首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the present study, a mechanical model has been developed to study the behavior of multilayer geosynthetic-reinforced granular fill over stone column-reinforced soft soil. The granular fill and geosynthetic reinforcement layers have been idealized by Pasternak shear layer and rough elastic membranes, respectively. The Kelvin–Voight model has been used to represent the time-dependent behavior of saturated soft soil. The stone columns are idealized by stiffer springs and assumed to be linearly elastic. The nonlinear behavior of the soft soil and granular fill is considered. The effect of consolidation of soft soil due to inclusion of the stone columns on settlement response has also been included in the model. Plane strain conditions are considered for the loading and reinforced foundation soil system. An iterative finite difference scheme is applied for obtaining the solution and results are presented in nondimensional form. It has been observed that if the soft soil is improved with stone columns, the multilayer reinforcement system is less effective as compared to single layer reinforcement to reduce the total settlement as there is considerable reduction in the total settlement due to stone column itself. Multilayer reinforcement system is effective for reducing the total settlement when stone columns are not used. However, multilayer reinforcement system is effective to transfer the stress from soil to stone column. The differential settlement is also slightly reduced due to application of multiple geosynthetic layers as compared to the single layer reinforcement system.  相似文献   

2.
In this paper, a model for the analysis of footings having finite flexural rigidity resting on a granular bed on top of stone columns improved saturated soft (clayey) soil has been proposed. Soft soil has been modeled as a Kelvin–Voigt body to represent its time dependent behavior. Pasternak shear layer has been used to represent the granular layer and the stone columns have been idealized by means of nonlinear Winkler springs. Nonlinear behavior of granular fill, soft soil and stone columns has been invoked by means of hyperbolic constitutive relationships. Governing differential equations for the soil–foundation system have been obtained and finite difference method has been adopted for solving these, using the Gauss-elimination iterative scheme. Detailed parametric study for a combined footing has been carried out to study the influence of parameters, like magnitude of applied load, flexural rigidity of footing, diameter of stone column, spacing of stone column, ultimate bearing capacity of granular fill, poor foundation soil and stone column, relative stiffness of stone columns and degree of consolidation, on flexural response of the footing.  相似文献   

3.
The paper presents a mechanical model to predict the behavior of geosynthetic-reinforced granular fill resting over soft soil improved with group of stone columns subjected to circular or axi-symmetric loading. The saturated soft soil has been idealized by spring-dashpot system. Pasternak shear layer and rough elastic membrane represent the granular fill and geosynthetic reinforcement layer, respectively. The stone columns are idealized by stiffer springs. The nonlinear behavior of granular fill and soft soil is considered. Consolidation of the soft soil due to inclusion of stone columns has also been included in the model. The results obtained by using the present model when compared with the reported results obtained from laboratory model tests shows very good agreement. The effectiveness of geosynthetic reinforcement to reduce the maximum and differential settlement and transfer the stress from soft soil to stone columns is highlighted. It is observed that the reduction of settlement and stress transfer process are greatly influenced by stiffness and spacing of the stone columns. It has been further observed that for both geosynthetic-reinforced and unreinforced cases, the maximum settlement does not change if the ratio between spacing and diameter of stone columns is greater than 4.  相似文献   

4.
The use of geosynthetic-encased stone columns as a method for soft soil treatment is extensively used to increase the bearing capacity and reduce the settlement of raft foundations and the foundation of structures like embankments. Pre-strain is an effect occurring in the encasement during stone column installation due to the compaction of the stone material. The present study uses the finite element program Plaxis to perform a numerical analysis of the soft clay bed reinforced by geosynthetic-encased stone columns. An idealization is proposed for simulation of installation of geosynthetic-encased stone columns in soft clay based on the unit-cell concept. In the analyses, initially, the validity of the analysis of the single column-reinforced soil in the unit-cell model was performed through comparison with the group columns. Then, by considering a unit-cell model, the finite element analyses were carried out to evaluate the stiffness of the reinforced ground to estimate the settlement. The results of the analyses show that the improved stiffness of the encased stone column is not only due to the confining pressure offered by the geosynthetic after loading, but the initial strain of the geosynthetic that occurred during installation also contributes to the enhancement of the stiffness of the stone column and the reduction of the settlement.  相似文献   

5.
The paper presents a model for the analysis of granular foundation beds reinforced with several geosynthetic layers. Such reinforced granular beds are often placed on soft soil strata for an efficient and economical transfer of superstructure load. The granular bed is modeled by the Pasternak shear layer and the geosynthetic reinforcement layers by stretched rough elastic membranes. The soft soil is represented by a series of nonlinear springs. The reinforcement has been considered to be extensible and it is assumed that the deformation at the interface of the reinforcements and soil are same. The nonlinear behavior of the granular bed and the soft soil is considered. Plane strain conditions are considered for the loading and reinforced foundation soil system. An iterative finite difference scheme is applied for obtaining the solution and results are presented in nondimensional form. The results from the proposed model are compared to the results obtained for multilayer inextensible geosynthetic reinforcement system. Significant reduction in the settlement has been observed when the number of reinforcement layer is increased. In case of inextensible reinforcements as the number of reinforcement layer is increased the settlement is decreased with a decreasing rate, but in case of extensible reinforcement the reduction rate is almost constant. Nonlinear behavior of the soft soil decreases as number of reinforcement layer is increased. The effect of the stiffness of the geosynthetic layer on the settlement response becomes insignificant for multilayer reinforced system, but the mobilized tension in the reinforcement layers increases as the stiffness of the geosynthetic layers increases.  相似文献   

6.
In the present work, a simplified model has been developed to study the behavior of stone column-supported embankment under axi-symmetric loading condition. The rate of consolidation of stone column-reinforced soft ground under axi-symmetric condition has also been presented in the paper. Mechanical model elements such as Pasternak shear layer, spring–dashpot system are used to model the different components such as granular layer, soft soil, stone columns etc. The governing differential equations are solved by finite difference technique. Parametric study has also been carried out to show the effect of different model variables on the settlement, stress concentration ratio of the foundation system. It is observed that for lower diameter ratio, at a particular time, the degree of consolidation predicted by the present method for axi-symmetric loading condition is almost same or lower than the degree of consolidation obtained by unit cell approach, but as the diameter ratio increases present analysis predicts higher degree of consolidation as compared to the unit cell approach. The maximum settlement decreases as the modular ratio increases and beyond the modular ratio value 30, the reduction rate of settlement decreases.  相似文献   

7.
This paper addresses the installation effects of stone columns in soft soils. Focus is made on the lateral expansion of stone material using the vibro displacement and substitution techniques by means of numerical simulations. The behaviour of reinforced soil after stone column installation is investigated to show how the properties of soft soils can be improved prior to final loading. The effect of such an improvement on the prediction of reinforced soil settlement is evaluated. The axisymmetric unit cell model (UCM) served for the comparison between numerical predictions made by the Mohr-Coulomb and hardening soil constitutive laws adopted for the soft soil. An equivalent group of end bearing columns model was investigated in the axisymmetric condition to predict the settlement of reinforced soil by adopting the Mohr-Coulomb constitutive model for soft clay. The reduction of settlements predicted by the unit cell and group of columns models, due the improvement of the Young’s modulus of soft clay, were compared. It is concluded that a significant reduction of settlement is expected when the group of columns model is considered.  相似文献   

8.
A method is proposed to evaluate settlement of soft clay reinforced with stone columns. Finite element analyses were carried out using 15-noded triangular elements with PLAXIS. A drained analysis was carried out using Mohr?CCoulomb??s criterion for soft clay, stones, and sand. The stress due to column installation has been considered in the analysis. At the interface between the stone column and soft clay, interface elements have been used. The settlement ratio (SR) of the soil has been estimated using the equivalent secant modulus. The results are compared with those available in the literature, and the advantages of the numerical analysis were highlighted. Based on the results of this analysis, the SR decrease with compaction surrounding soft soil, but decrease of SR is mainly due to a stiffer column material in soft clay.  相似文献   

9.
Deformation analysis of soft ground reinforced by columnar inclusions   总被引:20,自引:0,他引:20  
A simple theoretical approach to predict the deformation behaviour of soft ground reinforced by columnar inclusions such as stone columns./granular piles, sand compaction piles, lime or cement columns, etc., is presented in this paper. The analysis is performed based on the deformation properties of the column material and the surrounding soil. The interaction shear stresses between the column and the surrounding soil are considered to account for the stress transfer between the column and the soil. The solution is obtained by imposing compatibility between the displacements of the column and the soil for each element of the column-soil system. Numerical evaluations are made for a range of parameters to illustrate the influence of various parameters on the predictions. The proposed method is verified with finite element analysis and a reasonable agreement is obtained between the predictions.  相似文献   

10.
Past numerical simulations of geosynthetic encased columns (GECs) using different versions of the quasilinear elastic hyperbolic model for the encased granular material have, in certain cases, yielded unrealistic results. In this paper the cause of such results is investigated by performing three-dimensional finite element analyses of GECs in soft clay, utilizing three common functional forms of the hyperbolic model for the encased granular material. Results indicate that one form of the hyperbolic model can predict an unrealistic lateral response for GECs during application of load to the column. In addition, the inability of hyperbolic models to properly account for soil behavior near failure compromises their ability to realistically capture the behavior of encased granular soil in GECs. Modeling the behavior of soil near failure is essential for properly simulating the behavior of GECs, as soil shear failure is necessary to mobilize the tensile stresses in the encasement and improve the stress–displacement response of the GEC. Although this type of hyperbolic model behavior was demonstrated for the specific case of encased soil in a GEC, the limitations of the hyperbolic model described herein apply equally to other geotechnical problems in which some portion of the soil mass is at or near failure.  相似文献   

11.
Stone columns have been used as an effective technique for improving the engineering behaviour of soft clayey grounds and loose silt deposits. The soil improvement via stone columns are achieved from accelerating the consolidation of weak soil due to shortened drainage path, increasing the load carrying capacity and/or settlement reduction due to inclusion of stronger granular material. This paper discusses the techniques, methods of construction of stone columns, mechanisms of stone column behaviour under load and associated design philosophies along with some practical findings from recent research programs.  相似文献   

12.
In this paper, considering the plain strain conditions, a numerical study has been conducted to investigate the behavior of multi layer geosynthetic-reinforced granular bed overlying a soft soil using the Fast Lagrangian Analysis of Continua (FLAC) program. The granular fill, soft soil, and geosynthetic reinforcements are considered as linear elastic materials. The geosynthetic reinforcements are modeled as cable elements fully bonded with the surrounding soil, thus neglecting any slip. The results obtained from the present investigation showed very close agreement when compared with the results of finite element analysis and lumped parameter modeling. The distribution of vertical, lateral and shear stresses in the soil are greatly affected as the number of reinforcement layers is increased. If the tensile stiffness of geosynthetic layers increases and its value is no more than 4,000–5,000 kN/m, the settlement of the reinforced foundation decreases significantly. The reduction in settlement is insignificant when the tensile strength of the geosynthetics exceed the above value.  相似文献   

13.
While it is well established that vibro stone columns reduce primary settlement and improve bearing capacity, their effect on creep compression has largely been overlooked to date. However, with increasing pressure to develop marginal sites underlain by soft organic soils, the effect of ground treatment on creep is an important emerging issue in geotechnical engineering. In this paper, a series of axisymmetric unit cell analyses have been carried out using the PLAXIS 2D finite element program in conjunction with the Soft Soil Creep (SSC) model. Examination of the evolution of settlement improvement factor with time has indicated that the presence of creep leads to a lower ‘total’ improvement factor than would be obtained for primary consolidation settlement alone. Separate ‘primary’ and ‘creep’ improvement factors have also been derived; the latter are much lower than the former, but are nevertheless greater than unity. Creep results in a stress transfer process; as the soil creeps, vertical stress is transferred from the soil to the stone column. The additional load carried by the column induces additional yielding and shear-plane formation in closely-spaced columns. The additional increment of stress transferred to the already yielded column reduces its efficacy.  相似文献   

14.
The paper presents numerical simulations investigating the settlement reduction caused by stone columns in a natural soft clay. The focus is on the influence of the soft soil alteration caused by column installation. A uniform mesh of end-bearing columns under a distributed load was considered. Therefore, the columns were modelled using the “unit cell” concept, i.e. only one column and the corresponding surrounding soil in axial symmetry. The properties of the soft clay correspond to Bothkennar clay, which is modelled using S-CLAY1 and S-CLAY1S, which are Cam clay type models that account for anisotropy and destructuration. The Modified Cam clay model is also used for comparison. Column installation was modelled independently to avoid mesh distortions, and soft soil alteration was directly considered in the initial input values. The results show that the changes in the stress field, such as the increase of radial stresses and mean stresses and the loss of overconsolidation, are beneficial for high loads and closely spaced columns but, on the contrary, may be negative for low loads, widely spaced columns and overconsolidated soils. Moreover, whilst the rotation of the soil fabric reduces the settlement, in contrast the soil destructuration during column installation reduces the improvement.  相似文献   

15.
Stone columns in soft soil improve bearing capacity because they are stiffer than the material which they replace, and compacted stone columns produce shearing resistances which provide vertical support for overlying structures or embankments. Also stone columns accelerate the consolidation in the native surrounding soil and improve the load settlement characteristics of foundation. In this paper, the finite element method is utilized as a tool for carrying out analyses of stone column–soil systems under different conditions. A trial is made to improve the behaviour of stone column by encasing the stone column with geogrid as reinforcement material. The program CRISP-2D is used in the analysis of problems. The program allows prediction to be made of soil deformations considering Mohr-Coulomb failure criterion for elastic–plastic soil behaviour. A parametric study is carried out to investigate the behaviour of standard and encased floating stone columns in different conditions. Different parameters were studied to show their effect on the bearing improvement and settlement reduction of the stone column. These include the length to diameter ratio (L/d), shear strength of the surrounding soil and, the area replacement ratio (as) and others. It was found that the maximum effective length to diameter (L/d) ratio is between (7–8) for Cu, between (20–40) kPa and between (10–11) for Cu?=?10?kPa for ordinary floating stone columns while the effective (L/d) ratio is between (7–8) for encased floating stone columns. The increase in the area replacement ratio increases the bearing improvement ratio for encased floating stone columns especially when the area replacement ratio is greater than (0.25). The geogrid encasement of stone column greatly decreases the lateral displacement compared with ordinary stone column.  相似文献   

16.
The axial stress–strain relations of embedded granular columns encapsulated with flexible reinforcement were evaluated using an analytical procedure based on the cavity expansion method. This proposed method has firstly been verified through an experimental triaxial test on a reinforced sand specimen. A normalized relation was established between the volumetric change and the axial strain of soil to enable the analysis of granular material behavior under a continuous increase in lateral pressure. The analytical results show that the reinforced granular columns embedded in clay behave differently from granular columns subjected only to a constant confining pressure. It is found that reinforcing a column with a sleeve at the top portion will be adequate to prevent the column from bulging and also improve its load carrying capacity. The optimum skirting length that a sleeve can deter a granular column from bulging depends on the characteristics of the in situ soil and the stiffness and yield strength of the sleeve.  相似文献   

17.
The ultimate bearing capacity problem of column‐reinforced foundations under inclined loading is investigated within the framework of static and kinematic approaches of yield design theory. The configuration of a native soft clayey soil reinforced by either a group of purely cohesive columns (lime‐column technique) or a group of purely frictional columns (stone‐column technique) is analyzed under plane strain conditions. First, lower bound estimates are derived for the ultimate bearing capacity by considering statically admissible piecewise linear stress distributions that comply with the local strength conditions of the constitutive materials. The problem is then handled by means of the yield design kinematic approach of limit analysis through the implementation of several failure mechanisms, allowing the formulation of upper bound estimates for the ultimate bearing capacity. A series of finite element limit load solutions obtained from numerical elastoplastic simulations suggests that the predictions derived from the kinematic approach appear to be more accurate than the estimates obtained from the static approach. Comparison with available results obtained in the context of yield design homogenization demonstrates the accuracy of the proposed direct analysis, which may therefore be viewed as complementary approach to homogenization‐based approaches when a small number of columns is involved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Numerical analysis of stone column supported foundations   总被引:2,自引:0,他引:2  
In this paper, settlement and failure load of rafts resting on stone column reinforced soft clays are analyzed. The influence of the stone columns is assumed to be uniformly and homogeneously distributed throughout the reinforced region. It is also assumed that both columns and surrounding soil undergo the same total strains i.e. no slip occurs on the soil-column interface. A constitutive model is presented for an equivalent material. It combines different elasto-plastic laws, namely the Critical State model for clay and the Mohr-Coulomb criterion for gravel. Continuity of radial stresses is ensured by an additional pseudo-yield criterion. The model is incorporated in a finite element code and results for a circular footing are presented. The influence of dilatancy of the columns is highlighted together with the differences in the behaviour for columns situated at the centre or at the outer boundary of the footing. Flexible as well as rigid foundations are considered. It is emphasized that the finite element mesh is independent of the column spacing leading to considerable advantages in carrying out parametric studies.  相似文献   

19.
Stone columns (or granular piles) are increasingly being used for ground improvement. This study investigates the qualitative and quantitative improvement in soft clay by stone columns. Finite element analyses were carried out to evaluate the performance of stone columns in soft clay. A drained analysis was carried out using Mohr–Coulomb’s criterion for soft clay, stones, and sand. The interface elements were used at the interface between the stone column and soft clay. Analyses and calculations were carried out to determine equivalent parameters of soil/columns system. The bearing capacity ratio (BCR) of the soil has been estimated for homogeneous and heterogeneous soil. The results have shown that the values of BCR for homogeneous soil are obviously higher than those for heterogeneous soil.  相似文献   

20.
Using stone columns is an efficient method to increase the bearing capacity of soft soils. This has led to an increased interest in further developing and improving the method. In addition, granular blankets are used to increase the bearing capacity of the stone columns. In this research, the bearing capacity of stone columns, granular blankets, and a combination of both methods in reinforced and unreinforced modes was examined using large-scale laboratory tests. A scale factor of 1–10 is used for the geometry of the models, and the stone columns are a floating type that are 60 mm in diameter and 350 mm in length. These columns are either reinforced with vertical encasement of a geotextile or they are unreinforced. The granular blankets are either reinforced by using a biaxial geogrid or they are unreinforced with 40 and 75 mm thicknesses. In general, 16 large experimental tests have been carried out. Results indicate that using all these variations (granular blankets, stone columns, and a combination of both) improves bearing capacity. Using geogrid as the reinforcement of granular blankets and geotextile as stone-column encasement increases the efficiency of granular blankets and stone columns significantly. The maximum bearing capacity was obtained when reinforced granular blankets and reinforced stone columns were combined. The stress-concentration ratio and bearing capacity increased as geotextile encasement was used in the stone columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号