed mass of BX Cir is in the range 0.55MM≤0.8M, which corresponds to luminosities 800LM≤1400L and mean radii 1.7R?R?2.1R.  相似文献   

9.
The paper analyzes the mass distribution of stellar black holes derived from the light and radial-velocity curves of optical stars in close binary systems using dynamical methods. The systematic errors inherent in this approach are discussed. These are associated primarily with uncertainties in models for the contribution from gaseous structures to the optical brightness of the systems under consideration. The mass distribution is nearly flat in the range 4–15M . This is compared with the mass distribution for black holes in massive close binaries, which can be manifest as ultrabright X-ray sources (L x >1039 erg/s) observed in other galaxies. If the X-ray luminosities of these objects correspond to the Eddington limit, the black-hole mass distribution should be described by a power law, which is incompatible with the flat shape derived dynamically from observations of close binaries in our Galaxy. One possible explanation of this discrepancy is the rapid evaporation of stellar-mass black holes predicted in recent multi-dimensional models of gravity. This hypothesis can be verified by refining the stellar black-hole mass spectrum or finding isolated or binary black holes with masses below ~3M .  相似文献   

10.
We consider the evolutionary status of observed close binary systems containing black holes and Wolf-Rayet (WR) stars. When the component masses and the orbital period of a system are known, the reason for the formation of a WR star in an initial massive system of two main-sequence stars can be established. Such WR stars can form due to the action of the stellar wind from a massive OB star (MOB≥50M), conservative mass transfer between components with close initial masses, or the loss of the common envelope in a system with a large (up to ~25) initial component mass ratio. The strong impact of observational selection effects on the creation of samples of close binaries with black holes and WR stars is demonstrated. We estimate theoretical mass-loss rates for WR stars, which are essential for our understanding the observed ratio of the numbers of carbon and nitrogen WR stars in the Galaxy \(\dot M_{WR} (M_ \odot yr^{ - 1} ) = 5 \times 10^{ - 7} (M_{WR} /M_ \odot )^{1.3} \). We also estimate the minimum initial masses of the components in close binaries producing black holes and WR stars to be ~25M. The spatial velocities of systems with black holes indicate that, during the formation of a black hole from a WR star, the mass loss reaches at least several solar masses. The rate of formation of rapidly rotating Kerr black holes in close binaries in the Galaxy is ~3×10?6 yr?1. Their formation may be accompanied by a burst of gamma radiation, possibly providing clues to the nature of gamma-ray bursts. The initial distribution of the component mass ratios for close binaries is dNdq=dM2/M1 in the interval 0.04?q0≤1, suggesting a single mechanism for their formation.  相似文献   

11.
The “Scenario Machine” (a computer code designed for studies of the evolution of close binaries) was used to carry out a population synthesis for a wide range of merging astrophysical objects: main-sequence stars with main-sequence stars; white dwarfs with white dwarfs, neutron stars, and black holes; neutron stars with neutron stars and black holes; and black holes with black holes. We calculate the rates of such events, and plot the mass distributions for merging white dwarfs and main-sequence stars. It is shown that Type Ia supernovae can be used as standard candles only after approximately one billion years of evolution of galaxies. In the course of this evolution, the average energy of Type Ia supernovae should decrease by roughly 10%; the maximum and minimum energies of Type Ia supernovae may differ by no less than by a factor of 1.5. This circumstance must be taken into account at estimating the parameters of the Universe expansion acceleration. According to theoretical estimates, the most massive—as a rule, magnetic—white dwarfs probably originate from mergers of white dwarfs of lower mass. At least some magnetic Ap and Bp stars may form in mergers of low-mass main-sequence stars (M ? 1.5 M ) with convective envelopes.  相似文献   

12.
We consider the formation of massive stars under the assumption that a young star accretes material from the protostellar cloud through its accretion disk while losing gas in the polar directions via its stellar wind. The mass of the star reaches its maximum when the intensity of the gradually strengthening stellar wind of the young star becomes equal to the accretion rate. We show that the maximum mass of the forming stars increases with the temperature of gas in the protostellar cloud T 0, since the rate at which the protostellar matter is accreted increases with T 0. Numerical modeling indicates that the maximum mass of the forming stars increases to ~900 M for T 0 ~ 300 K. Such high temperatures of the protostellar gas can be reached either in dense star-formation regions or in the vicinity of bright active galactic nuclei. It is also shown that, the lower the abundance of heavy elements in the initial stellar material Z, the larger the maximum mass of the star, since the mass-loss rate due to the stellar wind decreases with decreasing Z. This suggests that supermassive stars with masses up to 106 M could be formed at early stages in the evolution of the Universe, in young galaxies that are almost devoid of heavy elements. Under the current conditions, for T 0 = (30–100) K, the maximum mass of a star can reach ~100M , as is confirmed by observations. Another opportunity for the most massive stars to increase their masses emerges in connection with the formation and early stages of evolution of the most massive close binary systems: the most massive stars can be produced either by coalescence of the binary components or via mass transfer in such systems.  相似文献   

13.
The evolution of close binary systems containing Wolf-Rayet (WR) stars and black holes (BHs) is analyzed numerically. Both the stellar wind from the donor star itself and the induced stellar wind due to irradiation of the donor with hard radiation arising during accretion onto the relativistic component are considered. The mass and angular momentum losses due to the stellar wind are also taken into account at phases when the WR star fills its Roche lobe. It is shown that, if a WR star with a mass higher than ~10M fills its Roche lobe in an initial evolutionary phase, the donor star will eventually lose contact with the Roche lobe as the binary loses mass and angular momentum via the stellar wind, suggesting that the semi-detached binary will become detached. The star will remain a bright X-ray source, since the stellar wind that is captured by the black hole ensures a near-Eddington accretion rate. If the initial mass of the helium donor is below ~5M , the donor may only temporarily detach from its Roche lobe. Induced stellar wind plays a significant role in the evolution of binaries containing helium donors with initial masses of ~2M . We compute the evolution of three observed WR-BH binaries: Cyg X-3, IC 10 X-1, and NGC 300 X-1, as well as the evolution of the SS 433 binary system, which is a progenitor of such systems, under the assumption that this binary will avoid a common-envelope stage in its further evolution, as it does in its current evolutionary phase.  相似文献   

14.
The conditions for the acceleration of the spatial motions of stars by close-binary supermassive black holes (SMBHs) in galactic nuclei are analyzed in order to derive the velocity distribution for stars ejected from galaxies by such black holes. A close binary system consisting of two SMBHs in circular orbits was subject to a spherically symmetrical “barrage” of solar-mass stars with various initial velocities. The SMBHs were treated as point objects with Newtonian gravitational fields. Models with binary component-mass ratios of 1, 0.1, 0.01, and 0.001 were studied. The results demonstrate the possibility of accelerating neutron stars, stellar-mass black holes, and degenerate dwarfs to velocities comparable to the relative orbital velocities of the binary-SMBH components. In the stage when the binary components are merging due to the action of gravitational-wave radiation, this velocity can approach the speed of light. The most massive binary black-holes (M ? 109M) can also accelerate main-sequence stars with solar or subsolar masses to such velocities.  相似文献   

15.
The observed properties of Wolf-Rayet stars and relativistic objects in close binary systems are analyzed. The final masses M CO f for the carbon-oxygen cores of WR stars in WR + O binaries are calculated taking into account the radial loss of matter via stellar wind, which depends on the mass of the star. The analysis includes new data on the clumpy structure of WR winds, which appreciably decreases the required mass-loss rates $\dot M_{WR}$ for the WR stars. The masses M CO f lie in the range (1–2)M –(20–44)M and have a continuous distribution. The masses of the relativistic objects M x are 1–20M and have a bimodal distribution: the mean masses for neutron stars and black holes are 1.35 ± 0.15M and 8–10M , respectively, with a gap from 2–4M in which no neutron stars or black holes are observed in close binaries. The mean final CO-core mass is $\overline M _{CO}^f = 7.4 - 10.3M_ \odot$ , close to the mean mass for the black holes. This suggests that it is not only the mass of the progenitor that determines the nature of the relativistic object, but other parameters as well-rotation, magnetic field, etc. One SB1R Wolf-Rayet binary and 11 suspected WR + C binaries that may have low-mass companions (main-sequence or subgiant M-A stars) are identified; these could be the progenitors of low-mass X-ray binaries with neutron stars and black holes.  相似文献   

16.
An analysis of unidentified discrete sources of gamma-rays with energies E>100 MeV demonstrates that the spatial characteristics of this group of gamma-ray sources coincides with those of Wolf-Rayet stars. It is concluded that Wolf-Rayet stars are potential steady sources of high-energy gamma rays with mean luminosities L(>100 MeV)≈1035 erg/s.  相似文献   

17.
The results of numerical studies of the evolution of a close binary system containing a black hole with a mass of ~3000M are presented. Such a black hole could form in the center of a sufficiently rich and massive globular cluster. The secondary could be a main-sequence star, giant, or degenerate dwarf that fills or nearly fills its Roche lobe. The numerical simulations of the evolution of such a system take into account the magnetic wind of the donor together with the wind induced by X-ray irradiation from the primary, the radiation of gravitational waves by the system, and the nuclear evolution of the donor. Mass transfer between the components is possible when the donor fills its Roche lobe, and also via the black hole’s capture of some material from the induced stellar wind. The computations show that the evolution of systems with solar-mass donors depends only weakly on the mass of the accretor. We conclude that the observed ultra-luminous X-ray sources (L X ? 1038 erg/s) in nearby galaxies could include accreting black holes with masses of 102?104M. Three scenarios for the formation of black holes with such masses in the cores of globular clusters are considered: the collapse of superstars with the corresponding masses, the accretion of gas by a black hole with a stellar initial mass (<100M), and the tidal accumulation of stellar black holes. We conclude that the tidal accumulation of stellar-mass black holes is the main scenario for the formation of intermediate-mass black holes (102?104M) in the cores of globular clusters.  相似文献   

18.
We have analyzed the evolution of the components of the unique massive binary system WR 20a, which consists of a Wolf-Rayet nitrogen star and an Of star with an extremely small separation. The estimated masses of the components are 83 and 82 M , which are among the highest stellar mass inferred. We have carried out numerical modeling of the evolution of the components, taking into account the mass loss due to the stellar wind inherent to massive stars. In a scenario in which the systemis detached from the time the components reach the main sequence until its present state, the initial component masses are inferred to be close to 110 M , if the initial masses of the stars were equal, or 120 and 100 M , if they were different. Currently, the components are evolved main-sequence stars, whose surfaces are relatively little enriched by helium. The further evolution of the system will result in one of the components filling its Roche lobe and evolution within a common envelope. As a result, the components may coalesce, leading to the formation of a single massive black hole the supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system with two black holes or two free black holes will be formed. In the latter case, gamma-ray bursts will be observed.  相似文献   

19.
An analysis of the basic parameters of a sample of radio and X-ray pulsars that are members of close binary systems is used to separate them into several families according to the nature of the pulsar companions and the previous evolution of the systems. To quantitatively describe the main parameters of close binaries containing neutron stars, we have performed numerical modeling of their evolution. The main driving forces of the evolution of these systems are the nuclear evolution of the donor, the magnetically coupled and radiation-induced stellar winds of the donor, and gravitational-wave radiation. We have considered donors that are low-mass stars in various stages of their evolution, nondegenerate helium stars, and degenerate stars. The systems studied are either the products of the normal evolution of close binaries with large initial component-mass ratios or result from inelastic collisions of old neutron stars with single and binary low-mass, main-sequence stars in the dense cores of globular clusters. The formation of single millisecond pulsars requires either the dynamical disruption of a low-mass (?0.1M) donor or its complete evaporation under the action of the X-ray radiation of the millisecond pulsar. The observed properties of binary radio pulsars with eccentric orbits combined with the bimodal spatial-velocity distribution of single radio pulsars suggest that it may be possible to explain the observed rotational and spatial motions of all radio pulsars as a result of their formation in close binaries. In this case, neutron stars formed from massive single stars or the components of massive wide binaries probably cannot acquire the high spatial velocities or rapid rotation rates that are required for the birth of a radio pulsar.  相似文献   

20.
Partial mixing of material in the radiative envelopes and convective cores of rotating main sequence stars with masses of 8 and 16 M is considered as a function of the inital angular momentum of the stars. Losses of rotational kinetic energy to the generation of shear turbulence in the radiative envelope and the subsequent mixing of material in the envelope are taken into account. With an initial equatorial rotational velocity of 100 km/s, partial mixing develops in the upper part of the layer with variable chemical composition and the lower part of the chemically homogeneous radiative envelope. When the initial equatorial rotational velocity is 150–250 km/s, the joint action of shear turbulence and semi-convection leads to partial mixing in the radiative envelope and central parts of the star. The surface abundance of helium is enhanced, with this effect increasing with the angular momentum of the star. With an initial equatorial rotational velocity of 250 km/s, the ratio of the surface abundances of helium and hydrogen grows by ~30% and ~70% toward the end of the main-sequence evolution of an 8 M and 16 M star, respectively. The transformation of rotational kinetic energy into the energy of partial mixing increases with the angular momentum of the star, but does not exceed ~2%?3% in the cases considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号